Skip to main content

Advertisement

Log in

Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we establish the theory of basic reproduction ratio \(R_0\) for a large class of time-delayed compartmental population models in a periodic environment. It is proved that \(R_0\) serves as a threshold value for the stability of the zero solution of the associated periodic linear systems. As an illustrative example, we also apply the developed theory to a periodic SEIR model with an incubation period and obtain a threshold result on its global dynamics in terms of \(R_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacaër, N., Ait, E.H.: Dads, genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacaër, N., Ait, E.H.: Dads, on the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J. Math. Biol. 65, 601–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burlando, L.: Monotonicity of spectral radius for positive operators on ordered Banach spaces. Arch. Math. 56, 49–57 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busenberg, S., Cooke, K.L.: The effect of integral conditions in certain equations modelling epidemics and population growth. J. Math. Biol. 10, 13–32 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatelin, F.: The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23, 495–522 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daners, D., Koch Medina, P.: Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics Series, vol. 279. Longman Scientific & Technical, Harlow, Wiley, New York (1992)

  8. Degla, G.: An overview of semi-continuity results on the spectral radius and positivity. J. Math. Anal. Appl. 338, 101–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_{0}\) in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Z., Wang, F., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  12. Inaba, H.: On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)

    Article  MATH  Google Scholar 

  14. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lou, Y., Zhao, X.-Q.: Threshold dynamics in a time-delayed periodic SIS epidemic model. Discret. Contin. Dyn. Syst. Ser. B 12, 169–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lou, Y., Zhao, X.-Q.: A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mckenzie, H.W., Jin, Y., Jacobsen, J., Lewis, M.A.: \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J. Appl. Dyn. Syst. 11, 567–596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rebelo, C., Margheri, A., Bacaër, N.: Persistence in some periodic epidemic models with infection age or constant periods of infection. Discret. Contin. Dyn. Syst. Ser. B 19, 1155–1170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41. American Mathematical Society, Providence (1995)

    Google Scholar 

  20. Thieme, H.R.: Global asymptotic stability in epidemic models. In: Knobloch, H.W., Schmitt, K., (eds.) Proceedings Equadiff 82, pp. 608–615. Lecture Notes in Mathematics, vol. 1017. Springer, Berlin (1983)

  21. Thieme, H.R.: Renewal theorems for linear periodic Volterra integral equations. J. Integral Equ. 7, 253–277 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Zhao, X.-Q.: A nonlocal and time-delayed reaction-diffusion model of Dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, B.-G., Zhao, X.-Q.: Basic reproduction ratios for almost periodic compartmental epidemic models. J. Dyn. Differ. Equ. 25, 535–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, Y., Zou, X.: Transmission dynamics for vector-borne diseases in a patchy environment. J. Math. Biol. 69, 113–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, D., Zhao, X.-Q.: Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl. 311, 417–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the anonymous referee for careful reading and valuable comments which led to important improvements of the original manuscript. This research was supported in part by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XQ. Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay. J Dyn Diff Equat 29, 67–82 (2017). https://doi.org/10.1007/s10884-015-9425-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9425-2

Keywords

Mathematics Subject Classification

Navigation