Skip to main content
Log in

On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We obtain Schauder estimates for a class of concave fully nonlinear nonlocal parabolic equations of order \(\sigma \in (0,2)\) with rough and non-symmetric kernels. We also prove that the solution to a translation invariant equation with merely bounded data is \(C^\sigma \) in x variable and \(\Lambda ^1\) in t variable, where \(\Lambda ^1\) is the Zygmund space. From these results, we can derive the corresponding results for nonlocal elliptic equations with rough and non-symmetric kernels, which are new even in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L., Silvestre, L.: The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174(2), 1163–1187 (2011)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, Volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  5. Lara, H.C., Dvila, G.: \(C^{\sigma,\alpha }\) estimates for concave, non-local parabolic equations with critical drift. J. Integral Equ. Appl. 28(3), 373–394 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chang-Lara, H., Davila, G.: Hölder estimates for non-local parabolic equations with critical drift. J. Differ. Equ. 260(5), 4237–4284 (2016)

    Article  Google Scholar 

  7. Chang-Lara, H., Dávila, G.: Regularity for solutions of non local parabolic equations. Calc. Var. Partial Differ. Equ. 49(1–2), 139–172 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chang-Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256(1), 130–156 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chang-Lara, H.A., Kriventsov, D.: Further time regularity for non-local, fully non-linear parabolic equations. Commun. Pure Appl. Math. https://doi.org/10.1002/cpa.21671

    Article  MathSciNet  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

  11. Dong, H., Kim, D.: On \(L_p\)-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)

    Article  MathSciNet  Google Scholar 

  12. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33(6), 2319–2347 (2013)

    Article  MathSciNet  Google Scholar 

  13. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  15. Tianling, J., Jingang, X.: Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1375–1407 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jin, T., Xiong, J.: Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete Contin. Dyn. Syst. 35(12), 5977–5998 (2015)

    Article  MathSciNet  Google Scholar 

  17. Komatsu, T.: Pseudodifferential operators and Markov processes. J. Math. Soc. Jpn. 36(3), 387–418 (1984)

    Article  MathSciNet  Google Scholar 

  18. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75–108 (1983)

    MathSciNet  Google Scholar 

  19. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Volume 12 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  20. Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Liet. Mat. Rink. 32(2), 299–331 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Mikulevicius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem. Potential Anal. 40(4), 539–563 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mou, C.: Interior regularity for nonlocal fully nonlinear equations with Dini continuous terms. J. Differ. Equ. 260(11), 7892–7922 (2016)

    Article  MathSciNet  Google Scholar 

  23. Safonov, M.V.: Classical solution of second-order nonlinear elliptic equations. Izv. Akad. Nauk SSSR Ser. Mat. 52(6), 1272–1287, 1328 (1988)

    Google Scholar 

  24. Schwab, R.W., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9(3), 727–772 (2016)

    Article  MathSciNet  Google Scholar 

  25. Serra, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(1), 615–629 (2015)

    Article  MathSciNet  Google Scholar 

  26. Serra, J.: \(C^{\sigma +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(4), 3571–3601 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful review as well as many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dong.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Dong and H. Zhang were partially supported by the NSF under agreements DMS-1056737 and DMS-1600593.

Appendix

Appendix

In the “Appendix”, we first provide a sketch of the proof of Corollary 2.2.

Proof

By a scaling argument, we assume that \(r=1\). Let \(k\ge 1\) be a constant to be determined later. Set \({\hat{\delta }}=\delta /k\). Let \((t_0,x_0)\in \overline{Q_{\delta /2}}\) be such that \(u(t_0,x_0)=\inf _{Q_{\delta /2}}u\). Since \(\sigma \in (1,2)\), we have \(2^{-\sigma }\le 1-4^{-\sigma }\). By a scaling and translation of the coordinates, we apply Proposition 2.1 to u in \(Q_{{\hat{\delta }}}(t_0,x_0)\) and obtain

$$\begin{aligned} {{\hat{\delta }}}^{-(\sigma +d)/\varepsilon }\Vert u\Vert _{L_\varepsilon ({\hat{Q}}_1)} \le C_1\Big (\inf _{Q_{{\hat{\delta }}}(t_0,x_0)}u+C{\hat{\delta }}^\sigma \Big ), \end{aligned}$$

where \({\hat{Q}}_1=Q_{{\hat{\delta }}}(t_1,x_0)\) and \(t_1=t_0-(4^\sigma -1){{\hat{\delta }}}^\sigma \). For any \(x_1\in B_{{\hat{\delta }}/2}(x_0)\),

$$\begin{aligned}&\Vert u\Vert _{L_\varepsilon ({\hat{Q}}_1)}\ge \Vert u\Vert _{L_\varepsilon ((t_1-\delta ^\sigma ,t_1 )\times B_{{\hat{\delta }}/2}(x_1))}\\&\quad \ge C_2{\hat{\delta }}^{(\sigma +d)/\varepsilon }\inf _{(t_1-\delta ^\sigma ,t_1 )\times B_{{\hat{\delta }}/2}(x_1)}u\ge C_2{\hat{\delta }}^{(\sigma +d)/\varepsilon }\inf _{Q_{{{\hat{\delta }}}}(t_1,x_1)}u, \end{aligned}$$

where \(C_2>0\) depending only on d. Therefore,

$$\begin{aligned} \inf _{Q_{{{\hat{\delta }}}}(t_1,x_1)}u\le C_1/C_2\Big (\inf _{Q_{{\hat{\delta }}}(t_0,x_0)}u+C{\hat{\delta }}^\sigma \Big ) . \end{aligned}$$

Applying Proposition 2.1 again, we have

$$\begin{aligned} {{\hat{\delta }}}^{-(\sigma +d)/\varepsilon }\Vert u\Vert _{L_\varepsilon ({\hat{Q}}_2)} \le C_1\Big (\inf _{Q_{{\hat{\delta }}}(t_1,x_1)}u+C{\hat{\delta }}^\sigma \Big ), \end{aligned}$$

where \({\hat{Q}}_2=Q_{{\hat{\delta }}}(t_2,x_1)\) and \(t_2=t_0-2(4^\sigma -1){{\hat{\delta }}}^\sigma \), and for any \(x_2\in B_{{{\hat{\delta }}}/2}(x_1)\),

$$\begin{aligned} \inf _{Q_{{{\hat{\delta }}}}(t_2,x_2)}u\le C_1/C_2 \Big (\inf _{Q_{{\hat{\delta }}}(t_1,x_1)}u+C{\hat{\delta }}^\sigma \Big ). \end{aligned}$$

By induction, or any \(x_{n-1}\in B_{(n-1){{\hat{\delta }}}/2}(x_0)\cap B_1\),

$$\begin{aligned}&{{\hat{\delta }}}^{-(\sigma +d)/\varepsilon }\Vert u\Vert _{L_\varepsilon ({\hat{Q}}_n)} \le C_3 \Big (\inf _{Q_{{\hat{\delta }}}(t_0,x_0)}u+C{\hat{\delta }}^\sigma \Big )\\&\quad \le C_3 \big (u(t_0,x_0)+C{\hat{\delta }}^\sigma \big ) =C_3 \Big (\inf _{Q_{\delta /2}}u+C{\hat{\delta }}^\sigma \Big ), \end{aligned}$$

where \({\hat{Q}}_n=Q_{{\hat{\delta }}}(t_{n},x_{n-1})\), \(t_{n}=t_0-n(4^\sigma -1){\hat{\delta }}^\sigma \), and \(C_3\) is a constant depending only on \(\lambda \), \(\Lambda \), d, and n. Notice that \(|x_0|\le \delta /2\), \(t_0\in [-(\delta /2)^\sigma ,0]\), and \(\sigma >1\). We can choose \(k\ge 1\) in a suitable range depending only on \(\sigma _2\) and \(\delta \), and then \(n\le [2k/\delta ]+1\), such that \({{\hat{Q}}}_n\) runs through \((-\delta ^\sigma ,-\delta ^\sigma +(4^\sigma -1){\hat{\delta }}^\sigma )\times B_1\). Finally, by applying Proposition 2.1 again and using a simple covering argument, we prove the corollary. \(\square \)

Finally, we give the proofs of Lemmas 5.1, 5.2, and 5.3.

Proof of Lemma 5.1

By mollification, it suffices to prove (5.2) assuming that \(f\in C^\alpha ((-1,0))\). Let \(x,y\in (-1,0)\), \(y<x\), and \(h:=x-y\). When \(h\ge 1/3\),

$$\begin{aligned} \frac{|f(x)-f(y)|}{h^\alpha }\le 2\cdot 3^\alpha \Vert f\Vert _{L_\infty ((-1,0))}. \end{aligned}$$

When \(h<1/3\), either \(x<-1/3\) or \(y>-2/3\). If \(x<-1/3\), then \(2x-y\in (x,0)\) and

$$\begin{aligned} \frac{|f(x)-f(y)|}{h^\alpha }&\le \frac{1}{2}\frac{|f(2x-y)+f(y)-2f(x)|}{h^\alpha } +\frac{1}{2}\frac{|f(2x-y)-f(y)|}{h^\alpha }\\&\le \frac{3^{\alpha -1}}{2}[f]_{\Lambda ^1((-1,0))} +\frac{1}{2^{1-\alpha }}[f]_{\alpha ;(-1,0)}. \end{aligned}$$

The case when \(y>-2/3\) is similar. Therefore,

$$\begin{aligned}{}[f]_{\alpha ;(-1,0)}\le 2\cdot 3^\alpha \Vert f\Vert _{L_\infty ((-1,0))}+\frac{1}{2^{1-\alpha }}[f]_{\alpha ;(-1,0)} +\frac{3^{\alpha -1}}{2} [f]_{\Lambda ^1((-1,0))}, \end{aligned}$$

which yields (5.2). \(\square \)

Proof of Lemma 5.2

First we consider the case when \(\beta =1\). Integrating by part and noting that \(\eta ''\) is an even function and \(\int \eta ''=0\), we obtain

$$\begin{aligned}&\big |\partial _t^2u^{(R)}\big | =\Big |\int _{{\mathbb {R}}}\big (2\partial _t^2 u(t-R^\sigma s,x) -\partial _t^2 u(t-2R^\sigma s,x)\big )\eta (s-1)\,ds\Big |\\&\quad =\Big |\int _{{\mathbb {R}}}R^{-2\sigma } \Big (2u(t-R^\sigma s,x)-\frac{1}{4} u(t-2R^\sigma s,x)\Big ) \eta ''(s-1)\,ds\Big |\\&\quad =\Big |\int _{{\mathbb {R}}}R^{-2\sigma } \Big (u(t-R^\sigma s,x)+u(t-R^\sigma (2-s),x)-2u(t-R^\sigma ,x)\\&\qquad -\frac{1}{8} \big (u(t-2R^\sigma s,x)+u(t-2R^\sigma (2-s),x)-2u(t-2R^\sigma ,x)\big )\Big ) \eta ''(s-1)\,ds\Big |\\&\quad \le CR^{-\sigma }[u]^t_{\Lambda ^1}. \end{aligned}$$

For \(\beta \in (0,1)\), when \(r\ge R^\sigma \),

$$\begin{aligned} r^{-1-\beta }|u^{(R)}(t,x)+u^{(R)}(t-2r,x)-2u^{(R)}(t-r,x)| \le r^{-\beta }[u]^t_{\Lambda ^1}\le R^{-\beta \sigma }[u]^t_{\Lambda ^1}. \end{aligned}$$

When \(r\in (0,R^\sigma )\), by (5.3) with \(\beta =1\),

$$\begin{aligned}&r^{-1-\beta }|u^{(R)}(t,x)+u^{(R)}(t-2r,x)-2u^{(R)}(t-r,x)| \le r^{1-\beta }[\partial _t u^{(R)}]^t_{1;{\mathbb {R}}^{d+1}_0}\\&\quad \le Cr^{1-\beta }R^{-\sigma }[u]^t_{\Lambda ^1}\le CR^{-\beta \sigma }[u]^t_{\Lambda ^1}. \end{aligned}$$

From the above two inequalities, we immediately get (5.3). \(\square \)

Proof of Lemma 5.3

We first estimate the Hölder semi-norm in x. By the interpolation inequality,

$$\begin{aligned}&[u-p]_{\alpha ;(-R^\sigma ,0)\times B_{2^jR}}^*\nonumber \\&\quad \le (2^jR)^{-\alpha }\Vert u-p\Vert _{L_\infty ((-R^\sigma ,0)\times B_{2^jR})}+(2^jR)^{\sigma -\alpha }[u-p]^*_{\sigma ;(-R^\sigma ,0)\times B_{2^jR}}. \end{aligned}$$
(5.17)

Because p is linear,

$$\begin{aligned}{}[u-p]^*_{\sigma ;(-R^\sigma ,0)\times B_{2^jR}}=[u]^*_{\sigma ;(-R^\sigma ,0)\times B_{2^jR}}. \end{aligned}$$
(5.18)

Since \(\eta \) has unit integral, we have

$$\begin{aligned}&\big |u^{(R)}(t,x)-u(t,x)\big |\nonumber \\&\quad =\Big |\int _{{\mathbb {R}}}\big (2u(t-R^\sigma s,x)-u(t-2R^\sigma s,x) -u(t,x)\big )\eta (s-1)\,ds\Big |\le CR^\sigma [u]^t_{\Lambda ^1}. \end{aligned}$$
(5.19)

Furthermore, for any \((t,x)\in (-R^\sigma ,0)\times B_{2^jR}\),

$$\begin{aligned}&\big |u^{(R)}(t,x)-p(t,x)\big | =\big |u^{(R)}(t,x)-u^{(R)}(0,0)-\partial _tu^{(R)}(0,0)t -x^TDu^{(R)}(0,0)\big |\\&\quad \le \big |u^{(R)}(t,x)-u^{(R)}(t,0)-x^TDu^{(R)}(t,0)\big |\\&\quad +\big |u^{(R)}(t,0)-u^{(R)}(0,0)-\partial _tu^{(R)}(0,0)t\big | +\big |x^TDu^{(R)}(0,0)-x^TDu^{(R)}(t,0)\big |\\&\quad \le (2^jR)^\sigma [u]^*_{\sigma }+R^{2\sigma } \big \Vert \partial ^2_tu^{(R)}\big \Vert _{L_\infty (-R^\sigma ,0)\times B_{2^jR}}+C2^jR^{\sigma }\big [Du^{(R)}\big ]^t_{\frac{\sigma -1}{\sigma }}. \end{aligned}$$

Using Lemma 5.2, we have

$$\begin{aligned} \big \Vert u^{(R)}-p\big \Vert _{L_\infty ((-R^\sigma ,0)\times B_{2^jR})}\le C(2^jR)^\sigma [u]^*_{\sigma }+C2^jR^{\sigma }[Du]^t_{\frac{\sigma -1}{\sigma }} +CR^\sigma [u]_{\Lambda ^1}^t, \end{aligned}$$

which together with (5.19) implies that

$$\begin{aligned} \Vert u-p\Vert _{L_\infty ((-R^\sigma ,0)\times B_{2^jR})} \le C(2^jR)^\sigma [u]^*_{\sigma }+C2^jR^{\sigma }[Du]^t_{\frac{\sigma -1}{\sigma }} +CR^\sigma [u]_{\Lambda ^1}^t. \end{aligned}$$
(5.20)

We plug (5.18) and (5.20) in (5.17) and get (5.4).

Next we estimate the Hölder semi-norm in t. Obviously,

$$\begin{aligned}{}[u-p]^t_{\alpha /\sigma ;(-R^\sigma ,0)\times B_{2^jR}}\le [u-p]^t_{\alpha /\sigma ;(-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR}}. \end{aligned}$$

From Lemma 5.1 and scaling, we have

$$\begin{aligned}&[u-p]^t_{\alpha /\sigma ;(-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR}}\\&\quad \le C(2^{j/2}R)^{-\alpha }\Vert u-p\Vert _{L_\infty ((-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR})}+C(2^{j/2}R)^{\sigma -\alpha }[u-p]^t_{\Lambda ^1} \\&\quad \le C(2^{j/2}R)^{-\alpha }\Vert u-p\Vert _{L_\infty ((-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR})}+C(2^{j/2}R)^{\sigma -\alpha }[u]^t_{\Lambda ^1}. \end{aligned}$$

We follow the proof of (5.20) to estimate

$$\begin{aligned}&\Vert u-p\Vert _{L_\infty ((-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR})}\\&\quad \le \Vert u-u^{(R)}\Vert _{L_\infty ((-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR})}+\Vert u^{(R)}-p\Vert _{L_\infty ((-2^{j\sigma /2}R^\sigma ,0)\times B_{2^jR})}\\&\quad \le CR^\sigma [u]^t_{\Lambda ^1}+C(2^jR)^\sigma [u]^*_\sigma +C2^{j\sigma }R^\sigma [u]^t_{\Lambda ^1}+C2^{j(\sigma +1)/2}R^\sigma [D {u}]^t_{\frac{\sigma -1}{\sigma }}. \end{aligned}$$

Therefore, we reach (5.5). The lemma is proved. \(\square \)

Proof of Lemma 5.4

We modify the proof of Lemma 5.3. Similar to Lemma 5.1, we have

$$\begin{aligned}&[u-p]_{\alpha ,\alpha ;(-R,0)\times B_{2^jR}} \le [u-p]_{\alpha ,\alpha ;Q_{2^jR}}\nonumber \\&\quad \le (2^jR)^{-\alpha }\Vert u-p\Vert _{L_\infty (Q_{2^jR})} +(2^jR)^{1-\alpha }[u-p]_{\Lambda _1;Q_{2^jR}}\nonumber \\&\quad \le (2^jR)^{-\alpha }\Vert u-p\Vert _{L_\infty (Q_{2^jR})} +(2^jR)^{1-\alpha }[u]_{\Lambda _1}. \end{aligned}$$
(5.21)

Since \(\eta \) and \(\zeta \) have unit integral and \(\zeta \) is radial, we have

$$\begin{aligned}&\big |u^{(R)}(t,x)-u(t,x)\big |\nonumber \\&\quad =\Big |\int _{{\mathbb {R}}^{d+1}}\big (2u(t-R s,x-Ry)-u(t-2R s,x-Ry) -u(t,x)\big )\eta (s-1)\zeta (y)\,dy\,ds\Big |\nonumber \\&\quad =\Big |\int _{{\mathbb {R}}^{d+1}}\big (2u(t-R s,x-Ry)-u(t-2R s,x-Ry) -u(t,x-Ry)\big )\nonumber \\&\qquad +\frac{1}{2} \big (u(t,x+Ry)+u(t,x-Ry) -2u(t,x)\big )\eta (s-1)\zeta (y)\,dy\,ds\Big |\nonumber \\&\quad \le CR[u]_{\Lambda ^1}. \end{aligned}$$
(5.22)

For any \((t,x)\in Q_{2^jR}\), similar to Lemma 5.2 with \(\beta =\alpha /2\),

$$\begin{aligned} \big |u^{(R)}(t,x)-p(t,x)\big | \le (2^jR)^{1+\alpha /2}[u^{(R)}]_{1+\alpha /2,1+\alpha /2;Q_{2^jR}} \le 2^{j(1+\alpha /2)}R[u]_{\Lambda ^1}, \end{aligned}$$

which together with (5.22) implies that

$$\begin{aligned} \Vert u-p\Vert _{L_\infty ((-2^jR,0)\times B_{2^jR})} \le 2^{j(1+\alpha /2)}R[u]_{\Lambda ^1}. \end{aligned}$$
(5.23)

We plug (5.23) in (5.21) and get (5.6). The lemma is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zhang, H. On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations. Calc. Var. 58, 40 (2019). https://doi.org/10.1007/s00526-019-1482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1482-7

Mathematics Subject Classification

Navigation