Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2021

31.05.2021 | Critical Review

A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges

verfasst von: Vahid Nasir, Farrokh Sassani

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data-driven methods provided smart manufacturing with unprecedented opportunities to facilitate the transition toward Industry 4.0–based production. Machine learning and deep learning play a critical role in developing intelligent systems for descriptive, diagnostic, and predictive analytics for machine tools and process health monitoring. This paper reviews the opportunities and challenges of deep learning (DL) for intelligent machining and tool monitoring. The components of an intelligent monitoring framework are introduced. The main advantages and disadvantages of machine learning (ML) models are presented and compared with those of deep models. The main DL models, including autoencoders, deep belief networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), were discussed, and their applications in intelligent machining and tool condition monitoring were reviewed. The opportunities of data-driven smart manufacturing approach applied to intelligent machining were discussed to be (1) automated feature engineering, (2) handling big data, (3) handling high-dimensional data, (4) avoiding sensor redundancy, (5) optimal sensor fusion, and (6) offering hybrid intelligent models. Finally, the data-driven challenges in smart manufacturing, including the challenges associated with the data size, data nature, model selection, and process uncertainty, were discussed, and the research gaps were outlined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhong RY, Ge W (2018) Internet of things enabled manufacturing: a review. Int J Agile Syst Manag 11(2):126–154CrossRef Zhong RY, Ge W (2018) Internet of things enabled manufacturing: a review. Int J Agile Syst Manag 11(2):126–154CrossRef
2.
Zurück zum Zitat Yang C, Shen W, Wang X (2018) The internet of things in manufacturing: key issues and potential applications. IEEE Syst Man Cybern Mag 4(1):6–15CrossRef Yang C, Shen W, Wang X (2018) The internet of things in manufacturing: key issues and potential applications. IEEE Syst Man Cybern Mag 4(1):6–15CrossRef
3.
Zurück zum Zitat Yang C, Shen W, Wang X (2016, May) Applications of Internet of Things in manufacturing. In: 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, pp 670–675 Yang C, Shen W, Wang X (2016, May) Applications of Internet of Things in manufacturing. In: 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, pp 670–675
4.
Zurück zum Zitat Siderska J, Jadaan KS (2018) Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper. Eng Manag Produc Serv 10(1):22–31 Siderska J, Jadaan KS (2018) Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper. Eng Manag Produc Serv 10(1):22–31
5.
Zurück zum Zitat Lee J, Davari H, Singh J, Pandhare V (2018) Industrial artificial intelligence for Industry 4.0-based manufacturing systems. Manuf Lett 18:20–23CrossRef Lee J, Davari H, Singh J, Pandhare V (2018) Industrial artificial intelligence for Industry 4.0-based manufacturing systems. Manuf Lett 18:20–23CrossRef
6.
Zurück zum Zitat Li BH, Hou BC, Yu WT, Lu XB, Yang CW (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf Technol Electron Eng 18(1):86–96CrossRef Li BH, Hou BC, Yu WT, Lu XB, Yang CW (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf Technol Electron Eng 18(1):86–96CrossRef
7.
Zurück zum Zitat Kumar SL (2017) State of the art-intense review on artificial intelligence systems application in process planning and manufacturing. Eng Appl Artif Intell 65:294–329CrossRef Kumar SL (2017) State of the art-intense review on artificial intelligence systems application in process planning and manufacturing. Eng Appl Artif Intell 65:294–329CrossRef
8.
Zurück zum Zitat Tao F, Qi Q, Liu A, Kusiak A (2018) Data-driven smart manufacturing. J Manuf Syst 48:157–169CrossRef Tao F, Qi Q, Liu A, Kusiak A (2018) Data-driven smart manufacturing. J Manuf Syst 48:157–169CrossRef
9.
Zurück zum Zitat Lin YC, Wu KD, Shih WC, Hsu PK, Hung JP (2020) Prediction of surface roughness based on cutting parameters and machining vibration in end milling using regression method and artificial neural network. Appl Sci 10(11):3941CrossRef Lin YC, Wu KD, Shih WC, Hsu PK, Hung JP (2020) Prediction of surface roughness based on cutting parameters and machining vibration in end milling using regression method and artificial neural network. Appl Sci 10(11):3941CrossRef
11.
Zurück zum Zitat Silge, M., & Sattel, T. (2018). Design of contactlessly powered and piezoelectrically actuated tools for non-resonant vibration assisted milling. In Actuators (Vol. 7, 2, p. 19). Multidisciplinary Digital Publishing Institute. Silge, M., & Sattel, T. (2018). Design of contactlessly powered and piezoelectrically actuated tools for non-resonant vibration assisted milling. In Actuators (Vol. 7, 2, p. 19). Multidisciplinary Digital Publishing Institute.
12.
Zurück zum Zitat Omair M, Sarkar B, Cárdenas-Barrón LE (2017) Minimum quantity lubrication and carbon footprint: a step towards sustainability. Sustainability 9(5):714CrossRef Omair M, Sarkar B, Cárdenas-Barrón LE (2017) Minimum quantity lubrication and carbon footprint: a step towards sustainability. Sustainability 9(5):714CrossRef
13.
Zurück zum Zitat Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98(5-8):1925–1975CrossRef Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98(5-8):1925–1975CrossRef
14.
Zurück zum Zitat Yeganefar A, Niknam SA, Asadi R (2019) The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling. Int J Adv Manuf Technol 105(1):951–965CrossRef Yeganefar A, Niknam SA, Asadi R (2019) The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling. Int J Adv Manuf Technol 105(1):951–965CrossRef
15.
Zurück zum Zitat Nasir V, Mohammadpanah A, Cool J (2018) The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: experimental measurement and analysis of saw critical and flutter speeds. Wood Mater Sci Eng 15(3):1–7 Nasir V, Mohammadpanah A, Cool J (2018) The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: experimental measurement and analysis of saw critical and flutter speeds. Wood Mater Sci Eng 15(3):1–7
17.
Zurück zum Zitat Nasir V, Cool J (2019) Optimal power consumption and surface quality in the circular sawing process of Douglas-fir wood. Eur J Wood Wood Produc 77(4):609–617CrossRef Nasir V, Cool J (2019) Optimal power consumption and surface quality in the circular sawing process of Douglas-fir wood. Eur J Wood Wood Produc 77(4):609–617CrossRef
18.
Zurück zum Zitat Serin G, Sener B, Ozbayoglu AM, Unver HO (2020) Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol:1–22 Serin G, Sener B, Ozbayoglu AM, Unver HO (2020) Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol:1–22
19.
Zurück zum Zitat Wang M, Wang J (2012) CHMM for tool condition monitoring and remaining useful life prediction. Int J Adv Manuf Technol 59(5-8):463–471CrossRef Wang M, Wang J (2012) CHMM for tool condition monitoring and remaining useful life prediction. Int J Adv Manuf Technol 59(5-8):463–471CrossRef
20.
Zurück zum Zitat Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann 58(2):588–607CrossRef Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann 58(2):588–607CrossRef
21.
Zurück zum Zitat Chen W, Liu H, Sun Y, Yang K, Zhang J (2017) A novel simulation method for interaction of machining process and machine tool structure. Int J Adv Manuf Technol 88(9-12):3467–3474CrossRef Chen W, Liu H, Sun Y, Yang K, Zhang J (2017) A novel simulation method for interaction of machining process and machine tool structure. Int J Adv Manuf Technol 88(9-12):3467–3474CrossRef
22.
Zurück zum Zitat Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376CrossRef Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376CrossRef
23.
Zurück zum Zitat Hegab HA, Darras B, Kishawy HA (2018) Towards sustainability assessment of machining processes. J Clean Prod 170:694–703CrossRef Hegab HA, Darras B, Kishawy HA (2018) Towards sustainability assessment of machining processes. J Clean Prod 170:694–703CrossRef
24.
Zurück zum Zitat Mia M, Gupta MK, Singh G, Królczyk G, Pimenov DY (2018) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod 187:1069–1081CrossRef Mia M, Gupta MK, Singh G, Królczyk G, Pimenov DY (2018) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod 187:1069–1081CrossRef
25.
Zurück zum Zitat Zhou Z, Yao B, Xu W, Wang L (2017) Condition monitoring towards energy-efficient manufacturing: a review. Int J Adv Manuf Technol 91(9-12):3395–3415CrossRef Zhou Z, Yao B, Xu W, Wang L (2017) Condition monitoring towards energy-efficient manufacturing: a review. Int J Adv Manuf Technol 91(9-12):3395–3415CrossRef
26.
Zurück zum Zitat Said Z, Gupta M, Hegab H, Arora N, Khan AM, Jamil M, Bellos E (2019) A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol 105(5-6):2057–2086CrossRef Said Z, Gupta M, Hegab H, Arora N, Khan AM, Jamil M, Bellos E (2019) A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol 105(5-6):2057–2086CrossRef
28.
Zurück zum Zitat Licow R, Chuchala D, Deja M, Orlowski KA, Taube P (2020) Effect of pine impregnation and feed speed on sound level and cutting power in wood sawing. J Clean Prod 272:122833CrossRef Licow R, Chuchala D, Deja M, Orlowski KA, Taube P (2020) Effect of pine impregnation and feed speed on sound level and cutting power in wood sawing. J Clean Prod 272:122833CrossRef
29.
Zurück zum Zitat Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann 59(2):717–739CrossRef Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann 59(2):717–739CrossRef
30.
Zurück zum Zitat Abellan-Nebot JV, Subirón FR (2010) A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol 47(1-4):237–257CrossRef Abellan-Nebot JV, Subirón FR (2010) A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol 47(1-4):237–257CrossRef
31.
Zurück zum Zitat Zhu K, San Wong Y, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49(7-8):537–553CrossRef Zhu K, San Wong Y, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49(7-8):537–553CrossRef
32.
Zurück zum Zitat Lauro CH, Brandão LC, Baldo D, Reis RA, Davim JP (2014) Monitoring and processing signal applied in machining processes–a review. Measurement 58:73–86CrossRef Lauro CH, Brandão LC, Baldo D, Reis RA, Davim JP (2014) Monitoring and processing signal applied in machining processes–a review. Measurement 58:73–86CrossRef
33.
Zurück zum Zitat Kusiak A (2019) Fundamentals of smart manufacturing: a multi-thread perspective. Annu Rev Control 47:214–220CrossRef Kusiak A (2019) Fundamentals of smart manufacturing: a multi-thread perspective. Annu Rev Control 47:214–220CrossRef
34.
Zurück zum Zitat Kim DH, Kim TJ, Wang X, Kim M, Quan YJ, Oh JW et al (2018) Smart machining process using machine learning: a review and perspective on machining industry. Int J Precis Eng Manuf Green Technol 5(4):555–568CrossRef Kim DH, Kim TJ, Wang X, Kim M, Quan YJ, Oh JW et al (2018) Smart machining process using machine learning: a review and perspective on machining industry. Int J Precis Eng Manuf Green Technol 5(4):555–568CrossRef
35.
Zurück zum Zitat Ayvaz S, Alpay K (2021) Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst Appl 173:114598CrossRef Ayvaz S, Alpay K (2021) Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst Appl 173:114598CrossRef
36.
Zurück zum Zitat Morariu C, Morariu O, Răileanu S, Borangiu T (2020) Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput Ind 120:103244CrossRef Morariu C, Morariu O, Răileanu S, Borangiu T (2020) Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput Ind 120:103244CrossRef
37.
Zurück zum Zitat Adi E, Anwar A, Baig Z, Zeadally S (2020) Machine learning and data analytics for the IoT. Neural Comput & Applic 32:16205–16233CrossRef Adi E, Anwar A, Baig Z, Zeadally S (2020) Machine learning and data analytics for the IoT. Neural Comput & Applic 32:16205–16233CrossRef
38.
Zurück zum Zitat Peng ZK, Chu FL (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Signal Process 18(2):199–221CrossRef Peng ZK, Chu FL (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Signal Process 18(2):199–221CrossRef
39.
Zurück zum Zitat Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28CrossRef Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28CrossRef
41.
Zurück zum Zitat Sick B (2002) On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech Syst Signal Process 16(4):487–546CrossRef Sick B (2002) On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech Syst Signal Process 16(4):487–546CrossRef
42.
Zurück zum Zitat Roth JT, Djurdjanovic D, Yang X, Mears L, Kurfess T (2010) Quality and inspection of machining operations: tool condition monitoring. J Manuf Sci Eng 132(4) Roth JT, Djurdjanovic D, Yang X, Mears L, Kurfess T (2010) Quality and inspection of machining operations: tool condition monitoring. J Manuf Sci Eng 132(4)
43.
Zurück zum Zitat Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G (2016) Tool wear predictability estimation in milling based on multi-sensorial data. Int J Adv Manuf Technol 82(1-4):509–521CrossRef Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G (2016) Tool wear predictability estimation in milling based on multi-sensorial data. Int J Adv Manuf Technol 82(1-4):509–521CrossRef
45.
Zurück zum Zitat Nasir V, Cool J, Sassani F (2019) Intelligent machining monitoring using sound signal processed with the wavelet method and a self-organizing neural network. IEEE Robot Autom Lett 4(4):3449–3456 Nasir V, Cool J, Sassani F (2019) Intelligent machining monitoring using sound signal processed with the wavelet method and a self-organizing neural network. IEEE Robot Autom Lett 4(4):3449–3456
46.
Zurück zum Zitat Bhuiyan MSH, Choudhury IA, Dahari M (2014) Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning. J Manuf Syst 33(4):476–487CrossRef Bhuiyan MSH, Choudhury IA, Dahari M (2014) Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning. J Manuf Syst 33(4):476–487CrossRef
47.
Zurück zum Zitat Ahmadi H, Dumont G, Sassani F, Tafreshi R (2003) Performance of informative wavelets for classification and diagnosis of machine faults. Int J Wavelets Multiresolution Inf Process 1(03):275–289MathSciNetMATHCrossRef Ahmadi H, Dumont G, Sassani F, Tafreshi R (2003) Performance of informative wavelets for classification and diagnosis of machine faults. Int J Wavelets Multiresolution Inf Process 1(03):275–289MathSciNetMATHCrossRef
48.
Zurück zum Zitat Tafreshi R, Sassani F, Ahmadi H, Dumont G (2009) An approach for the construction of entropy measure and energy map in machine fault diagnosis. J Vib Acoust 131(2) Tafreshi R, Sassani F, Ahmadi H, Dumont G (2009) An approach for the construction of entropy measure and energy map in machine fault diagnosis. J Vib Acoust 131(2)
49.
Zurück zum Zitat Wuest T, Weimer D, Irgens C, Thoben KD (2016) Machine learning in manufacturing: advantages, challenges, and applications. Produc Manuf Res 4(1):23–45 Wuest T, Weimer D, Irgens C, Thoben KD (2016) Machine learning in manufacturing: advantages, challenges, and applications. Produc Manuf Res 4(1):23–45
50.
Zurück zum Zitat Hermann G (1990) Artificial intelligence in monitoring and the mechanics of machining. Comput Ind 14(1-3):131–135CrossRef Hermann G (1990) Artificial intelligence in monitoring and the mechanics of machining. Comput Ind 14(1-3):131–135CrossRef
51.
Zurück zum Zitat Rangwala SS (1987) Integration of sensors via neural networks for detection of tool wear states. Proc Winter Annu Meet ASME 25:109–120 Rangwala SS (1987) Integration of sensors via neural networks for detection of tool wear states. Proc Winter Annu Meet ASME 25:109–120
52.
Zurück zum Zitat Dornfeld DA, DeVries MF (1990) Neural network sensor fusion for tool condition monitoring. CIRP Ann 39(1):101–105CrossRef Dornfeld DA, DeVries MF (1990) Neural network sensor fusion for tool condition monitoring. CIRP Ann 39(1):101–105CrossRef
53.
Zurück zum Zitat Rangwala, S., & Dornfeld, D. (1990). Sensor integration using neural networks for intelligent tool condition monitoring, 219-228. Rangwala, S., & Dornfeld, D. (1990). Sensor integration using neural networks for intelligent tool condition monitoring, 219-228.
54.
Zurück zum Zitat Park KS, Kim SH (1998) Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review. Artif Intell Eng 12(1-2):127–134CrossRef Park KS, Kim SH (1998) Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review. Artif Intell Eng 12(1-2):127–134CrossRef
55.
Zurück zum Zitat Dimla DE Jr, Lister PM, Leighton NJ (1997) Neural network solutions to the tool condition monitoring problem in metal cutting—a critical review of methods. Int J Mach Tools Manuf 37(9):1219–1241CrossRef Dimla DE Jr, Lister PM, Leighton NJ (1997) Neural network solutions to the tool condition monitoring problem in metal cutting—a critical review of methods. Int J Mach Tools Manuf 37(9):1219–1241CrossRef
56.
Zurück zum Zitat Ademujimi TT, Brundage MP, Prabhu VV (2017, September) A review of current machine learning techniques used in manufacturing diagnosis. In: IFIP International Conference on Advances in Production Management Systems. Springer, Cham, pp 407–415 Ademujimi TT, Brundage MP, Prabhu VV (2017, September) A review of current machine learning techniques used in manufacturing diagnosis. In: IFIP International Conference on Advances in Production Management Systems. Springer, Cham, pp 407–415
57.
Zurück zum Zitat Panchal G, Ganatra A, Shah P, Panchal D (2011) Determination of over-learning and over-fitting problem in backpropagation neural network. Int J Soft Comput 2(2):40–51CrossRef Panchal G, Ganatra A, Shah P, Panchal D (2011) Determination of over-learning and over-fitting problem in backpropagation neural network. Int J Soft Comput 2(2):40–51CrossRef
58.
Zurück zum Zitat Montavon, G., Orr, G., & Müller, K. R. (Eds.). (2012). Neural networks: tricks of the trade (Vol. 7700). springer. Montavon, G., Orr, G., & Müller, K. R. (Eds.). (2012). Neural networks: tricks of the trade (Vol. 7700). springer.
59.
Zurück zum Zitat Lopez C (1999) Looking inside the ANN “black box”: classifying individual neurons as outlier detectors. In: IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339, vol 2. IEEE, pp 1185–1188 Lopez C (1999) Looking inside the ANN “black box”: classifying individual neurons as outlier detectors. In: IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339, vol 2. IEEE, pp 1185–1188
60.
Zurück zum Zitat Palczewska A, Palczewski J, Robinson RM, Neagu D (2014) Interpreting random forest classification models using a feature contribution method. In: Integration of reusable systems. Springer, Cham, pp 193–218 Palczewska A, Palczewski J, Robinson RM, Neagu D (2014) Interpreting random forest classification models using a feature contribution method. In: Integration of reusable systems. Springer, Cham, pp 193–218
61.
Zurück zum Zitat Nasir V, Kooshkbaghi M, Cool J (2020) Sensor fusion and random forest modeling for identifying frozen and green wood during lumber manufacturing. Manuf Lett 26:53–58CrossRef Nasir V, Kooshkbaghi M, Cool J (2020) Sensor fusion and random forest modeling for identifying frozen and green wood during lumber manufacturing. Manuf Lett 26:53–58CrossRef
62.
Zurück zum Zitat Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
63.
Zurück zum Zitat Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1–13CrossRef Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1–13CrossRef
64.
Zurück zum Zitat Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–1246CrossRef Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–1246CrossRef
65.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
66.
Zurück zum Zitat Khan S, Yairi T (2018) A review on the application of deep learning in system health management. Mech Syst Signal Process 107:241–265CrossRef Khan S, Yairi T (2018) A review on the application of deep learning in system health management. Mech Syst Signal Process 107:241–265CrossRef
67.
Zurück zum Zitat Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156CrossRef Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156CrossRef
68.
Zurück zum Zitat Zhang N, Ding S, Zhang J, Xue Y (2018) An overview on restricted Boltzmann machines. Neurocomputing 275:1186–1199CrossRef Zhang N, Ding S, Zhang J, Xue Y (2018) An overview on restricted Boltzmann machines. Neurocomputing 275:1186–1199CrossRef
69.
Zurück zum Zitat Fu Y, Zhang Y, Qiao H, Li D, Zhou H, Leopold J (2015) Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia Cirp 31(Suppl. C):29–34CrossRef Fu Y, Zhang Y, Qiao H, Li D, Zhou H, Leopold J (2015) Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia Cirp 31(Suppl. C):29–34CrossRef
70.
Zurück zum Zitat Chen Y, Jin Y, Jiri G (2018) Predicting tool wear with multi-sensor data using deep belief networks. Int J Adv Manuf Technol 99(5-8):1917–1926CrossRef Chen Y, Jin Y, Jiri G (2018) Predicting tool wear with multi-sensor data using deep belief networks. Int J Adv Manuf Technol 99(5-8):1917–1926CrossRef
71.
Zurück zum Zitat Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270MathSciNetMATHCrossRef Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270MathSciNetMATHCrossRef
72.
Zurück zum Zitat Xu X, Tao Z, Ming W, An Q, Chen M (2020) Intelligent monitoring and diagnostics using a novel integrated model based on deep learning and multi-sensor feature fusion. Measurement 165:108086CrossRef Xu X, Tao Z, Ming W, An Q, Chen M (2020) Intelligent monitoring and diagnostics using a novel integrated model based on deep learning and multi-sensor feature fusion. Measurement 165:108086CrossRef
73.
Zurück zum Zitat Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef
74.
Zurück zum Zitat Hahn TV, Mechefske CK (2021) Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder. Int J Hydromechatron 4(1):69–98CrossRef Hahn TV, Mechefske CK (2021) Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder. Int J Hydromechatron 4(1):69–98CrossRef
75.
Zurück zum Zitat Xiangyu Z, Lilan L, Xiang W, Bowen F (2021) Tool wear online monitoring method based on DT and SSAE-PHMM. J Comput Inf Sci Eng 21(3):034501CrossRef Xiangyu Z, Lilan L, Xiang W, Bowen F (2021) Tool wear online monitoring method based on DT and SSAE-PHMM. J Comput Inf Sci Eng 21(3):034501CrossRef
76.
Zurück zum Zitat Dou J, Xu C, Jiao S, Li B, Zhang J, Xu X (2020) An unsupervised online monitoring method for tool wear using a sparse auto-encoder. Int J Adv Manuf Technol 106(5):2493–2507CrossRef Dou J, Xu C, Jiao S, Li B, Zhang J, Xu X (2020) An unsupervised online monitoring method for tool wear using a sparse auto-encoder. Int J Adv Manuf Technol 106(5):2493–2507CrossRef
77.
Zurück zum Zitat Kim J, Lee H, Jeon JW, Kim JM, Lee HU, Kim S (2020) Stacked auto-encoder based CNC tool diagnosis using discrete wavelet transform feature extraction. Processes 8(4):456CrossRef Kim J, Lee H, Jeon JW, Kim JM, Lee HU, Kim S (2020) Stacked auto-encoder based CNC tool diagnosis using discrete wavelet transform feature extraction. Processes 8(4):456CrossRef
78.
Zurück zum Zitat Moldovan OG, Dzitac S, Moga I, Vesselenyi T, Dzitac I (2017) Tool-wear analysis using image processing of the tool flank. Symmetry 9(12):296CrossRef Moldovan OG, Dzitac S, Moga I, Vesselenyi T, Dzitac I (2017) Tool-wear analysis using image processing of the tool flank. Symmetry 9(12):296CrossRef
79.
Zurück zum Zitat Ochoa LEE, Quinde IBR, Sumba JPC, Guevara AV Jr, Morales-Menendez R (2019) New approach based on autoencoders to monitor the tool wear condition in HSM. IFAC-PapersOnLine 52(11):206–211CrossRef Ochoa LEE, Quinde IBR, Sumba JPC, Guevara AV Jr, Morales-Menendez R (2019) New approach based on autoencoders to monitor the tool wear condition in HSM. IFAC-PapersOnLine 52(11):206–211CrossRef
80.
Zurück zum Zitat Proteau A, Zemouri R, Tahan A, Thomas M (2020) Dimension reduction and 2D-visualization for early change of state detection in a machining process with a variational autoencoder approach. Int J Adv Manuf Technol 111(11):3597–3611CrossRef Proteau A, Zemouri R, Tahan A, Thomas M (2020) Dimension reduction and 2D-visualization for early change of state detection in a machining process with a variational autoencoder approach. Int J Adv Manuf Technol 111(11):3597–3611CrossRef
81.
Zurück zum Zitat Ou J, Li H, Huang G, Zhou Q (2020) A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring. Sensors 20(10):2878CrossRef Ou J, Li H, Huang G, Zhou Q (2020) A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring. Sensors 20(10):2878CrossRef
82.
Zurück zum Zitat Ou J, Li H, Huang G, Yang G (2021) Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine. Measurement 167:108153CrossRef Ou J, Li H, Huang G, Yang G (2021) Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine. Measurement 167:108153CrossRef
83.
Zurück zum Zitat Shi C, Panoutsos G, Luo B, Liu H, Li B, Lin X (2018) Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing. IEEE Trans Ind Electron 66(5):3794–3803CrossRef Shi C, Panoutsos G, Luo B, Liu H, Li B, Lin X (2018) Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing. IEEE Trans Ind Electron 66(5):3794–3803CrossRef
84.
Zurück zum Zitat He Z, Shi T, Xuan J, Li T (2021) Research on tool wear prediction based on temperature signals and deep learning. Wear 478:203902CrossRef He Z, Shi T, Xuan J, Li T (2021) Research on tool wear prediction based on temperature signals and deep learning. Wear 478:203902CrossRef
85.
Zurück zum Zitat Shi C, Luo B, He S, Li K, Liu H, Li B (2019) Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion. IEEE Trans Ind Informatics 16(8):5150–5159CrossRef Shi C, Luo B, He S, Li K, Liu H, Li B (2019) Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion. IEEE Trans Ind Informatics 16(8):5150–5159CrossRef
86.
Zurück zum Zitat Sun C, Ma M, Zhao Z, Tian S, Yan R, Chen X (2018) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans Ind Informatics 15(4):2416–2425CrossRef Sun C, Ma M, Zhao Z, Tian S, Yan R, Chen X (2018) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans Ind Informatics 15(4):2416–2425CrossRef
87.
Zurück zum Zitat Dun Y, Zhus L, Yan B, Wang S (2021) A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech Syst Signal Process 158:107755CrossRef Dun Y, Zhus L, Yan B, Wang S (2021) A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech Syst Signal Process 158:107755CrossRef
88.
Zurück zum Zitat Yu J, Liu G (2020) Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput Ind 121:103262CrossRef Yu J, Liu G (2020) Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput Ind 121:103262CrossRef
89.
Zurück zum Zitat Brili N, Ficko M, Klančnik S (2021) Automatic identification of tool wear based on thermography and a convolutional neural network during the turning process. Sensors 21(5):1917CrossRef Brili N, Ficko M, Klančnik S (2021) Automatic identification of tool wear based on thermography and a convolutional neural network during the turning process. Sensors 21(5):1917CrossRef
90.
Zurück zum Zitat Lee CH, Jwo JS, Hsieh HY, Lin CS (2020) An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning. IEEE Access 8:58279–58289CrossRef Lee CH, Jwo JS, Hsieh HY, Lin CS (2020) An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning. IEEE Access 8:58279–58289CrossRef
91.
Zurück zum Zitat Gouarir A, Martínez-Arellano G, Terrazas G, Benardos P, Ratchev SJPC (2018) In-process tool wear prediction system based on machine learning techniques and force analysis. Procedia CIRP 77:501–504CrossRef Gouarir A, Martínez-Arellano G, Terrazas G, Benardos P, Ratchev SJPC (2018) In-process tool wear prediction system based on machine learning techniques and force analysis. Procedia CIRP 77:501–504CrossRef
92.
Zurück zum Zitat Cao XC, Chen BQ, Yao B, He WP (2019) Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput Ind 106:71–84CrossRef Cao XC, Chen BQ, Yao B, He WP (2019) Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput Ind 106:71–84CrossRef
93.
Zurück zum Zitat Song K, Wang M, Liu L, Wang C, Zan T, Yang B (2020) Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal. Int J Adv Manuf Technol 109(3):929–942CrossRef Song K, Wang M, Liu L, Wang C, Zan T, Yang B (2020) Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal. Int J Adv Manuf Technol 109(3):929–942CrossRef
94.
Zurück zum Zitat Terrazas G, Martínez-Arellano G, Benardos P, Ratchev S (2018) Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach. J Manuf Mater Process 2(4):72 Terrazas G, Martínez-Arellano G, Benardos P, Ratchev S (2018) Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach. J Manuf Mater Process 2(4):72
95.
Zurück zum Zitat Martínez-Arellano G, Terrazas G, Ratchev S (2019) Tool wear classification using time series imaging and deep learning. Int J Adv Manuf Technol 104(9):3647–3662CrossRef Martínez-Arellano G, Terrazas G, Ratchev S (2019) Tool wear classification using time series imaging and deep learning. Int J Adv Manuf Technol 104(9):3647–3662CrossRef
96.
Zurück zum Zitat Zheng, H., & Lin, J. (2019). A deep learning approach for high speed machining tool wear monitoring. In 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS) (pp. 63-68). IEEE. Zheng, H., & Lin, J. (2019). A deep learning approach for high speed machining tool wear monitoring. In 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS) (pp. 63-68). IEEE.
97.
Zurück zum Zitat Cao X, Chen B, Yao B, Zhuang S (2019) An intelligent milling tool wear monitoring methodology based on convolutional neural network with derived wavelet frames coefficient. Appl Sci 9(18):3912CrossRef Cao X, Chen B, Yao B, Zhuang S (2019) An intelligent milling tool wear monitoring methodology based on convolutional neural network with derived wavelet frames coefficient. Appl Sci 9(18):3912CrossRef
98.
Zurück zum Zitat Mamledesai H, Soriano MA, Ahmad R (2020) A qualitative tool condition monitoring framework using convolution neural network and transfer learning. Appl Sci 10(20):7298CrossRef Mamledesai H, Soriano MA, Ahmad R (2020) A qualitative tool condition monitoring framework using convolution neural network and transfer learning. Appl Sci 10(20):7298CrossRef
99.
Zurück zum Zitat Zhi G, He D, Sun W, Yuqing Z, Pan X, Gao C (2021) An edge-labeling graph neural network method for tool wear condition monitoring using wear image with small samples. Meas Sci Technol 32:064006CrossRef Zhi G, He D, Sun W, Yuqing Z, Pan X, Gao C (2021) An edge-labeling graph neural network method for tool wear condition monitoring using wear image with small samples. Meas Sci Technol 32:064006CrossRef
100.
Zurück zum Zitat Xu X, Wang J, Zhong B, Ming W, Chen M (2021) Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism. Measurement 177:109254CrossRef Xu X, Wang J, Zhong B, Ming W, Chen M (2021) Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism. Measurement 177:109254CrossRef
101.
Zurück zum Zitat Zhang X, Wang S, Li W, Lu X (2021) Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction. Int J Adv Manuf Technol:1–25 Zhang X, Wang S, Li W, Lu X (2021) Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction. Int J Adv Manuf Technol:1–25
102.
Zurück zum Zitat Ambadekar PK, Choudhari CM (2020) CNN based tool monitoring system to predict life of cutting tool. SN Appl Sci 2(5):1–11CrossRef Ambadekar PK, Choudhari CM (2020) CNN based tool monitoring system to predict life of cutting tool. SN Appl Sci 2(5):1–11CrossRef
103.
Zurück zum Zitat Xu X, Wang J, Ming W, Chen M, An Q (2021) In-process tap tool wear monitoring and prediction using a novel model based on deep learning. Int J Adv Manuf Technol 112:453–466CrossRef Xu X, Wang J, Ming W, Chen M, An Q (2021) In-process tap tool wear monitoring and prediction using a novel model based on deep learning. Int J Adv Manuf Technol 112:453–466CrossRef
104.
Zurück zum Zitat Li P, Jia X, Feng J, Zhu F, Miller M, Chen LY, Lee J (2020) A novel scalable method for machine degradation assessment using deep convolutional neural network. Measurement 151:107106CrossRef Li P, Jia X, Feng J, Zhu F, Miller M, Chen LY, Lee J (2020) A novel scalable method for machine degradation assessment using deep convolutional neural network. Measurement 151:107106CrossRef
105.
Zurück zum Zitat Huang Z, Zhu J, Lei J, Li X, Tian F (2019) Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J Intell Manuf:1–14 Huang Z, Zhu J, Lei J, Li X, Tian F (2019) Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J Intell Manuf:1–14
106.
Zurück zum Zitat Huang Z, Zhu J, Lei J, Li X, Tian F (2019) Tool wear predicting based on multisensory raw signals fusion by reshaped time series convolutional neural network in manufacturing. IEEE Access 7:178640–178651CrossRef Huang Z, Zhu J, Lei J, Li X, Tian F (2019) Tool wear predicting based on multisensory raw signals fusion by reshaped time series convolutional neural network in manufacturing. IEEE Access 7:178640–178651CrossRef
107.
Zurück zum Zitat Wu X, Liu Y, Zhou X, Mou A (2019) Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors 19(18):3817CrossRef Wu X, Liu Y, Zhou X, Mou A (2019) Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors 19(18):3817CrossRef
108.
Zurück zum Zitat Tran MQ, Liu MK, Tran QV (2020) Milling chatter detection using scalogram and deep convolutional neural network. Int J Adv Manuf Technol 107(3):1505–1516CrossRef Tran MQ, Liu MK, Tran QV (2020) Milling chatter detection using scalogram and deep convolutional neural network. Int J Adv Manuf Technol 107(3):1505–1516CrossRef
109.
Zurück zum Zitat Zhu W, Zhuang J, Guo B, Teng W, Wu F (2020) An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. Int J Adv Manuf Technol 106(9):3881–3895CrossRef Zhu W, Zhuang J, Guo B, Teng W, Wu F (2020) An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. Int J Adv Manuf Technol 106(9):3881–3895CrossRef
110.
Zurück zum Zitat Rifai AP, Aoyama H, Tho NH, Dawal SZM, Masruroh NA (2020) Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 161:107860CrossRef Rifai AP, Aoyama H, Tho NH, Dawal SZM, Masruroh NA (2020) Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 161:107860CrossRef
111.
Zurück zum Zitat Liu Y, Hu X, Jin J (2019) Remaining useful life prediction of cutting tools based on deep adversarial transfer learning. In: Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, pp 434–439 Liu Y, Hu X, Jin J (2019) Remaining useful life prediction of cutting tools based on deep adversarial transfer learning. In: Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, pp 434–439
112.
Zurück zum Zitat Liu H, Liu Z, Jia W, Lin X, Zhang S (2020) A novel transformer-based neural network model for tool wear estimation. Meas Sci Technol 31(6):065106CrossRef Liu H, Liu Z, Jia W, Lin X, Zhang S (2020) A novel transformer-based neural network model for tool wear estimation. Meas Sci Technol 31(6):065106CrossRef
113.
Zurück zum Zitat Zhao R, Wang J, Yan R, Mao K (2016) Machine health monitoring with LSTM networks. In: 2016 10th international conference on sensing technology (ICST), IEEE, pp 1–6 Zhao R, Wang J, Yan R, Mao K (2016) Machine health monitoring with LSTM networks. In: 2016 10th international conference on sensing technology (ICST), IEEE, pp 1–6
114.
Zurück zum Zitat Aghazadeh F, Tahan AS, Thomas M (2019, July) Tool condition monitoring method in milling process using wavelet transform and long short-term memory. In Surveillance, Vishno and AVE conferences Aghazadeh F, Tahan AS, Thomas M (2019, July) Tool condition monitoring method in milling process using wavelet transform and long short-term memory. In Surveillance, Vishno and AVE conferences
115.
Zurück zum Zitat Cai W, Zhang W, Hu X, Liu Y (2020) A hybrid information model based on long short-term memory network for tool condition monitoring. J Intell Manuf 31(6):1497–1510CrossRef Cai W, Zhang W, Hu X, Liu Y (2020) A hybrid information model based on long short-term memory network for tool condition monitoring. J Intell Manuf 31(6):1497–1510CrossRef
116.
Zurück zum Zitat Zhou JT, Zhao X, Gao J (2019) Tool remaining useful life prediction method based on LSTM under variable working conditions. Int J Adv Manuf Technol 104(9):4715–4726CrossRef Zhou JT, Zhao X, Gao J (2019) Tool remaining useful life prediction method based on LSTM under variable working conditions. Int J Adv Manuf Technol 104(9):4715–4726CrossRef
117.
Zurück zum Zitat Gugulothu N, Tv V, Malhotra P, Vig L, Agarwal P, Shroff G (2017) Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv 1709:01073 Gugulothu N, Tv V, Malhotra P, Vig L, Agarwal P, Shroff G (2017) Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv 1709:01073
118.
Zurück zum Zitat Yu W, Kim IY, Mechefske C (2019) Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech Syst Signal Process 129:764–780CrossRef Yu W, Kim IY, Mechefske C (2019) Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech Syst Signal Process 129:764–780CrossRef
119.
Zurück zum Zitat Wu X, Li J, Jin Y, Zheng S (2020) Modeling and analysis of tool wear prediction based on SVD and BiLSTM. Int J Adv Manuf Technol 106(9):4391–4399CrossRef Wu X, Li J, Jin Y, Zheng S (2020) Modeling and analysis of tool wear prediction based on SVD and BiLSTM. Int J Adv Manuf Technol 106(9):4391–4399CrossRef
120.
Zurück zum Zitat Wang, J., Yan, J., Li, C., Gao, R. X., & Zhao, R. (2019). Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction. Comput Ind, 111, 1-14, 1. Wang, J., Yan, J., Li, C., Gao, R. X., & Zhao, R. (2019). Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction. Comput Ind, 111, 1-14, 1.
121.
Zurück zum Zitat Marani M, Zeinali M, Songmene V, Mechefske CK (2021) Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling. Measurement 177:109329CrossRef Marani M, Zeinali M, Songmene V, Mechefske CK (2021) Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling. Measurement 177:109329CrossRef
122.
Zurück zum Zitat Vashisht RK, Peng Q (2021) Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives. J Manuf Sci Eng 143(1) Vashisht RK, Peng Q (2021) Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives. J Manuf Sci Eng 143(1)
123.
Zurück zum Zitat Guo W, Wu C, Ding Z, Zhou Q (2021) Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. Int J Adv Manuf Technol 112(9):2853–2871CrossRef Guo W, Wu C, Ding Z, Zhou Q (2021) Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. Int J Adv Manuf Technol 112(9):2853–2871CrossRef
124.
Zurück zum Zitat Chen Q, Xie Q, Yuan Q, Huang H, Li Y (2019) Research on a real-time monitoring method for the wear state of a tool based on a convolutional bidirectional LSTM model. Symmetry 11(10):1233CrossRef Chen Q, Xie Q, Yuan Q, Huang H, Li Y (2019) Research on a real-time monitoring method for the wear state of a tool based on a convolutional bidirectional LSTM model. Symmetry 11(10):1233CrossRef
125.
Zurück zum Zitat Ma J, Luo D, Liao X, Zhang Z, Huang Y, Lu J (2021) Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 173:108554CrossRef Ma J, Luo D, Liao X, Zhang Z, Huang Y, Lu J (2021) Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 173:108554CrossRef
126.
Zurück zum Zitat Zhang X, Lu X, Li W, Wang S (2021) Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. Int J Adv Manuf Technol 112(7):2277–2299CrossRef Zhang X, Lu X, Li W, Wang S (2021) Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. Int J Adv Manuf Technol 112(7):2277–2299CrossRef
127.
Zurück zum Zitat An Q, Tao Z, Xu X, El Mansori M, Chen M (2020) A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement 154:107461CrossRef An Q, Tao Z, Xu X, El Mansori M, Chen M (2020) A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement 154:107461CrossRef
128.
Zurück zum Zitat Babu GS, Zhao P, Li XL (2016) Deep convolutional neural network based regression approach for estimation of remaining useful life. In: International conference on database systems for advanced applications. Springer, Cham, pp 214–228 Babu GS, Zhao P, Li XL (2016) Deep convolutional neural network based regression approach for estimation of remaining useful life. In: International conference on database systems for advanced applications. Springer, Cham, pp 214–228
129.
Zurück zum Zitat Qiao H, Wang T, Wang P (2020) A tool wear monitoring and prediction system based on multiscale deep learning models and fog computing. Int J Adv Manuf Technol 108:2367–2384CrossRef Qiao H, Wang T, Wang P (2020) A tool wear monitoring and prediction system based on multiscale deep learning models and fog computing. Int J Adv Manuf Technol 108:2367–2384CrossRef
130.
Zurück zum Zitat Niu, J., Liu, C., Zhang, L., & Liao, Y. (2019). Remaining useful life prediction of machining tools by 1D-CNN LSTM network. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1056-1063). IEEE. Niu, J., Liu, C., Zhang, L., & Liao, Y. (2019). Remaining useful life prediction of machining tools by 1D-CNN LSTM network. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1056-1063). IEEE.
131.
Zurück zum Zitat Zhao R, Yan R, Wang J, Mao K (2017) Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 17(2):273CrossRef Zhao R, Yan R, Wang J, Mao K (2017) Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 17(2):273CrossRef
132.
Zurück zum Zitat Qiao H, Wang T, Wang P, Qiao S, Zhang L (2018) A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. Sensors 18(9):2932CrossRef Qiao H, Wang T, Wang P, Qiao S, Zhang L (2018) A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. Sensors 18(9):2932CrossRef
133.
Zurück zum Zitat Wang B, Lei Y, Yan T, Li N, Guo L (2020) Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery. Neurocomputing 379:117–129CrossRef Wang B, Lei Y, Yan T, Li N, Guo L (2020) Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery. Neurocomputing 379:117–129CrossRef
134.
Zurück zum Zitat Zhang X, Lu X, Li W, Wang S (2021) Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. Int J Adv Manuf Technol:1–23 Zhang X, Lu X, Li W, Wang S (2021) Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. Int J Adv Manuf Technol:1–23
135.
Zurück zum Zitat Misaka T, Herwan J, Kano S, Sawada H, Furukawa Y (2020) Deep neural network-based cost function for metal cutting data assimilation. Int J Adv Manuf Technol 107(1):385–398CrossRef Misaka T, Herwan J, Kano S, Sawada H, Furukawa Y (2020) Deep neural network-based cost function for metal cutting data assimilation. Int J Adv Manuf Technol 107(1):385–398CrossRef
136.
Zurück zum Zitat Qiao H, Wang T, Wang P, Zhang L, Xu M (2019) An adaptive weighted multiscale convolutional neural network for rotating machinery fault diagnosis under variable operating conditions. IEEE Access 7:118954–118964CrossRef Qiao H, Wang T, Wang P, Zhang L, Xu M (2019) An adaptive weighted multiscale convolutional neural network for rotating machinery fault diagnosis under variable operating conditions. IEEE Access 7:118954–118964CrossRef
137.
Zurück zum Zitat Jiang G, He H, Yan J, Xie P (2018) Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Trans Ind Electron 66(4):3196–3207CrossRef Jiang G, He H, Yan J, Xie P (2018) Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Trans Ind Electron 66(4):3196–3207CrossRef
138.
Zurück zum Zitat Li DC, Wen IH, Chen WC (2016) A novel data transformation model for small data-set learning. Int J Prod Res 54(24):7453–7463CrossRef Li DC, Wen IH, Chen WC (2016) A novel data transformation model for small data-set learning. Int J Prod Res 54(24):7453–7463CrossRef
139.
Zurück zum Zitat Kusiak A (2017 Apr) Smart manufacturing must embrace big data. Nature. 544(7648):23–25CrossRef Kusiak A (2017 Apr) Smart manufacturing must embrace big data. Nature. 544(7648):23–25CrossRef
140.
Zurück zum Zitat Taiebat M, Sassani F (2017 Sep) Distinguishing sensor faults from system faults by utilizing minimum sensor redundancy. Trans Can Soc Mech Eng 41(3):469–487CrossRef Taiebat M, Sassani F (2017 Sep) Distinguishing sensor faults from system faults by utilizing minimum sensor redundancy. Trans Can Soc Mech Eng 41(3):469–487CrossRef
141.
Zurück zum Zitat Nasir V, Cool J (2020) A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Material Sci Eng 15(1):1–16CrossRef Nasir V, Cool J (2020) A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Material Sci Eng 15(1):1–16CrossRef
142.
Zurück zum Zitat Diez-Olivan A, Del Ser J, Galar D, Sierra B (2019 Oct 1) Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf Fusion 50:92–111CrossRef Diez-Olivan A, Del Ser J, Galar D, Sierra B (2019 Oct 1) Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf Fusion 50:92–111CrossRef
144.
Zurück zum Zitat Imoto K, Nakai T, Ike T, Haruki K, Sato Y (2018) A CNN-based transfer learning method for defect classification in semiconductor manufacturing. In: 2018 International Symposium on Semiconductor Manufacturing (ISSM). IEEE, pp 1–3 Imoto K, Nakai T, Ike T, Haruki K, Sato Y (2018) A CNN-based transfer learning method for defect classification in semiconductor manufacturing. In: 2018 International Symposium on Semiconductor Manufacturing (ISSM). IEEE, pp 1–3
145.
Zurück zum Zitat Wang P, Gao RX (2020) Transfer learning for enhanced machine fault diagnosis in manufacturing. CIRP Ann 69(1):413–416CrossRef Wang P, Gao RX (2020) Transfer learning for enhanced machine fault diagnosis in manufacturing. CIRP Ann 69(1):413–416CrossRef
146.
Zurück zum Zitat Caggiano A (2018) Cloud-based manufacturing process monitoring for smart diagnosis services. Int J Comput Integr Manuf 31(7):612–623CrossRef Caggiano A (2018) Cloud-based manufacturing process monitoring for smart diagnosis services. Int J Comput Integr Manuf 31(7):612–623CrossRef
Metadaten
Titel
A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges
verfasst von
Vahid Nasir
Farrokh Sassani
Publikationsdatum
31.05.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07325-7

Weitere Artikel der Ausgabe 9-10/2021

The International Journal of Advanced Manufacturing Technology 9-10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.