Skip to main content
Erschienen in: Journal of Materials Science 17/2022

21.04.2022 | Composites & nanocomposites

Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites

verfasst von: Kai Li, Yuzhan Li, Halil Tekinalp, Vipin Kumar, Xianhui Zhao, Yunqiao Pu, Arthur J. Ragauskas, Kashif Nawaz, Tolga Aytug, Soydan Ozcan

Erschienen in: Journal of Materials Science | Ausgabe 17/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aqueous-phase surface modification of nanocellulose is desirable because nanocellulose is generally produced via water-based fibrillation. In this study, a hydrogen bond–induced surface modification of cellulose nanofibrils (CNFs) in water was developed. Tannic acid and polyvinylpyrrolidone were chosen to modify the CNFs because of their strong capacity for hydrogen bond formation. By tuning the hydrogen bond formation between CNFs, tannic acid, and polyvinylpyrrolidone, CNFs with different surface hydrophilicity were achieved. The modified CNFs can assemble into strong and tough composites owing to the hydrogen bond network in the system. Modified CNFs demonstrated 76% higher tensile strength and 100% higher toughness than those of unmodified CNFs, reaching 162 MPa and 12.7 MJ/m3, respectively. This study provides a new water-based modification strategy for the nanocellulose, leading the way toward producing strong nanocellulose composites via noncovalent interaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lu Y et al (2015) A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. J Mater Chem A 3(25):13350–13356CrossRef Lu Y et al (2015) A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. J Mater Chem A 3(25):13350–13356CrossRef
2.
Zurück zum Zitat Lu Y et al (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohyd Polym 131:208–217CrossRef Lu Y et al (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohyd Polym 131:208–217CrossRef
3.
Zurück zum Zitat Li K et al (2021) Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: cellulose network enabled high performance. Carbohydr Polym 256:117525CrossRef Li K et al (2021) Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: cellulose network enabled high performance. Carbohydr Polym 256:117525CrossRef
4.
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
5.
Zurück zum Zitat Thomas B et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625CrossRef Thomas B et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625CrossRef
6.
Zurück zum Zitat Sinquefield S et al (2020) Nanocellulose dewatering and drying: Current state and future perspectives. ACS Sustain Chem Eng 8(26):9601–9615CrossRef Sinquefield S et al (2020) Nanocellulose dewatering and drying: Current state and future perspectives. ACS Sustain Chem Eng 8(26):9601–9615CrossRef
7.
Zurück zum Zitat Li K et al (2021) Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15(3):3646–3673CrossRef Li K et al (2021) Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15(3):3646–3673CrossRef
8.
Zurück zum Zitat Lamm ME et al (2021) Recent advances in functional materials through nanocellulose fiber templating. Adv Mater 33:e2005538CrossRef Lamm ME et al (2021) Recent advances in functional materials through nanocellulose fiber templating. Adv Mater 33:e2005538CrossRef
9.
Zurück zum Zitat Navarro JR, Edlund U (2017) Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils. Biomacromol 18(6):1947–1955CrossRef Navarro JR, Edlund U (2017) Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils. Biomacromol 18(6):1947–1955CrossRef
10.
Zurück zum Zitat Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef
11.
Zurück zum Zitat Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef
12.
Zurück zum Zitat Yoo Y, Youngblood JP (2016) Green one-pot synthesis of surface hydrophobized cellulose nanocrystals in aqueous medium. ACS Sustain Chem Eng 4(7):3927–3938CrossRef Yoo Y, Youngblood JP (2016) Green one-pot synthesis of surface hydrophobized cellulose nanocrystals in aqueous medium. ACS Sustain Chem Eng 4(7):3927–3938CrossRef
13.
Zurück zum Zitat Dhuiège B, Pecastaings G, Sèbe G (2019) Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. ACS Sustain Chem Eng 7(1):187–196CrossRef Dhuiège B, Pecastaings G, Sèbe G (2019) Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. ACS Sustain Chem Eng 7(1):187–196CrossRef
14.
Zurück zum Zitat Grygiel K et al (2014) Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils: surface grafting and polymer membrane reinforcement. Chem Commun 50(83):12486–12489CrossRef Grygiel K et al (2014) Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils: surface grafting and polymer membrane reinforcement. Chem Commun 50(83):12486–12489CrossRef
15.
Zurück zum Zitat Cheng Y et al (2018) Glycera-inspired synergistic interfacial interactions for constructing ultrastrong graphene-based nanocomposites. Adv Func Mater 28(49):1800924CrossRef Cheng Y et al (2018) Glycera-inspired synergistic interfacial interactions for constructing ultrastrong graphene-based nanocomposites. Adv Func Mater 28(49):1800924CrossRef
16.
Zurück zum Zitat Hu X et al (2015) Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater 27(43):6899–6905CrossRef Hu X et al (2015) Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater 27(43):6899–6905CrossRef
17.
Zurück zum Zitat Song P et al (2015) Bio-inspired hydrogen-bond cross-link strategy toward strong and tough polymeric materials. Macromolecules 48(12):3957–3964CrossRef Song P et al (2015) Bio-inspired hydrogen-bond cross-link strategy toward strong and tough polymeric materials. Macromolecules 48(12):3957–3964CrossRef
18.
Zurück zum Zitat Li K et al (2019) Strong and tough cellulose nanofibrils composite films: mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain Chem Eng 7(17):14341–14346CrossRef Li K et al (2019) Strong and tough cellulose nanofibrils composite films: mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain Chem Eng 7(17):14341–14346CrossRef
19.
Zurück zum Zitat Wan S et al (2015) Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan. ACS Nano 9(10):9830–9836CrossRef Wan S et al (2015) Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan. ACS Nano 9(10):9830–9836CrossRef
20.
Zurück zum Zitat Wan S et al (2017) Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv Func Mater 27(10):1605636CrossRef Wan S et al (2017) Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv Func Mater 27(10):1605636CrossRef
21.
Zurück zum Zitat Hu Z et al (2017) One-pot water-based hydrophobic durface modification of cellulose nanocrystals using plant polyphenols. Acs Sustain Chem Eng 5(6):5018–5026CrossRef Hu Z et al (2017) One-pot water-based hydrophobic durface modification of cellulose nanocrystals using plant polyphenols. Acs Sustain Chem Eng 5(6):5018–5026CrossRef
22.
Zurück zum Zitat Jiménez N, Ballard N, Asua JM (2019) Hydrogen bond-directed formation of stiff polymer films using naturally occurring polyphenols. Macromolecules 52(24):9724–9734CrossRef Jiménez N, Ballard N, Asua JM (2019) Hydrogen bond-directed formation of stiff polymer films using naturally occurring polyphenols. Macromolecules 52(24):9724–9734CrossRef
23.
Zurück zum Zitat Gaikwad A et al (2020) Hydrogen-bonded, mechanically strong nanofibers with tunable antioxidant activity. ACS Appl Mater Interfaces 12:11026–11035CrossRef Gaikwad A et al (2020) Hydrogen-bonded, mechanically strong nanofibers with tunable antioxidant activity. ACS Appl Mater Interfaces 12:11026–11035CrossRef
24.
Zurück zum Zitat Erel-Unal I, Sukhishvili SA (2008) Hydrogen-bonded multilayers of a neutral polymer and a polyphenol. Macromolecules 41(11):3962–3970CrossRef Erel-Unal I, Sukhishvili SA (2008) Hydrogen-bonded multilayers of a neutral polymer and a polyphenol. Macromolecules 41(11):3962–3970CrossRef
25.
Zurück zum Zitat Wohlert M. et al. (2021) Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 1–23 Wohlert M. et al. (2021) Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 1–23
26.
Zurück zum Zitat Li T et al (2019) Inhibiting ice recrystallization by nanocelluloses. Biomacromol 20(4):1667–1674CrossRef Li T et al (2019) Inhibiting ice recrystallization by nanocelluloses. Biomacromol 20(4):1667–1674CrossRef
27.
Zurück zum Zitat Kljun A et al (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromol 12(11):4121–4126CrossRef Kljun A et al (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromol 12(11):4121–4126CrossRef
28.
Zurück zum Zitat Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341(5):591–597CrossRef Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341(5):591–597CrossRef
29.
Zurück zum Zitat Tang H, Covington AD, Hancock R (2003) Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolym Orig Res Biomol 70(3):403–413CrossRef Tang H, Covington AD, Hancock R (2003) Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolym Orig Res Biomol 70(3):403–413CrossRef
30.
Zurück zum Zitat Foston M (2014) Advances in solid-state NMR of cellulose. Curr Opin Biotechnol 27:176–184CrossRef Foston M (2014) Advances in solid-state NMR of cellulose. Curr Opin Biotechnol 27:176–184CrossRef
31.
Zurück zum Zitat Tian D et al (2017) Conformations and Intermolecular Interactions in cellulose/silk fibroin blend films: a solid-state NMR perspective. J Phys Chem B 121(25):6108–6116CrossRef Tian D et al (2017) Conformations and Intermolecular Interactions in cellulose/silk fibroin blend films: a solid-state NMR perspective. J Phys Chem B 121(25):6108–6116CrossRef
32.
Zurück zum Zitat Masson JF, Manley RSJ (1992) Solid-state NMR of some cellulose/synthetic polymer blends. Macromolecules 25(2):589–592CrossRef Masson JF, Manley RSJ (1992) Solid-state NMR of some cellulose/synthetic polymer blends. Macromolecules 25(2):589–592CrossRef
33.
Zurück zum Zitat Kubo R, Saito T, Isogai A (2019) Dual counterion systems of carboxylated nanocellulose films with tunable mechanical, hydrophilic, and gas-barrier properties. Biomacromol 20(4):1691–1698CrossRef Kubo R, Saito T, Isogai A (2019) Dual counterion systems of carboxylated nanocellulose films with tunable mechanical, hydrophilic, and gas-barrier properties. Biomacromol 20(4):1691–1698CrossRef
Metadaten
Titel
Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites
verfasst von
Kai Li
Yuzhan Li
Halil Tekinalp
Vipin Kumar
Xianhui Zhao
Yunqiao Pu
Arthur J. Ragauskas
Kashif Nawaz
Tolga Aytug
Soydan Ozcan
Publikationsdatum
21.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2022
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07161-4

Weitere Artikel der Ausgabe 17/2022

Journal of Materials Science 17/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.