Skip to main content

Advertisement

Log in

Viral dynamics model with CTL immune response incorporating antiretroviral therapy

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present two HIV models that include the CTL immune response, antiretroviral therapy and a full logistic growth term for uninfected \(\text{ CD4}^+\) T-cells. The difference between the two models lies in the inclusion or omission of a loss term in the free virus equation. We obtain critical conditions for the existence of one, two or three steady states, and analyze the stability of these steady states. Through numerical simulation we find substantial differences in the reproduction numbers and the behaviour at the infected steady state between the two models, for certain parameter sets. We explore the effect of varying the combination drug efficacy on model behaviour, and the possibility of reconstituting the CTL immune response through antiretroviral therapy. Furthermore, we employ Latin hypercube sampling to investigate the existence of multiple infected equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alimonti JB, Blake BT, Fowke KR (2003) Mechanisms of \(\text{ CD4}^+\) T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 84:1649–1661

    Article  Google Scholar 

  • Arnaout R, Nowak M, Wodarz D (2000) HIV-1 dynamics revisited: biphasic decay by cytotoxic lymphocyte killing? Proc R Soc Lond B 265:1347–1354

    Article  Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62:229–243

    Article  MATH  Google Scholar 

  • Callaway DS, Perelson AS (2002) HIV-1 infection and low steady state viral loads. Bull Math Biol 64:29–64

    Article  Google Scholar 

  • Ciupe MS, Bivort BL, Bortz DM, Nelson PW (2006) Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math Biosci 200:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Clavel F, Hance AJ (2004) Medical progress: HIV drug resistance. N Engl J Med 350:1023–1035

    Google Scholar 

  • Culshaw RV, Ruan S (2000) A delay-differential equation model of HIV infection of \(\text{ CD4}^+\) T-cells. Math Biosci 165:27–39

    Article  MATH  Google Scholar 

  • Culshaw RV, Ruan S, Spiteri RJ (2004) Optimal HIV treatment by maximising immune response. J Math Biol 48:545–562

    Article  MathSciNet  MATH  Google Scholar 

  • Davenport MP, Ribeiro RM, Perelson AS (2004) Kinetics of virus-specific CD8\(^+\) T cells and the control of human immunodeficiency virus infection. J Virol 78:10096–10103

    Article  Google Scholar 

  • Davenport MP, Ribeiro RM, Zhang L, Wilson DP, Perelson AS (2007) Understanding the mechanisms and limitations of immune control of HIV. Immunol Rev 216:164–175

    Google Scholar 

  • Davis IC, Girard M, Fultz PN (1998) Loss of \(\text{ CD4}^+\) T cells in human immunodeficiency virus type 1-infected chimpanzees is associated with increased lymphocyte apoptosis. J Virol 72:4623–4632

    Google Scholar 

  • de Boer RJ, Perelson AS (1998) Target cell limited and immune control models of HIV infection: a comparision. J Theor Biol 190:201–214

    Article  Google Scholar 

  • de Boer RJ, Ribeiro RM, Perelson AS (2010) Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues. PLoS Comput Biol 6(9):1–9

    Google Scholar 

  • de Clercq E (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 33:307–320

    Article  Google Scholar 

  • de Leenheer P, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63:1313–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Gruters RA, van Baalen CA, Osterhaus AD (2002) The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes. Vaccine 20:2011–2015

    Article  Google Scholar 

  • Hale J, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Heffernan JM, Wahl LM (2005) Monte carlo estimates of natural variation in HIV infection. J Theor Biol 236:137–153

    Article  MathSciNet  Google Scholar 

  • Heffernan JM, Wahl LM (2006) Natural variation in HIV infection: monte carlo estimates that include CD8 effector cells. J Theor Biol 243:191–204

    Article  MathSciNet  Google Scholar 

  • Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interf 2:281–293

    Article  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  Google Scholar 

  • Joint United Nations Programme on HIV/AIDS (2010) Report on the global AIDS epidemic 2010

  • LaSalle JP (1976) The stability of dynamical systems. Regional conference series in applied mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  • Li MY, Shu HY (2012) Joint effects of mitosis and intracellular delay on viral dynamics two-parameter bifurcation analysis. J Math Biol 64:1005–1020

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M, Perelson AS, Ho DD (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    MathSciNet  MATH  Google Scholar 

  • Moanna A, Dunham R, Paiardini M, Silvestri G (2005) \(\text{ CD4}^+\) T-cell depletion in HIV infection: killed by friendly fire? Curr HIV/AIDS Rep 2:16–23

    Article  Google Scholar 

  • Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ (1997) Cytotoxic-T-cell responses viral load and disease progression in in early human immunodeficiency virus type 1 infection. N Engl J Med 337:1267–1274

    Article  Google Scholar 

  • Nelson PW, Murray JD, Perelson AS (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci 163:201–215

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak MA, Bangham C (1996) Population dynamics of immune response to persistent viruses. Science 272:74–79

    Article  Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University, Oxford

    Google Scholar 

  • Pearson JE, Krapivsky P, Perelson AS (2011) Stochastic theory of early viral infection: continuous versus burst production of virions. PLoS Comput Biol 7(2):1–17

    Article  MathSciNet  Google Scholar 

  • Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2:28–36

    Article  Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS, Kirschner DE, de Boer R (1993) Dynamics of HIV infection of \(\text{ CD4}^{+}\) T cells. Math Biosci 114(1):81–125

    Article  MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  Google Scholar 

  • Qesmi R, Wu J, Wu J, Heffernan JM (2010) Influence of backward bifurcation in a model of hepatitis B and C viruses. Math Biosci 224:118–125

    Article  MathSciNet  MATH  Google Scholar 

  • Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, Minarkowitz M, Moore JP, Perelson AS, Ho DD (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:1782–1785

    Article  Google Scholar 

  • Ribeiro RM, Li Q, Chavez LL, Li D, Self SG, Perelson AS (2010) Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection. J Virol 84:6096–6102

    Article  Google Scholar 

  • Rong L, Perelson AS (2009) Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol 5(10):1–18

    Article  MathSciNet  Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007) Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull Math Biol 69:2027–2060

    Article  MathSciNet  MATH  Google Scholar 

  • Sachsenberg N, Perelson AS, Yerly S, Schockmel GA, Leduc D, Hirschel B, Perrin L (1998) Turnover of \(\text{ CD4}^{+}\) and \(\text{ CD8}^{+}\) T lymphocytes in HIV-1 infection as measured by ki-67 antigen. J Exp Med 187:1295–1303

    Article  Google Scholar 

  • Sanchez MA, Blower SM (1997) Uncertainty and sensitivity analysis of the basic reproductive rate. Am J Epidemiol 145:1127–1137

    Article  Google Scholar 

  • Schwartz EJ, Blower SM (2005) Predicting the potential individual- and population-level effects of imperfect herpes simplex virus type 2 baccines. J Infect Dis 191:1734–1746

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Thomas JA, Ott DE, Gorelick RJ (2007) Efficiency of Human Immunodeficiency Virus type 1 postentry infection processes: evidence against disproportionate numbers of defective virions. J Virol 81: 4367–4370

    Article  Google Scholar 

  • Wang K, Wang W, Liu X (2006) Global stability in a viral infection model with lytic and nonlytic immune response. Comput Math Appl 51:1593–1610

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Zhou Y, Wu J, Heffernan J (2009) Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math Biosci 219:104–112

    Article  MathSciNet  MATH  Google Scholar 

  • Wodarz D, Christensen JP, Thomsen AR (2002) The importance of lytic and nonlytic immune responses viral infections. Trends Immunol 23:194–200

    Article  Google Scholar 

  • Wodarz D, Nowak MA (1999) Specific therapy regimes could lead to long-term immunological control of HIV. Proc Natl Acad Sci 96:14464–14469

    Article  Google Scholar 

  • Zhang F, Dou Z, Ma Y, Zhao Y, Liu Z, Bulterys M, Chen RY (2009) Five-year outcomes of the china national free antiretroviral treatment program. Ann Intern Med 151:241–252

    Article  Google Scholar 

  • Zhu H, Zou X (2009) Dynamics of an HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin Dyn Syst B 12:511–524

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China 10971163 (Y. Wang and Y. Zhou); by the International Development Research Center 104519-010, Ottawa, Canada (Y. Zhou); by Natural Sciences and Engineering Research Council of Canada (F. Brauer and J.M. Heffernan); Mathematics for Information Technology and Complex Systems (F. Brauer and J.M. Heffernan) and the Ontario Government Early Research Award program (J.M. Heffernan). We are grateful to Dr. A. Pugliese and two anonymous referees for their careful reading, constructive criticisms and helpful comments, which helped us to improve our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Heffernan.

Appendices

Appendix 1

In Sect. 3, in order to obtain the number of the infected steady states, let \(y:=T_{2, 1}\), then we get the following cubic equation:

$$\begin{aligned} m_1y^3+m_2y^2+m_3y+m_4=0, \end{aligned}$$
(16)
$$\begin{aligned} m_1&= \frac{rk_I}{T_{max}}>0, \\ m_2&= (d-r)k_I+\frac{rc}{T_{max}}+\frac{rk_I}{T_{max}}T^*_{2, 1} \\&= \left(\frac{\lambda }{T_0}-\frac{rT_0}{T_{max}}\right)k_I+\frac{rc}{T_{max}}+\frac{rk_I}{T_{max}}T^*_{2, 1}\\&= \frac{\lambda }{T_0}k_I+\frac{r}{T_{max}}(c-k_IT_0+k_IT^*_{2, 1}),\\ m_3&= (d-r)c+\frac{rc}{T_{max}}T^*_{2, 1}+k_I(1-\eta )N\delta T^*_{2, 1}-\lambda k_I \\&= \left(\frac{\lambda }{T_0}-\frac{rT_0}{T_{max}}\right)c+\frac{rc}{T_{max}}T^*_{2, 1}+k_I(1-\eta )N\delta T^*_{2, 1}-\lambda k_I \\&= \frac{\lambda }{T_0}(c-k_IT_0)+k_I(1-\eta )N\delta T^*_{2, 1}+\frac{cr}{T_{max}}(T_{2,1}^*-T_0), \\ m_4&= -c\lambda <0. \end{aligned}$$

Assuming \(y_1, y_2\) and \(y_3\) are the roots of Eq. (16), from the relationship between roots and coefficients, we know

$$\begin{aligned} y_1y_2y_3=-\frac{m_4}{m_1}>0. \end{aligned}$$
(17)

Let \(f(y):=m_1y^3+m_2y^2+m_3y+m_4\), we know \(f(0)=m_4<0\) and \(f(+\infty )\rightarrow +\infty \). Using the intermediate value theorem, we know \(f(y)=0\) has at least one positive real root. Furthermore, we can guess Eq. (16) has one positive real root or three positive real roots from (17). We know the discriminant of the cubic equation is,

$$\begin{aligned} \Delta =18m_1m_2m_3m_4-4m_2^3m_4+m_2^2m_3^2-4m_1m_3^3-27m_1^2m_4^2. \end{aligned}$$
  1. (a)

    If \(\Delta =0\), then the equation has a multiple root and all its roots are real.

  2. (b)

    If \(\Delta <0\), then the equation has one real root and two nonreal complex conjugate roots.

  3. (c)

    If \(\Delta >0\), then the equation has three distinct real roots.

Integrating the intermediate value theorem with the discriminant, we obtain the following:

Lemma 1

  1. (a)

    If \(\Delta \le 0\), then Eq. (16) has one positive real root.

  2. (b)

    If \(\Delta >0\), then Eq. (16) has three distinct real roots

    1. (i)

      if \(m_2<0\) and \(m_3>0\), then Eq. (16) has three distinct positive real roots;

    2. (ii)

      if \(m_2\ge 0\) or \(m_3\le 0\), then Eq. (16) has one positive real root.

Proof

It is obvious to see that conclusions (a) and (ii) are satisfied. Next, we only need to prove conclusion (i).

If \(\Delta >0\), assume \(y_1>0, y_2\) and \(y_3\) are the real roots of \(f(y)=0\). To the contrary, \(y_2<0\) and \(y_3<0\). Then

$$\begin{aligned} f(y)&= (y-y_1)(y-y_2)(y-y_3)\\&= y^3-(y_1+y_2+y_3)y^2+(y_1y_2+y_2y_3+y_1y_3)y-y_1y_2y_3. \end{aligned}$$

Suppose that \(m_2<0\), that is \(y_1+y_2+y_3>0\), then \(y_1>-(y_2+y_3)\). Also, suppose that \(m_3>0\), that is \(y_1y_2+y_2y_3+y_1y_3>0\), then \(y_1(y_2+y_3)>-y_2y_3\). As \(-(y_2+y_3)>0, y_1>0\), then \(y_1(y_2+y_3)<-(y_2+y_3)^2\). We can get \(-(y_2+y_3)^2>-y_2y_3\), that is \((y_2+\frac{1}{2}y_3)^2+\frac{3}{4}y_3^2<0\), which is a contradiction.

Appendix 2

The proof of Theorem 4.5 in Sect. 4.

Proof

The characteristic equation of system (2) at the steady state \(E_{2, i}\) is

$$\begin{aligned} \xi ^4+b_{1, i}\xi ^3+b_{2, i}\xi ^2+b_{3, i}\xi +b_{4, i}=0, \end{aligned}$$
(18)

where,

$$\begin{aligned} b_{1, i}&= \alpha _{2, i}+\delta \mathcal D _{1, i}+c+ik_IT_{2, i}>0, \\ b_{2, i}&= \alpha _{2, i}(\delta \mathcal D _{1, i}+c+ik_IT_{2, i})+d_C \delta \mathcal D _{2, i} +\frac{r\delta T_{2, i}^*}{T_{max}}\mathcal D _{1, i}-ik_I\overline{k}_IV_{2, i}T_{2, i}, \\ b_{3, i}&= d_C\delta (\alpha _{2, i}+c+ik_IT_{2, i})\mathcal D _{2, i} +c\delta \mathcal D _{1, i}\left(\overline{k}_I V_{2, i} +\frac{rT_{2, i}^*}{T_{max}}\right)>0,\\ b_{4, i}&= d_C \delta \mathcal D _{2, i}[\alpha _{2, i}c+ik_IT_{2, i}(\alpha _{2, i}-\overline{k}_IV_{2, i})]. \end{aligned}$$

Using the Routh–Hurwitz criterion, we get

$$\begin{aligned} \Delta _{1, i}&= b_{1, i}>0,\\ \Delta _{2, i}&= b_{1, i}b_{2, i}-b_{3, i} \\&= \alpha _{2, i}(\alpha _{2, i}+\delta \mathcal D _{1, i}+c+ik_IT_{2, i})(\delta \mathcal D _{1, i}+c+ik_IT_{2, i}) +d_C\delta ^2 \mathcal D _{1, i}\mathcal D _{2, i}\\&+\,(\alpha _{2, i}+\delta \mathcal D _{1, i}+ik_IT_{2, i})\frac{r\delta T_{2, i}^*}{T_{max}} \mathcal D _{1, i} -c\delta \overline{k}_I \mathcal D _{1, i} V_{2, i} \\&-\,ik_I\overline{k}_IV_{2, i}T_{2, i}(\alpha _{2, i}+\delta \mathcal D _{1, i}+c+ik_IT_{2, i})\\ \!&= \! \alpha _{2, i}(c+\delta \mathcal D _{1, i})(\alpha _{2, i}+\delta \mathcal D _{1, i}\!+\!c+ik_IT_{2, i}) \!+\!(\alpha _{2, i}\!+\!\delta \mathcal D _{1, i}\!+\!ik_IT_{2, i})\dfrac{r\delta T_{2, i}^*}{T_{max}} \mathcal D _{1, i} \\&+\,ik_IT_{2, i}(\alpha _{2, i}+\delta \mathcal D _{1, i}+c+ik_IT_{2, i})(\alpha _{2, i}-\overline{k}_IV_{2, i}) +d_C\delta ^2 \mathcal D _{1, i}\mathcal D _{2, i} \\&-\,c\delta \mathcal D _{1, i}\overline{k}_IV_{2, i}\\&= \alpha _{2, i}[c^2\!+\!\delta ^2 \mathcal D _{1, i}^2\!+\!(\alpha _{2, i}\!+\!ik_IT_{2, i})(c\!+\!\delta \mathcal D _{1, i})] \!+\!d_C\delta ^2 \mathcal D _{1, i}\mathcal D _{2, i}\\&+\,(\alpha _{2, i}+\delta \mathcal D _{1, i}+ik_IT_{2, i})\dfrac{r\delta T_{2, i}^*}{T_{max}} \mathcal D _{1, i} +c\delta \mathcal D _{1, i}(2\alpha _{2, i}-\overline{k}_IV_{2, i}) \\&+\,ik_IT_{2, i}(\alpha _{2, i}+\delta \mathcal D _{1, i}+c+ik_IT_{2, i})(\alpha _{2, i}-\overline{k}_IV_{2, i}). \end{aligned}$$

In the following calculations, we will consider \(i=0\) and \(i=1\), respectively.

Case 1: \(i=0\)

$$\begin{aligned} \Delta _{3, 0}&= b_{3, 0}\Delta _{2, 0}-b_{1, 0}^2b_{4, 0}\\&= \alpha _{2, 0}d_C\delta ^2T_{crit, 0}(T_{crit, 0}-1)( \mathcal{A }+\alpha _{2, 0}\delta T_{crit, 0}) +cd_C\delta ^2T_{crit, 0}(T_{crit, 0}-1)\mathcal{A } \\&+\,cV_{2, 0}\left(\overline{k}_I\delta T_{crit, 0} \!+\!\frac{r\overline{k}_AT_{2, 0}}{T_{max}}\right) [c\alpha _{2, 0}(c\!+\!\alpha _{2, 0})\!+\!\alpha _{2, 0} \delta T_{crit, 0}(\alpha _{2, 0}\!+\!\delta T_{crit, 0})\\&+\,c\delta T_{crit, 0}(2\alpha _{2, 0}-\overline{k}_IV_{2, 0})+d_C\delta ^2T_{crit, 0}(T_{crit, 0}-1)]\\&+\,(\alpha _{2, 0}+\delta T_{crit, 0})T_{crit, 0} \frac{r\delta T_{2, 0}^*}{T_{max}}\\&\times [d_C\delta (c+\alpha _{2, 0})(T_{crit, 0}-1)+c\delta \overline{k}_IV_{2, 0}T_{crit, 0}],\\ \Delta _{4, 0}&= b_{4, 0}\Delta _{3, 0}, \end{aligned}$$

where \(\mathcal A =\alpha _{2, 0}^2+d_C\delta (T_{crit, 0}-1)-c\overline{k}_IV_{2, 0}\).

We know \(b_{4, 0}=\alpha _{2, 0}cd_C\delta (T_{crit, 0}-1)>0\), from the above expressions of \(\Delta _{2, 0}, \Delta _{3, 0}\) and \(\Delta _{4, 0}\) , we conclude that if condition (14) is satisfied, then \(\Delta _{2, 0}>0, \Delta _{3, 0}>0\) and \(\Delta _{4, 0}>0\). Therefore, \(E_{2, 0}\) is locally asymptotically stable under condition (14).

Case 2: \(i=1\). In order to simplify the following polynomial, use the factorization

$$\begin{aligned} b_{1, 1}^2&= \delta \mathcal{D }_{1, 1}(\alpha _{2, 1}+c+k_IT_{2, 1}+\delta \mathcal{D }_{1, 1})+(\alpha _{2, 1}+c+k_IT_{2, 1})(\alpha _{2, 1}+c\\&+\,k_IT_{2, 1}+\delta \mathcal{D }_{1, 1}), \end{aligned}$$

then

$$\begin{aligned} \Delta _{3, 1}&= b_{3, 1}\Delta _{2, 1}-b_{1, 1}^2b_{4, 1} \\&= \mathcal{B }_1+\mathcal{B }_2+c\delta \mathcal{D }_{1, 1}\left(\overline{k}_IV_{2, 1}+\frac{rT_{2, 1}^*}{T_{max}}\right) [\Delta _{2, 1}-d_C\delta ^2 \mathcal D _{1, 1}\mathcal{D }_{2, 1}], \end{aligned}$$

where,

$$\begin{aligned} \mathcal{B }_1&= d_C\delta \mathcal{D }_{2, 1}(\alpha _{2, 1}+c+k_IT_{2, 1})\{\Delta _{2, 1}-d_C\delta ^2\mathcal{D }_{1, 1}\mathcal{D }_{2, 1} \\&-\,(\alpha _{2, 1}+c+k_IT_{2, 1} +\delta \mathcal{D }_{1, 1})[\alpha _{2, 1}c+k_IT_{2, 1}(\alpha _{2, 1}-\overline{k}_IV_{2, 1})]\}\\&= d_C\delta ^2\mathcal{D }_{1, 1}\mathcal{D }_{2, 1}(\alpha _{2, 1}+c+k_IT_{2, 1})\left[c(\alpha _{2, 1} -\overline{k}_IV_{2, 1})\right.\\&+\left.\left(\alpha _{2, 1}+\frac{rT_{2, 1}^*}{T_{max}}\right)(\alpha _{2, 1}+k_IT_{2, 1}+\delta \mathcal{D }_{1, 1})\right],\\ \mathcal{B }_2&= d_C\delta ^2 \mathcal{D }_{1, 1}\mathcal{D }_{2, 1}\\&\{b_{3, 1}-(\alpha _{2, 1}+c+k_IT_{2, 1}+\delta \mathcal{D }_{1, 1}) [\alpha _{2, 1}c+k_IT_{2, 1}(\alpha _{2, 1}-\overline{k}_IV_{2, 1})]\},\\ \mathcal{B }_1+\mathcal{B }_2&= d_C\delta ^2\mathcal{D }_{1, 1}\mathcal{D }_{2, 1}(b_{3, 1}+\mathcal{B }_3). \end{aligned}$$

and

$$\begin{aligned} \Delta _{4, 1} = b_{4, 1}\Delta _{3, 1}. \end{aligned}$$

From the expressions of \(\Delta _{2, 1}\), we know \(\Delta _{2, 1}-d_C\delta ^2 \mathcal{D }_{1, 1}\mathcal{D }_{2, 1}>0\). Also, we conclude that if \(\overline{k}_I V_{2, 1}<\alpha _{2, 1}\), then \(b_{4, 1}>0\) and \(\Delta _{2, 1}>0\). Furthermore, if \( \mathcal{B }_3>0\) is satisfied, we can obtain \(\Delta _{3, 1}>0\) and \(\Delta _{4, 1}>0\). This completes the proof.\(\square \)

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhou, Y., Brauer, F. et al. Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67, 901–934 (2013). https://doi.org/10.1007/s00285-012-0580-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0580-3

Keywords

Mathematics Subject Classification (2000)

Navigation