Skip to main content
Erschienen in: Journal of Polymer Research 6/2022

01.06.2022 | Review paper

RETRACTED ARTICLE: Recent advances and future perspectives of lignin biopolymers

verfasst von: Reeya Agrawal, Anjan Kumar, Sangeeta Singh, Kamal Sharma

Erschienen in: Journal of Polymer Research | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article describes the utilization of lignin-based biopolymers and provides a brief explanation of lignin's chemical structure, extraction, and processing. Using lignin as a natural feedstock is an excellent idea because it is cheap, plentiful, and efficient as petroleum-derived goods. In plants, lignin, the world's second-most abundant natural polymer, boosts mechanical strength by covalently linking to cellulose and hemicellulose. Bio-renewable polymers have emerged as solid contenders as an alternative to traditional metallic and organic materials. It is increasingly beneficial for innovating innovative materials in the market and business because of their biocompatibility, biodegradability, and low production costs. Lignin extraction for biodegradable products is discussed in detail in this article. This review also discusses how lignin's antioxidant and antibacterial properties came into play in biological applications. In addition, the manuscript also discusses lignin's uses in pulp and paper, medicine, and other industries. As a bonus, lignin has the potential to be a rich source of high-performance polymers, energy-dense fuels, phenolic chemicals, carbon fibers, and value-added commodities that can be used in place of fossil-fuel-based products. This research project aims to review current achievements in lignin conversion and its usage as an energy source. This article covers Lignin conversion research in this article, including recent breakthroughs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yadav P et al (2021) Environmental impact and cost assessment of a novel lignin production method 279, 123515 Yadav P et al (2021) Environmental impact and cost assessment of a novel lignin production method 279, 123515
2.
Zurück zum Zitat Zhen X et al (2021) Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance 182, 276–285 Zhen X et al (2021) Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance 182, 276–285
3.
Zurück zum Zitat Vainio U et al (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering 20(22):9736–9744 Vainio U et al (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering 20(22):9736–9744
4.
Zurück zum Zitat Norgren M, Edlund H (2001) Stabilisation of kraft lignin solutions by surfactant additions 194(1–3):239–248 Norgren M, Edlund H (2001) Stabilisation of kraft lignin solutions by surfactant additions 194(1–3):239–248
5.
Zurück zum Zitat Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? 45(3):832–839 Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? 45(3):832–839
6.
Zurück zum Zitat McCarthy JL, Islam A (2000) Lignin chemistry, technology, and utilization: a brief history McCarthy JL, Islam A (2000) Lignin chemistry, technology, and utilization: a brief history
7.
Zurück zum Zitat Prieur B et al (2017) Phosphorylation of lignin: characterization and investigation of the thermal decomposition 7(27):16866–16877 Prieur B et al (2017) Phosphorylation of lignin: characterization and investigation of the thermal decomposition 7(27):16866–16877
8.
Zurück zum Zitat Shi X et al (2021) Excellent selectivity and high capacity of As (V) removal by a novel lignin-based adsorbent doped with N element and modified with Ca2+ 172:299–308 Shi X et al (2021) Excellent selectivity and high capacity of As (V) removal by a novel lignin-based adsorbent doped with N element and modified with Ca2+ 172:299–308
9.
Zurück zum Zitat Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products–strategies, challenges, and prospects 271:449–461 Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products–strategies, challenges, and prospects 271:449–461
10.
Zurück zum Zitat Faruk O, Sain M (2015) Lignin in polymer composites. William Andrew Faruk O, Sain M (2015) Lignin in polymer composites. William Andrew
11.
Zurück zum Zitat Liu C, Yu H, Rao X, Li L, Dixon RA (2021) Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1 118(5) Liu C, Yu H, Rao X, Li L, Dixon RA (2021) Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1 118(5)
12.
Zurück zum Zitat Witzler M et al (2018) Lignin-derived biomaterials for drug release and tissue engineering 23(8):1885 Witzler M et al (2018) Lignin-derived biomaterials for drug release and tissue engineering 23(8):1885
13.
Zurück zum Zitat Khlystov NA, Yoshikuni Y, Deutsch S, Sattely ES (2021) A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes 4(1):1–13 Khlystov NA, Yoshikuni Y, Deutsch S, Sattely ES (2021) A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes 4(1):1–13
14.
Zurück zum Zitat Sahayaraj DV, Lusi A, Mitchell EM, Bai X, Tessonnier J-P (2021) Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors 23(19):7731–7742 Sahayaraj DV, Lusi A, Mitchell EM, Bai X, Tessonnier J-P (2021) Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors 23(19):7731–7742
15.
16.
Zurück zum Zitat Cao Z et al (2021) Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure 14(1):373 Cao Z et al (2021) Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure 14(1):373
17.
Zurück zum Zitat Moreno A, Sipponen MH (2020) Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications 7(9):2237–2257 Moreno A, Sipponen MH (2020) Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications 7(9):2237–2257
18.
Zurück zum Zitat Alipoormazandarani N, Fokkink R, Fatehi P (2021) Deposition behavior of lignin on solid surfaces assessed by stagnation point adsorption reflectometry 11(28):16980–16988 Alipoormazandarani N, Fokkink R, Fatehi P (2021) Deposition behavior of lignin on solid surfaces assessed by stagnation point adsorption reflectometry 11(28):16980–16988
19.
Zurück zum Zitat Huang J, Fu S, Gan L (2019) Lignin chemistry and applications. Elsevier Huang J, Fu S, Gan L (2019) Lignin chemistry and applications. Elsevier
20.
Zurück zum Zitat Yu O, Kim KH (2020) Lignin to materials: A focused review on recent novel lignin applications 10(13):4626 Yu O, Kim KH (2020) Lignin to materials: A focused review on recent novel lignin applications 10(13):4626
21.
Zurück zum Zitat Yang See J et al (2021) Transformation of Corn Lignin into Sun Cream Ingredients 14(6):1586–1594 Yang See J et al (2021) Transformation of Corn Lignin into Sun Cream Ingredients 14(6):1586–1594
22.
Zurück zum Zitat Elangovan S et al (2019) From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds 5(10):1707–1716 Elangovan S et al (2019) From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds 5(10):1707–1716
23.
Zurück zum Zitat Happs RM, Addison B, Doeppke C, Donohoe BS, Davis MF, Harman-Ware AE (2021) Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass 14(1):1–16 Happs RM, Addison B, Doeppke C, Donohoe BS, Davis MF, Harman-Ware AE (2021) Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass 14(1):1–16
24.
Zurück zum Zitat Dou G, Liu J, Jiang Z, Jian H, Zhong X (2022) Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion 308:122074 Dou G, Liu J, Jiang Z, Jian H, Zhong X (2022) Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion 308:122074
25.
Zurück zum Zitat Crawford DL, Barder MJ, Pometto AL, Crawford RL (1982) Chemistry of softwood lignin degradation by Streptomyces viridosporus 131(2):140–145 Crawford DL, Barder MJ, Pometto AL, Crawford RL (1982) Chemistry of softwood lignin degradation by Streptomyces viridosporus 131(2):140–145
26.
Zurück zum Zitat Gao C, Xiao L, Zhou J, Wang H, Zhai S, An Q (2021) Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation 403:126370 Gao C, Xiao L, Zhou J, Wang H, Zhai S, An Q (2021) Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation 403:126370
27.
Zurück zum Zitat Seddiqi H et al (2021) Cellulose and its derivatives: Towards biomedical applications 1–39, Seddiqi H et al (2021) Cellulose and its derivatives: Towards biomedical applications 1–39,
28.
Zurück zum Zitat Galkin M (2021) From stabilization strategies to tailor-made lignin macromolecules and oligomers for materials 28:100438 Galkin M (2021) From stabilization strategies to tailor-made lignin macromolecules and oligomers for materials 28:100438
29.
Zurück zum Zitat Domínguez-Robles J et al (2020) Lignin for pharmaceutical and biomedical applications–Could this become a reality? 18:100320 Domínguez-Robles J et al (2020) Lignin for pharmaceutical and biomedical applications–Could this become a reality? 18:100320
30.
Zurück zum Zitat Chen C et al (2021) Efficient Ni-based catalysts for the hydrotreatment of lignin dimer model compounds to cycloalkanes/cycloalkanols 6(3):559–571 Chen C et al (2021) Efficient Ni-based catalysts for the hydrotreatment of lignin dimer model compounds to cycloalkanes/cycloalkanols 6(3):559–571
31.
Zurück zum Zitat Feng Q, Gao B, Yue Q, Guo K (2021) Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: Comparison with commercial lignin and coagulants 262:128416 Feng Q, Gao B, Yue Q, Guo K (2021) Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: Comparison with commercial lignin and coagulants 262:128416
32.
Zurück zum Zitat Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou MJP (2020) Lignin-based nanoparticles: a review on their preparations and applications 12(11):2471 Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou MJP (2020) Lignin-based nanoparticles: a review on their preparations and applications 12(11):2471
33.
Zurück zum Zitat Zhao X et al (2021) Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation 13(6):7600–7607 Zhao X et al (2021) Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation 13(6):7600–7607
34.
Zurück zum Zitat Manna B, Datta S, Ghosh A (2021) Understanding the dissolution of softwood lignin in ionic liquid and water mixed solvents 182:402–412 Manna B, Datta S, Ghosh A (2021) Understanding the dissolution of softwood lignin in ionic liquid and water mixed solvents 182:402–412
35.
Zurück zum Zitat Guerra A, Gaspar AR, Contreras S, Lucia LA, Crestini C, Argyropoulos DS (2007) On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species 68(20):2570–2583 Guerra A, Gaspar AR, Contreras S, Lucia LA, Crestini C, Argyropoulos DS (2007) On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species 68(20):2570–2583
36.
Zurück zum Zitat Bourbiaux D, Pu J, Rataboul F, Djakovitch L, Geantet C, Laurenti D (2021) Reductive or oxidative catalytic lignin depolymerization: an overview of recent advances Bourbiaux D, Pu J, Rataboul F, Djakovitch L, Geantet C, Laurenti D (2021) Reductive or oxidative catalytic lignin depolymerization: an overview of recent advances
37.
Zurück zum Zitat Piccinino D et al (2021) Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications 10(2):274 Piccinino D et al (2021) Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications 10(2):274
38.
Zurück zum Zitat Patri AS et al (2021) THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity 14(1):1–13 Patri AS et al (2021) THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity 14(1):1–13
39.
Zurück zum Zitat Wang W et al (2021) Breaking the lignin conversion bottleneck for multiple products: Co-production of aryl monomers and carbon nanospheres using one-step catalyst-free depolymerization 285:119211 Wang W et al (2021) Breaking the lignin conversion bottleneck for multiple products: Co-production of aryl monomers and carbon nanospheres using one-step catalyst-free depolymerization 285:119211
40.
Zurück zum Zitat Zhang X et al (2021) Lignin-based few-layered graphene-encapsulated iron nanoparticles for water remediation 417:129199 Zhang X et al (2021) Lignin-based few-layered graphene-encapsulated iron nanoparticles for water remediation 417:129199
41.
Zurück zum Zitat Karlsson M, Vegunta VL, Deshpande R, Lawoko M (2022) Protected lignin biorefining through cyclic extraction: gaining fundamental insights into the tuneable properties of lignin by chemometrics Karlsson M, Vegunta VL, Deshpande R, Lawoko M (2022) Protected lignin biorefining through cyclic extraction: gaining fundamental insights into the tuneable properties of lignin by chemometrics
42.
Zurück zum Zitat Sugiarto S, Leow Y, Tan CL, Wang G, Kai D (2022) How far is Lignin from being a biomedical material? 8:71–94 Sugiarto S, Leow Y, Tan CL, Wang G, Kai D (2022) How far is Lignin from being a biomedical material? 8:71–94
43.
Zurück zum Zitat Izaguirre N, Robles E, Llano-Ponte R, Labidi J, Erdocia X (2022) Fine-tune of lignin properties by its fractionation with a sequential organic solvent extraction 175:114251 Izaguirre N, Robles E, Llano-Ponte R, Labidi J, Erdocia X (2022) Fine-tune of lignin properties by its fractionation with a sequential organic solvent extraction 175:114251
44.
Zurück zum Zitat Singh SK, Saulnier BK, Hodge DB (2022) Lignin properties and cell wall response to deconstruction by alkaline pretreatment and enzymatic hydrolysis in brown midrib sorghums 178:114566 Singh SK, Saulnier BK, Hodge DB (2022) Lignin properties and cell wall response to deconstruction by alkaline pretreatment and enzymatic hydrolysis in brown midrib sorghums 178:114566
45.
Zurück zum Zitat Chen J et al (2022) Biobased Composites with High Lignin Content and Excellent Mechanical Properties toward the Ingenious Photoresponsive Actuator Chen J et al (2022) Biobased Composites with High Lignin Content and Excellent Mechanical Properties toward the Ingenious Photoresponsive Actuator
46.
Zurück zum Zitat Tong W et al (2022) Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass Tong W et al (2022) Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass
47.
Zurück zum Zitat Wang L et al (2022) Valorization of lignin: Application of lignin-derived activated carbon in capacitors and investigation of its textural properties and electrochemical performance 122:108791 Wang L et al (2022) Valorization of lignin: Application of lignin-derived activated carbon in capacitors and investigation of its textural properties and electrochemical performance 122:108791
48.
Zurück zum Zitat Zhou M, Fakayode OA, Yagoub AEA, Ji Q, Zhou C (2022) Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization 156:111986 Zhou M, Fakayode OA, Yagoub AEA, Ji Q, Zhou C (2022) Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization 156:111986
49.
Zurück zum Zitat Paul R, John B, Sahoo SK (2022) UV-Curable Bio-Based Pressure-Sensitive Adhesives. Tuning the Properties by Incorporating Liquid-Phase Alkali Lignin-Acrylates Paul R, John B, Sahoo SK (2022) UV-Curable Bio-Based Pressure-Sensitive Adhesives. Tuning the Properties by Incorporating Liquid-Phase Alkali Lignin-Acrylates
50.
Zurück zum Zitat Fakhri M, Norouzi MA (2022) Rheological and ageing properties of asphalt bio-binders containing lignin and waste engine oil 321:126364 Fakhri M, Norouzi MA (2022) Rheological and ageing properties of asphalt bio-binders containing lignin and waste engine oil 321:126364
51.
Zurück zum Zitat Chua YW, Wu H, Yu Y (2021) Effect of cellulose–lignin interactions on char structural changes during fast pyrolysis at 100–350° C 38(3):3977–3986 Chua YW, Wu H, Yu Y (2021) Effect of cellulose–lignin interactions on char structural changes during fast pyrolysis at 100–350° C 38(3):3977–3986
52.
Zurück zum Zitat Reyt G et al (2021) Two chemically distinct root lignin barriers control solute and water balance 12(1):1–15 Reyt G et al (2021) Two chemically distinct root lignin barriers control solute and water balance 12(1):1–15
53.
Zurück zum Zitat Wang W, Wang F, Zhang C, Tang J, Zeng X, Wan X (2021) Versatile value-added application of hyperbranched lignin derivatives: Water-resistance adhesive, UV protection coating, self-healing and skin-adhesive sensing 404:126358 Wang W, Wang F, Zhang C, Tang J, Zeng X, Wan X (2021) Versatile value-added application of hyperbranched lignin derivatives: Water-resistance adhesive, UV protection coating, self-healing and skin-adhesive sensing 404:126358
54.
Zurück zum Zitat Yu H, Yang J, Shi P, Li M, Bian J (2021) Synthesis of a Lignin-Fe/Mn Binary Oxide Blend Nanocomposite and Its Adsorption Capacity for Methylene Blue 6(26):16837–16846 Yu H, Yang J, Shi P, Li M, Bian J (2021) Synthesis of a Lignin-Fe/Mn Binary Oxide Blend Nanocomposite and Its Adsorption Capacity for Methylene Blue 6(26):16837–16846
55.
Zurück zum Zitat Cao Q et al (2021) Size-controlled lignin nanoparticles for tuning the mechanical properties of poly (vinyl alcohol) 172:114012 Cao Q et al (2021) Size-controlled lignin nanoparticles for tuning the mechanical properties of poly (vinyl alcohol) 172:114012
56.
Zurück zum Zitat Teles CA et al (2021) Hydrodeoxygenation of Lignin-Derived Compound Mixtures on Pd-Supported on Various Oxides Teles CA et al (2021) Hydrodeoxygenation of Lignin-Derived Compound Mixtures on Pd-Supported on Various Oxides
57.
Zurück zum Zitat Guo S et al (2021) Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions 253:117223 Guo S et al (2021) Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions 253:117223
58.
Zurück zum Zitat Xiao X et al (2021) Microwave-Assisted Sulfonation of Lignin for the Fabrication of a High-Performance Dye Dispersant 9(27):9053–9061 Xiao X et al (2021) Microwave-Assisted Sulfonation of Lignin for the Fabrication of a High-Performance Dye Dispersant 9(27):9053–9061
59.
Zurück zum Zitat Zhang W et al (2021) Isolation and Characterization of a Novel Laccase LacZ1 for Lignin Degradation AEM.01355–21 Zhang W et al (2021) Isolation and Characterization of a Novel Laccase LacZ1 for Lignin Degradation AEM.01355–21
60.
Zurück zum Zitat Zhao H et al (2021) np Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming 585:694–704 Zhao H et al (2021) np Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming 585:694–704
61.
Zurück zum Zitat Li H, Shi F, An Q, Zhai S, Wang K, Tong Y (2021) Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation 166:923–933 Li H, Shi F, An Q, Zhai S, Wang K, Tong Y (2021) Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation 166:923–933
62.
Zurück zum Zitat Haider MK et al (2021) Lignin-mediated in-situ synthesis of CuO nanoparticles on cellulose nanofibers: A potential wound dressing material 173:315–326 Haider MK et al (2021) Lignin-mediated in-situ synthesis of CuO nanoparticles on cellulose nanofibers: A potential wound dressing material 173:315–326
63.
Zurück zum Zitat Wang J, Xu Y, Meng X, Pu Y, Ragauskas A, Zhang J (2021) Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin 323:124593 Wang J, Xu Y, Meng X, Pu Y, Ragauskas A, Zhang J (2021) Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin 323:124593
64.
Zurück zum Zitat Ye K, Liu Y, Wu S, Zhuang J (2021) A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis 172:114008, Ye K, Liu Y, Wu S, Zhuang J (2021) A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis 172:114008,
65.
Zurück zum Zitat Yang H et al (2021) Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites 22(4):1432–1444, Yang H et al (2021) Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites 22(4):1432–1444,
66.
Zurück zum Zitat Stewart D (2008) Lignin as a base material for materials applications: Chemistry, application and economics 27(2):202–207 Stewart D (2008) Lignin as a base material for materials applications: Chemistry, application and economics 27(2):202–207
67.
Zurück zum Zitat Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy G (2013) Lignin: untapped biopolymers in biomass conversion technologies 3(3):255–269 Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy G (2013) Lignin: untapped biopolymers in biomass conversion technologies 3(3):255–269
68.
Zurück zum Zitat Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery 4(48):25310–25318 Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery 4(48):25310–25318
69.
Zurück zum Zitat Wang W, Liu Y, Wang Y, Liu L, Hu C (2021) Effect of nickel salts on the production of biochar derived from alkali lignin: properties and applications 341:125876 Wang W, Liu Y, Wang Y, Liu L, Hu C (2021) Effect of nickel salts on the production of biochar derived from alkali lignin: properties and applications 341:125876
70.
Zurück zum Zitat Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur IS (2021) Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin 320:124439 Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur IS (2021) Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin 320:124439
71.
Zurück zum Zitat Radhakrishnan R, Patra P, Das M, Ghosh AJR, Reviews SE (2021) Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals 149:111368 Radhakrishnan R, Patra P, Das M, Ghosh AJR, Reviews SE (2021) Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals 149:111368
72.
Zurück zum Zitat Rana R, Nanda S, Meda V, Dalai A, Kozinski JA (2018) A review of lignin chemistry and its biorefining conversion technologies 1(2) Rana R, Nanda S, Meda V, Dalai A, Kozinski JA (2018) A review of lignin chemistry and its biorefining conversion technologies 1(2)
73.
Zurück zum Zitat Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels 6(2):663–677 Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels 6(2):663–677
74.
Zurück zum Zitat Demirbas A (2004) Combustion characteristics of different biomass fuels 30(2):219–230, Demirbas A (2004) Combustion characteristics of different biomass fuels 30(2):219–230,
75.
Zurück zum Zitat Wei L et al (2006) Characteristics of fast pyrolysis of biomass in a free fall reactor 87(10):863–871 Wei L et al (2006) Characteristics of fast pyrolysis of biomass in a free fall reactor 87(10):863–871
76.
Zurück zum Zitat Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics 74(12):1812–1822 Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics 74(12):1812–1822
77.
Zurück zum Zitat Scurlock JM, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? 19(4):229–244 Scurlock JM, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? 19(4):229–244
78.
Zurück zum Zitat Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: Effects of extractives, particle size and crop species 31(3)534–541 Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: Effects of extractives, particle size and crop species 31(3)534–541
79.
Zurück zum Zitat Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering 106(9):4044–4098 Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering 106(9):4044–4098
80.
Zurück zum Zitat Naik S, Goud VV, Rout PK, Jacobson K, Dala AK (2010) Characterization of Canadian biomass for alternative renewable biofuel 35(8):1624–1631 Naik S, Goud VV, Rout PK, Jacobson K, Dala AK (2010) Characterization of Canadian biomass for alternative renewable biofuel 35(8):1624–1631
81.
Zurück zum Zitat Demirbaş A (2005) Thermochemical conversion of biomass to liquid products in the aqueous medium 27(13):1235–1243 Demirbaş A (2005) Thermochemical conversion of biomass to liquid products in the aqueous medium 27(13):1235–1243
82.
Zurück zum Zitat Brebu M, Ucar S, Vasile C, Yanik J (2010) Co-pyrolysis of pine cone with synthetic polymers 89(8):1911–1918 Brebu M, Ucar S, Vasile C, Yanik J (2010) Co-pyrolysis of pine cone with synthetic polymers 89(8):1911–1918
83.
Zurück zum Zitat Nigam JJ (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast 97(2)107–116 Nigam JJ (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast 97(2)107–116
84.
Zurück zum Zitat Anderson KB, Mackay G (1990) A review and reinterpretation of evidence concerning the origin of Victorian brown coal 16(4):327–347 Anderson KB, Mackay G (1990) A review and reinterpretation of evidence concerning the origin of Victorian brown coal 16(4):327–347
85.
Zurück zum Zitat Dutta S, Sarkanen S (1990) A new emphasis in strategies for developing lignin-based plastics 197 Dutta S, Sarkanen S (1990) A new emphasis in strategies for developing lignin-based plastics 197
86.
Zurück zum Zitat Srinivasan A, Haritos G, Hedberg F (1991) Biomimetics: Advancing man-made materials through guidance from nature Srinivasan A, Haritos G, Hedberg F (1991) Biomimetics: Advancing man-made materials through guidance from nature
87.
Zurück zum Zitat Eglinton GJ, Logan GA (1991) Molecular preservation 333(1268):315–328 Eglinton GJ, Logan GA (1991) Molecular preservation 333(1268):315–328
88.
Zurück zum Zitat Damsté JSS, Eglinton TI, de Leeuw JW (1992) Alkylpyrroles in a kerogen pyrolysate: Evidence for abundant tetrapyrrole pigments 56(4):1743–1751 Damsté JSS, Eglinton TI, de Leeuw JW (1992) Alkylpyrroles in a kerogen pyrolysate: Evidence for abundant tetrapyrrole pigments 56(4):1743–1751
89.
Zurück zum Zitat Lenz RW (1993) Biodegradable polymers 1–40 Lenz RW (1993) Biodegradable polymers 1–40
90.
Zurück zum Zitat Gough MA, Fauzi R, Mantoura C, Preston M (1993) Terrestrial plant biopolymers in marine sediments 57(5):945–964 Gough MA, Fauzi R, Mantoura C, Preston M (1993) Terrestrial plant biopolymers in marine sediments 57(5):945–964
91.
Zurück zum Zitat Kögel-Knabner I, de Leeuw JW, Tegelaar EW, Hatcher PG, Kerp H (1994) A lignin-like polymer in the cuticle of spruce needles: implications for the humification of spruce litter 21(12):1219–1228 Kögel-Knabner I, de Leeuw JW, Tegelaar EW, Hatcher PG, Kerp H (1994) A lignin-like polymer in the cuticle of spruce needles: implications for the humification of spruce litter 21(12):1219–1228
92.
Zurück zum Zitat Funaoka M, Matsubara M, Seki N, Fukatsu S (1995) Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics 46(6):545–552 Funaoka M, Matsubara M, Seki N, Fukatsu S (1995) Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics 46(6):545–552
93.
Zurück zum Zitat Biber MV, Gülaçar FO, Buffle J (1996) Seasonal variations in principal groups of organic matter in a eutrophic lake using pyrolysis/GC/MS 30(12):3501–3507 Biber MV, Gülaçar FO, Buffle J (1996) Seasonal variations in principal groups of organic matter in a eutrophic lake using pyrolysis/GC/MS 30(12):3501–3507
94.
Zurück zum Zitat Rio JD, Martin F, Gonzalez-Vila FJ (1996) Thermally assisted hydrolysis and alkylation as a novel pyrolytic approach for the structural characterization of natural biopolymers and geomacromolecules 15(2):70–79 Rio JD, Martin F, Gonzalez-Vila FJ (1996) Thermally assisted hydrolysis and alkylation as a novel pyrolytic approach for the structural characterization of natural biopolymers and geomacromolecules 15(2):70–79
95.
Zurück zum Zitat Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata (identification of the biopolymers lignin and suberin) 113(4):1223–1231 Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata (identification of the biopolymers lignin and suberin) 113(4):1223–1231
96.
Zurück zum Zitat Swift G (1998) Requirements for biodegradable water-soluble polymers 59(1–3):19–24 Swift G (1998) Requirements for biodegradable water-soluble polymers 59(1–3):19–24
97.
Zurück zum Zitat Focher B, Marzetti A, Beltrame P, Avella M (1998) Steam exploded biomass for the preparation of conventional and advanced biopolymer-based materials 14(3):187–194 Focher B, Marzetti A, Beltrame P, Avella M (1998) Steam exploded biomass for the preparation of conventional and advanced biopolymer-based materials 14(3):187–194
98.
Zurück zum Zitat Yamamoto H, Amaike M, Saitoh H, Sano Y (1999) Gel formation of lignin and biodegradation of the lignin gels by microorganisms 7(2):143–147 Yamamoto H, Amaike M, Saitoh H, Sano Y (1999) Gel formation of lignin and biodegradation of the lignin gels by microorganisms 7(2):143–147
99.
Zurück zum Zitat Filley T, Minard R, Hatcher PG (1999) Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13 C-labeled TMAH to a synthetic model lignin dimer 30(7):607–621 Filley T, Minard R, Hatcher PG (1999) Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13 C-labeled TMAH to a synthetic model lignin dimer 30(7):607–621
100.
Zurück zum Zitat Mohanty A, Misra Ma, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: An overview 276(1):1–24 Mohanty A, Misra Ma, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: An overview 276(1):1–24
101.
Zurück zum Zitat Greil P (2001) Biomorphous ceramics from lignocellulosics 21(2):105–118 Greil P (2001) Biomorphous ceramics from lignocellulosics 21(2):105–118
102.
Zurück zum Zitat Mikulášová M, Košíková B, Alexy P, Kačík F, Urgelová, E (2001) Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics 17(6):601–607 Mikulášová M, Košíková B, Alexy P, Kačík F, Urgelová, E (2001) Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics 17(6):601–607
103.
Zurück zum Zitat Klapiszewski Ł, Szalaty T, Jesionowski T (2002) Lignin as Material of the Future: Key Information and Development Prospects 1–28 Klapiszewski Ł, Szalaty T, Jesionowski T (2002) Lignin as Material of the Future: Key Information and Development Prospects 1–28
104.
Zurück zum Zitat Mohanty AK, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world 10(1):19–26 Mohanty AK, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world 10(1):19–26
105.
Zurück zum Zitat Nagamatsu Y, Funaoka M (2003) Design of recyclable matrixes from lignin-based polymers 5(5):595–601 Nagamatsu Y, Funaoka M (2003) Design of recyclable matrixes from lignin-based polymers 5(5):595–601
106.
Zurück zum Zitat Gosselink R et al (2004) Characterisation and application of NovaFiber lignin 20(2):191–203 Gosselink R et al (2004) Characterisation and application of NovaFiber lignin 20(2):191–203
107.
Zurück zum Zitat Kubo S, Gilbert RD, Kadla JF (2005) Lignin-based polymer blends and biocomposite materials. Natural Fibers, Biopolymers, and Biocomposites. CRC Press, pp 698–725 Kubo S, Gilbert RD, Kadla JF (2005) Lignin-based polymer blends and biocomposite materials. Natural Fibers, Biopolymers, and Biocomposites. CRC Press, pp 698–725
108.
Zurück zum Zitat Pan X, Kadla JF, Ehara K, Gilkes N, Saddler J (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity 54(16):5806–5813 Pan X, Kadla JF, Ehara K, Gilkes N, Saddler J (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity 54(16):5806–5813
109.
Zurück zum Zitat Salazar-Valencia P, Pérez-Merchancano S, Bolívar-Marinéz L (2006) Optical properties in Biopolymers: lignin fragmen 36:840–843 Salazar-Valencia P, Pérez-Merchancano S, Bolívar-Marinéz L (2006) Optical properties in Biopolymers: lignin fragmen 36:840–843
110.
Zurück zum Zitat Raschip IE, Vasile C, Ciolacu D (2007) Semi-interpenetrating polymer networks containing polysaccharides. vol 19. and G. J. H. p. p. Cazacu, pp 5–6. I Xanthan/Lignin networks Raschip IE, Vasile C, Ciolacu D (2007) Semi-interpenetrating polymer networks containing polysaccharides. vol 19. and G. J. H. p. p. Cazacu, pp 5–6. I Xanthan/Lignin networks
111.
Zurück zum Zitat Mishra SB, Mishra A, Kaushik N, Khan MA (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride 183(2–3):273–276 Mishra SB, Mishra A, Kaushik N, Khan MA (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride 183(2–3):273–276
112.
Zurück zum Zitat Bozell JJJCS (2008) Air, Water, Feedstocks for the future–biorefinery production of chemicals from renewable carbon 36(8):641–647 Bozell JJJCS (2008) Air, Water, Feedstocks for the future–biorefinery production of chemicals from renewable carbon 36(8):641–647
113.
Zurück zum Zitat Kaal E, de Koning S, Brudin S, Janssen HG (2008) Fully automated system for the gas chromatographic characterization of polar biopolymers based on thermally assisted hydrolysis and methylation 1201(2):169–175 Kaal E, de Koning S, Brudin S, Janssen HG (2008) Fully automated system for the gas chromatographic characterization of polar biopolymers based on thermally assisted hydrolysis and methylation 1201(2):169–175
114.
Zurück zum Zitat Brodin I, Sjöholm E, Gellerstedt G (2009) Kraft lignin as feedstock for chemical products: The effects of membrane filtration Brodin I, Sjöholm E, Gellerstedt G (2009) Kraft lignin as feedstock for chemical products: The effects of membrane filtration
115.
Zurück zum Zitat Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications pp. 1–63 Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications pp. 1–63
116.
Zurück zum Zitat Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries—unleashing lignin opportunities 2(5–6):383–393 Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries—unleashing lignin opportunities 2(5–6):383–393
117.
Zurück zum Zitat Kim YS, Kadla JF (2010) Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization 11(4):981–988 Kim YS, Kadla JF (2010) Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization 11(4):981–988
118.
Zurück zum Zitat Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids 13(11):3124–3136 Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids 13(11):3124–3136
119.
Zurück zum Zitat Nevárez LAM et al (2011) Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films 12(4):045006 Nevárez LAM et al (2011) Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films 12(4):045006
120.
Zurück zum Zitat Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals 13(3):918–926 Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals 13(3):918–926
121.
Zurück zum Zitat Milczarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks 335(6075):1468–1471 Milczarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks 335(6075):1468–1471
122.
Zurück zum Zitat Saito T, Perkins JH, Jackson DC, Trammel NE, Hunt MA, Naskar AK (2013) Development of lignin-based polyurethane thermoplastics 3(44):21832–21840 Saito T, Perkins JH, Jackson DC, Trammel NE, Hunt MA, Naskar AK (2013) Development of lignin-based polyurethane thermoplastics 3(44):21832–21840
123.
Zurück zum Zitat Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices 65:136–147 Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices 65:136–147
124.
Zurück zum Zitat Nilsson TY, Wagner M, Inganäs O (2015) Lignin modification for biopolymer/conjugated polymer hybrids as renewable energy storage materials 8(23):4081–4085 Nilsson TY, Wagner M, Inganäs O (2015) Lignin modification for biopolymer/conjugated polymer hybrids as renewable energy storage materials 8(23):4081–4085
125.
Zurück zum Zitat Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh X (2016) Towards lignin-based functional materials in a sustainable world 18(5):1175–1200 Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh X (2016) Towards lignin-based functional materials in a sustainable world 18(5):1175–1200
126.
Zurück zum Zitat Mubarok M (2016) On the use of lignin-based biopolymer in improving gold and silver recoveries during cyanidation leaching 89:1–9 Mubarok M (2016) On the use of lignin-based biopolymer in improving gold and silver recoveries during cyanidation leaching 89:1–9
127.
Zurück zum Zitat Leskinen T et al (2017) Adsorption of proteins on colloidal lignin particles for advanced biomaterials 18(9):2767–2776 Leskinen T et al (2017) Adsorption of proteins on colloidal lignin particles for advanced biomaterials 18(9):2767–2776
128.
Zurück zum Zitat Bao Y, Wang R, Lu Y, Wu W (2017) Lignin biopolymer based triboelectric nanogenerators 5(7):074109 Bao Y, Wang R, Lu Y, Wu W (2017) Lignin biopolymer based triboelectric nanogenerators 5(7):074109
129.
Zurück zum Zitat Kakoria A, Sinha-Ray SJF (2018) A review on biopolymer-based fibers via electrospinning and solution blowing and their applications 6(3):45 Kakoria A, Sinha-Ray SJF (2018) A review on biopolymer-based fibers via electrospinning and solution blowing and their applications 6(3):45
130.
Zurück zum Zitat Zirbes M, Waldvogel SR (2018) Electro-conversion as sustainable method for the fine chemical production from the biopolymer lignin 14:19–25 Zirbes M, Waldvogel SR (2018) Electro-conversion as sustainable method for the fine chemical production from the biopolymer lignin 14:19–25
131.
Zurück zum Zitat Banu JR et al (2019) A review on biopolymer production via lignin valorization 290:121790 Banu JR et al (2019) A review on biopolymer production via lignin valorization 290:121790
132.
Zurück zum Zitat Osorio-González CS, Hegde K, Brar SK, Vezina P, Gilbert D, Avalos-Ramírez A (2020) Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation 313:123638 Osorio-González CS, Hegde K, Brar SK, Vezina P, Gilbert D, Avalos-Ramírez A (2020) Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation 313:123638
133.
Zurück zum Zitat Li K et al (2021) Bioinspired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance 224:109187 Li K et al (2021) Bioinspired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance 224:109187
134.
Zurück zum Zitat Solihat NN et al (2021) Lignin as an active biomaterial: a review 9(1):1–22 Solihat NN et al (2021) Lignin as an active biomaterial: a review 9(1):1–22
135.
Zurück zum Zitat Morales A, Labidi J, Gullón P, Chemistry S (2021) Synthesis of advanced bio-based green materials from renewable biopolymers 100436 Morales A, Labidi J, Gullón P, Chemistry S (2021) Synthesis of advanced bio-based green materials from renewable biopolymers 100436
136.
Zurück zum Zitat Rizal S et al (2021) Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films 11(3):637 Rizal S et al (2021) Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films 11(3):637
137.
Zurück zum Zitat Li T, Lü S, Wang Z, Huang M, Yan J, Liu MJ (2021) Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers 765:142745 Li T, Lü S, Wang Z, Huang M, Yan J, Liu MJ (2021) Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers 765:142745
138.
Zurück zum Zitat Floudas D (2021) Evolution of lignin decomposition systems in fungi. Advances in Botanical Research. Academic Press, pp 37–76 Floudas D (2021) Evolution of lignin decomposition systems in fungi. Advances in Botanical Research. Academic Press, pp 37–76
139.
Zurück zum Zitat Sun S-F, Yang H-Y, Yang J, Shi Z-J, Deng J (2021) Revealing the structural characteristics of lignin macromolecules from perennial ryegrass during different integrated treatments 178:373–380 Sun S-F, Yang H-Y, Yang J, Shi Z-J, Deng J (2021) Revealing the structural characteristics of lignin macromolecules from perennial ryegrass during different integrated treatments 178:373–380
140.
Zurück zum Zitat Chatterjee S, Saito T, Rios O, Johs A (2014) Lignin based carbon materials for energy storage applications. Green Technologies for the Environment. ACS Publications 203–218 Chatterjee S, Saito T, Rios O, Johs A (2014) Lignin based carbon materials for energy storage applications. Green Technologies for the Environment. ACS Publications 203–218
141.
Zurück zum Zitat Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials 7(2):201–235 Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials 7(2):201–235
142.
Zurück zum Zitat Ramírez-Morales JE et al (2021) Lignin Aromatics to PHA Polymers: Nitrogen and Oxygen Are the Key Factors for Pseudomonas 9(31):10579–10590 Ramírez-Morales JE et al (2021) Lignin Aromatics to PHA Polymers: Nitrogen and Oxygen Are the Key Factors for Pseudomonas 9(31):10579–10590
143.
Zurück zum Zitat Hynynen J et al (2021) Lignin and extractives first’conversion of lignocellulosic residual streams using UV light from LEDs Hynynen J et al (2021) Lignin and extractives first’conversion of lignocellulosic residual streams using UV light from LEDs
144.
Zurück zum Zitat Zhao C, Ding C, Han C, Yang X, Xu J (2021) Lignin-Incorporated Supramolecular Copolymerization Yielding g‐C3N4 Nanoarchitectures for Efficient Photocatalytic Hydrogen Evolution 5(2):2000486 Zhao C, Ding C, Han C, Yang X, Xu J (2021) Lignin-Incorporated Supramolecular Copolymerization Yielding g‐C3N4 Nanoarchitectures for Efficient Photocatalytic Hydrogen Evolution 5(2):2000486
145.
Zurück zum Zitat Gao C et al (2021) One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation 205:108530 Gao C et al (2021) One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation 205:108530
146.
Zurück zum Zitat Jiang Z, Duan J, Guo X, Ma Y, Wang C, Shi B (2021) Synthesis of Au/lignin–tannin particles and their anticancer application 23(18):6945–6952 Jiang Z, Duan J, Guo X, Ma Y, Wang C, Shi B (2021) Synthesis of Au/lignin–tannin particles and their anticancer application 23(18):6945–6952
147.
Zurück zum Zitat Solt P, Rößiger B, Konnerth J, Van Herwijnen H (2018) Lignin phenol formaldehyde resoles using base-catalysed depolymerized Kraft lignin 10(10):1162 Solt P, Rößiger B, Konnerth J, Van Herwijnen H (2018) Lignin phenol formaldehyde resoles using base-catalysed depolymerized Kraft lignin 10(10):1162
148.
Zurück zum Zitat Cao KLA, Rahmatika AM, Kitamoto Y, Nguyen MTT, Ogi T (2021) Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin 589:252–263 Cao KLA, Rahmatika AM, Kitamoto Y, Nguyen MTT, Ogi T (2021) Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin 589:252–263
149.
Zurück zum Zitat Rahdar A, Sargazi S, Barani M, Shahraki S, Sabir F, Aboudzadeh MA (2021) Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments 13(4):641 Rahdar A, Sargazi S, Barani M, Shahraki S, Sabir F, Aboudzadeh MA (2021) Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments 13(4):641
150.
Zurück zum Zitat Börcsök Z, Pásztory Z (2021) The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey 79(3):511–526 Börcsök Z, Pásztory Z (2021) The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey 79(3):511–526
151.
Zurück zum Zitat Zhang Y, Wang H, Eberhardt TL, Gu Q, Pan H (2021) Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties 150:110389 Zhang Y, Wang H, Eberhardt TL, Gu Q, Pan H (2021) Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties 150:110389
152.
Zurück zum Zitat Xu J et al (2021) A flow-through reactor for fast fractionation and production of structure-preserved lignin 164113350 Xu J et al (2021) A flow-through reactor for fast fractionation and production of structure-preserved lignin 164113350
153.
Zurück zum Zitat Wang S, Li Z, Yi W, Fu P, Zhang A, Bai X (2021) Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour 163:1673–1681 Wang S, Li Z, Yi W, Fu P, Zhang A, Bai X (2021) Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour 163:1673–1681
154.
Zurück zum Zitat Li C, Sun Y, Yi Z, Zhang L, Zhang S, Hua X (2021) Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties Li C, Sun Y, Yi Z, Zhang L, Zhang S, Hua X (2021) Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties
155.
Zurück zum Zitat Ma X, Chen J, Zhu J, Yan N (2021) Lignin-Based Polyurethane: Recent Advances and Future Perspectives 42(3)2000492 Ma X, Chen J, Zhu J, Yan N (2021) Lignin-Based Polyurethane: Recent Advances and Future Perspectives 42(3)2000492
156.
Zurück zum Zitat Yu Q et al (2021) Deep eutectic solvent assists Bacillus australimaris to transform alkali lignin waste into small aromatic compounds 320:128719 Yu Q et al (2021) Deep eutectic solvent assists Bacillus australimaris to transform alkali lignin waste into small aromatic compounds 320:128719
157.
Zurück zum Zitat Zou T, Sipponen MH, Henn A, Österberg M (2021) Solvent-Resistant Lignin-Epoxy Hybrid Nanoparticles for Covalent Surface Modification and High-Strength Particulate Adhesives 15(3):4811–4823 Zou T, Sipponen MH, Henn A, Österberg M (2021) Solvent-Resistant Lignin-Epoxy Hybrid Nanoparticles for Covalent Surface Modification and High-Strength Particulate Adhesives 15(3):4811–4823
158.
Zurück zum Zitat Meng Y et al (2021) Understanding the local structure of disordered carbons from cellulose and lignin 55(3):587–606 Meng Y et al (2021) Understanding the local structure of disordered carbons from cellulose and lignin 55(3):587–606
159.
Zurück zum Zitat Wang S et al (2021) Lignin-based carbon fibers: Formation, modification and potential applications Wang S et al (2021) Lignin-based carbon fibers: Formation, modification and potential applications
160.
Zurück zum Zitat Alinejad M et al (2019) Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives 11(7):1202 Alinejad M et al (2019) Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives 11(7):1202
161.
Zurück zum Zitat Han M-h et al (2021) Exogenous melatonin positively regulates lignin biosynthesis in Camellia sinensis 179:485–499 Han M-h et al (2021) Exogenous melatonin positively regulates lignin biosynthesis in Camellia sinensis 179:485–499
162.
Zurück zum Zitat Zhao Z-M et al (2021) Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy Zhao Z-M et al (2021) Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy
163.
Zurück zum Zitat Yu J, Wang D, Sun LJF (2021) The pyrolysis of lignin: Pathway and interaction studies 290:120078 Yu J, Wang D, Sun LJF (2021) The pyrolysis of lignin: Pathway and interaction studies 290:120078
164.
Zurück zum Zitat Rosas JM, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T (2014) Preparation of different carbon materials by thermochemical conversion of lignin 1:29 Rosas JM, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T (2014) Preparation of different carbon materials by thermochemical conversion of lignin 1:29
165.
Zurück zum Zitat Qu W, Yang J, Sun X, Bai X, Jin H, Zhang M (2021) Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques Qu W, Yang J, Sun X, Bai X, Jin H, Zhang M (2021) Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques
166.
Zurück zum Zitat Sheng Y, Tan X, Gu Y, Zhou X, Tu M, Xu Y (2021) Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues163:732–739 Sheng Y, Tan X, Gu Y, Zhou X, Tu M, Xu Y (2021) Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues163:732–739
167.
Zurück zum Zitat Xu F, Lu Q, Li K, Zhu T-T, Wang W-K, Hu Z-H (2021) Green synthesis of magnetic mesoporous carbon from waste-lignin and its application as an efficient heterogeneous Fenton catalyst 285:125363 Xu F, Lu Q, Li K, Zhu T-T, Wang W-K, Hu Z-H (2021) Green synthesis of magnetic mesoporous carbon from waste-lignin and its application as an efficient heterogeneous Fenton catalyst 285:125363
168.
Zurück zum Zitat Lourençon TV et al (2021) Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation 166:1535–1542 Lourençon TV et al (2021) Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation 166:1535–1542
169.
Zurück zum Zitat Thakur S, Govender PP, Mamo MA, Tamulevicius S, Mishra YK, Thakur VK (2017) Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives 146:342–355 Thakur S, Govender PP, Mamo MA, Tamulevicius S, Mishra YK, Thakur VK (2017) Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives 146:342–355
170.
Zurück zum Zitat Lee SJ et al (2021) Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds 269:116174 Lee SJ et al (2021) Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds 269:116174
171.
Zurück zum Zitat Wang X et al (2021) Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways 204:108641 Wang X et al (2021) Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways 204:108641
172.
Zurück zum Zitat Nguyen NA et al (2018) A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability 4(12): eaat4967 Nguyen NA et al (2018) A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability 4(12): eaat4967
173.
Zurück zum Zitat Borchert AJ, Henson WR, Beckham GT (2022) Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin 73:1–13 Borchert AJ, Henson WR, Beckham GT (2022) Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin 73:1–13
174.
Zurück zum Zitat Sethupathy S et al (2022) Lignin valorization: Status, challenges and opportunities 126696 Sethupathy S et al (2022) Lignin valorization: Status, challenges and opportunities 126696
175.
Zurück zum Zitat Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS (2022) Lignin Use in Nonwovens: A Review 17(2) Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS (2022) Lignin Use in Nonwovens: A Review 17(2)
176.
Zurück zum Zitat Azubuike CC, Allemann MN, Michener JK (2022) Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products 65:64–72 Azubuike CC, Allemann MN, Michener JK (2022) Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products 65:64–72
177.
Zurück zum Zitat Santo Pereira AdE, de Oliveira JL, Savassa SM, Rogério CB, de Medeiros GA, Fraceto LF (2022) Lignin nanoparticles: New insights for a sustainable agriculture 131145 Santo Pereira AdE, de Oliveira JL, Savassa SM, Rogério CB, de Medeiros GA, Fraceto LF (2022) Lignin nanoparticles: New insights for a sustainable agriculture 131145
178.
Zurück zum Zitat Singhania RR et al (2022) Lignin valorisation via enzymes: a sustainable approach 311:122608 Singhania RR et al (2022) Lignin valorisation via enzymes: a sustainable approach 311:122608
179.
Zurück zum Zitat Bilal M et al (2022) Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy 1–27 Bilal M et al (2022) Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy 1–27
180.
Zurück zum Zitat Zhao Z-M et al (2022) Enhancing Lignin Dispersion and Bioconversion by Eliminating Thermal Sterilization Zhao Z-M et al (2022) Enhancing Lignin Dispersion and Bioconversion by Eliminating Thermal Sterilization
181.
Zurück zum Zitat Reshmy R et al (2022) Microbial valorization of lignin: Prospects and challenges 344:126240 Reshmy R et al (2022) Microbial valorization of lignin: Prospects and challenges 344:126240
182.
Zurück zum Zitat Lu J et al (2022) Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives 176:114267 Lu J et al (2022) Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives 176:114267
183.
Zurück zum Zitat Chakravarty I, Gahane D, Mandavgane S (2022) Recent advances in lignin valorization 365–388 Chakravarty I, Gahane D, Mandavgane S (2022) Recent advances in lignin valorization 365–388
184.
Zurück zum Zitat Yang F et al (2022) Conversion of Cellulose and Lignin Residues into Transparent UV-Blocking Composite Films 27(5):1637 Yang F et al (2022) Conversion of Cellulose and Lignin Residues into Transparent UV-Blocking Composite Films 27(5):1637
Metadaten
Titel
RETRACTED ARTICLE: Recent advances and future perspectives of lignin biopolymers
verfasst von
Reeya Agrawal
Anjan Kumar
Sangeeta Singh
Kamal Sharma
Publikationsdatum
01.06.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 6/2022
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-022-03068-5

Weitere Artikel der Ausgabe 6/2022

Journal of Polymer Research 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.