Skip to main content

Advertisement

Log in

Economic water management decisions: trade-offs between conflicting objectives in the sub-middle region of the São Francisco watershed

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Hydro-economic models can measure the economic effects of different reservoir operating rules, environmental restrictions, maintenance of ecosystems, technical constraints, institutional constraints, land use change, and climate change. To determine the optimal economic water allocation, for its main uses in the sub-middle of the São Francisco River Basin, a hydro-economic optimization model was developed and applied. Demand curves were used rather than fixed requirements for water resources. The results show that operation rules of reservoirs and institutional constraints, such as priorities for human consumption, have high impacts on costs and benefits of the principal economic uses in the study area. Especially, costs of environmental demands, like minimum ecological river flow, have high impacts on the water resource management. Scarcity costs of irrigation users associated with maintaining ecosystems and environmental constraints are particularly significant. The results from this study provide a better understanding of the water trade-offs for future policymaking and efficient water management. Policymaking for the water resources should consider the food-water-energy-environment nexus at a regional scale to minimize environmental and economic cost under water scarcity and land use change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcoforado de Moraes MMG, Biewald A, Carneiro ACG, Souza da Silva GN, Popp A, Lotze-Campen H (2018) The impact of global changes on economic values of water for Public Irrigation Schemes at the São Francisco river basin in Brazil. Reg Environ Chang. https://doi.org/10.1007/s10113-018-1291-0

  • Alcoforado de Moraes MMG, Cai X, Ringler C, Albuquerque BE, Vieira da Rocha SP, Amorim CA (2010) Joint water quantity-quality management in a biofuel production area—integrated economic-hydrologic modeling analysis. J Water Resour Plan Manag 136(4):502–511. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000049

    Article  Google Scholar 

  • Alcoforado de Moraes MMG, Cirilo JA, Sampaio Y (2006) Integração dos Componentes Econômico e Hidrológico na Modelagem de Alocação Ótima de Água para Apoio a Gestão de Recursos: Uma Aplicação na bacia do Pirapama Revista Economia, vol 7, n° 2

  • ANA (2011) Resolução 461. Brasilia

  • Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface groundwater flow model. J Hydrol 142:47–69. https://doi.org/10.1016/0022-1694(93)90004-S

    Article  Google Scholar 

  • Biewald A, Lotze-Campen H, Schmitz C, Kölling K, Beck F The impact of future climate and socioeconomic changes on landuse in the catchment area of the Rio São Francisco. In: Proceedings INNOVATE Status Conference, Recife, 2014

  • Booker JF, Michelsen AM, Howitt RE, Young RA (2012) Economics and the modeling of water resources and policies. Nat Resour Model J 25:168–218. https://doi.org/10.1111/j.1939-7445.2011.00105.x

    Article  Google Scholar 

  • Brasil (1997) Lei N° 9.433, de 8 de Janeiro de 1997.Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos

  • Brasil (2006) Decreto N° 5.995. Brasilia

  • Brasil (2013) Lei Federal N° 12.783, de 11 de janeiro de 2013. Brasilia

  • Brasil (2015) Lei federal N° 13.182, de 3 de novembro de 2015. Brasilia

  • Castro CNd(2011) Transposição do rio São Francisco: Análise de oportunidade do projeto. Rio de Janeiro

  • CBHSF (2004) Plano Decenal de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco. CBHSF, São José

  • EMPRAPA (2008) Solos do submédio do vale do São Francisco. Embrapa Semi-árido, Petrolina - PE

  • Ferreira TVB (2014) Hidrogramas ambientais para o Baixo Rio São Francisco: avaliação de impactos sobre a geração hidrelétrica. Dissertation, UFRJ/COPPE

  • Griffin RC (2006) Water resource economics: the analysis of scarcity, policies, and projects. MIT Press, Cambridge

    Google Scholar 

  • Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375:627–643. https://doi.org/10.1016/j.jhydrol.2009.06.037

    Article  Google Scholar 

  • Kahil MT, Dinar A, Albiac J (2016) Cooperative water management and ecosystem protection under scarcity and drought in arid and semiarid regions. Water Resour Econ 13:60–74. https://doi.org/10.1016/j.wre.2015.10.001

    Article  Google Scholar 

  • Koch H, Liersch S, Azevedo JRGd, Silva ALC, Hattermann FF (2015a) Modelagem da disponibilidade e do manejo da água na bacia hidrográfica do rio São Francisco. Paper presented at the XXI SIMPOSIO BRASILIERO DE RECURSOS HIDRICOS, Brasília/Brazil,

  • Koch H, Liersch S, Hattermann FF (2013) Integrating water resources management in eco-hydrological modelling. Water Sci Technol 67:1525–1533. https://doi.org/10.2166/wst.2013.022

    Article  CAS  Google Scholar 

  • Koch H, Selge F, Azevedo JRGd, Silva GSd, Siegmund-Schultze M, Hattermann FF (2015b) Incluindo aspectos ecológicos na gestão de reservatórios: opções de gestão no Sub-médio e Baixo do rio São Francisco. Paper presented at the XXI SIMPOSIO BRASILIERO DE RECURSOS HIDRICOS, Brasília/Brazil,

  • Krysanova V, Meiner A, Roosaare J, Vasilyev A (1989) Simulation modelling of the coastal waters pollution from agricultural watershed. Ecol Model 49:7–29. https://doi.org/10.1016/0304-3800(89)90041-0

    Article  CAS  Google Scholar 

  • Krysanova V, Müller-Wohlfeil DI, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106:261–289. https://doi.org/10.1016/S0304-3800(97)00204-4

    Article  CAS  Google Scholar 

  • Krysanova V, Wechsung F, Arnold J, Srinivasan R, Williams J (2000) SWIM (soil and water integrated model) user manual. Potsdam Institute for Climate Impact Research, Potsdam

  • Lipsey RG (1988) First principles of economics. Colin Harbury, Oxford

    Google Scholar 

  • Liu X, Chen X, Wang S (2008) Evaluating and predicting shadow prices of water resources in China and its nine major river basins. Water Resour Manag 23:1467–1478. https://doi.org/10.1007/s11269-008-9336-7

    Article  Google Scholar 

  • Lotze-Campen H, Muller C, Bondeau A, Rost S, Popp A, Lucht W (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric Econ:325–338. https://doi.org/10.1111/j.1574-0862.2008.00336.x

  • Macian-Sorribes H, Pulido-Velazquez M, Tilmant A (2015) Definition of efficient scarcity-based water pricing policies through stochastic programming. Hydrol Earth Syst Sci 19:3925–3935. https://doi.org/10.5194/hess-19-3925-2015

    Article  Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12:381–388. https://doi.org/10.1007/BF00211684

    Article  Google Scholar 

  • Maneta M, Torres MdO, Wallender W, Howitt R, Vosti S, Rodrigues L, Bassoi (2009) A spatially distributed hydro-economic model to assess the effects of drought on land use, farm profits, and agricultural employment. Water Resour Res, 45 doi:https://doi.org/10.1029/2008WR007534, 45

  • Mayer A, Muñoz-Hernandez A (2009) Integrated water resources optimization models: an assessment of a multidisciplinary tool for sustainable water resources management strategies. Geography Compass 3:1176–1195. https://doi.org/10.1111/j.1749-8198.2009.00239.x

    Article  Google Scholar 

  • Medeiros YDP, Freitas IMP, Stifelman GM, Freire RR, O’Keeffe J (2013) Social participation in the environmental flow assessment: the São Francisco River case study. Revista Eletrônica de Gestão e Tecnologias Ambientais:1

  • Medellín-Azuara J, Harou J, Howitt RE (2010) Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Sci Total Environ 408:5639–5648. https://doi.org/10.1016/j.scitotenv.2009.08.013

    Article  CAS  Google Scholar 

  • MIN (2005) Plano Estratégico de Desenvolvimento Sustentável do Semi-Árido. MINISTÉRIO DA INTEGRAÇÃO NACIONAL, Brasilia

    Google Scholar 

  • Min F, Hideaki S, Li C (2017) Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan. Sci Total Environ 599–600:451–463. https://doi.org/10.1016/j.scitotenv.2017.05.010

    Article  CAS  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special Report on Emissions Scenarios (SRES). Cambridge University Press, Cambridge

  • ONS (2014) HydroData. Brasília

  • Rosenthal RE (2012) GAMS user’s guide. GAMS Development Corporation, Washington, DC

    Google Scholar 

  • Siegmund-Schultze M (ed) (2017) Guidance manual—a compilation of actor-relevant content extracted from scientific results of the INNOVATE project. Universitätsverlag der TU Berlin, Berlin

    Google Scholar 

  • Souza da Silva GN, Alcoforado de Moraes M (2015) Curvas de demanda da irrigação difusa e abastecimento humano e a identificação da alocação econômica ótima no Sub-médio do rio São Francisco. ABRH, Brasilia

    Google Scholar 

  • Souza da Silva GN, Figueiredo LE, Alcoforado de Moraes MMG (2015) Demand curves for water resources of the main water users in sub-middle São Francisco basin. Revista Brasileira de Ciências Ambientais:45–59. https://doi.org/10.5327/Z2176-947820151004

  • Torres MO, Maneta M, Howitt R, Vosti SA, Wallender WW, Bassoi LH, Rodrigues LN (2012) Economic impacts of regional water scarcity in the São Francisco River Basin, Brazil: an application of a linked hydro-economic model. Environ Dev Econ 17:227–248. https://doi.org/10.1017/S1355770X11000362

    Article  Google Scholar 

  • Varian HR (2006) Microeconomia: conceitos basicos. Elsevier, Rio de Janeiro

    Google Scholar 

  • Zeng XT, Fan YR, Huang GH, Chen HL, Li YP, Kong XM (2016) A simulation-based water-environment management model for regional sustainability in compound wetland ecosystem under multiple uncertainties. Ecol Model 334:60–77. https://doi.org/10.1016/j.ecolmodel.2016.04.021

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the INNOVATE project team and the Federal University of Pernambuco (UFPE) for the provided framework and contributions.

Funding

Financial support for this research has been provided by CNPq (PhD scholarship and CTHidro project 35/2013). The authors are participants of the INNOVATE project, which was funded by BMBF in Germany and CNPq/CAPES in Brazil.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

ESM 1

(PDF 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza da Silva, G.N., de Moraes, M.M.G.A. Economic water management decisions: trade-offs between conflicting objectives in the sub-middle region of the São Francisco watershed. Reg Environ Change 18, 1957–1967 (2018). https://doi.org/10.1007/s10113-018-1319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-018-1319-5

Keywords

Navigation