Skip to main content
Log in

Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Three synthetic hematite (SH) materials as iron oxides nanofibers were prepared and applied for the removal of 51Cr and radioiodine (131I) as anions associated with nuclear industry technology. The results exhibited that 70% of Cr(VI) and 90% of 131I were removed from aqueous solution using the SH1 adsorbent. In acid solutions, R % of Cr(VI) increased to > 90% with the decrease in concentration till 0.05M, while the R % of 131I was 94 and 79% at HNO3 and HCl, respectively. It was concluded that SH1 nanofibers is promising and selective adsorbent for Cr(VI) and 131I removal from aqueous or acid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmed IM, Aly MI, El Afifi EM (2016) Studies on the extraction of Cr(VI) from chloride solution by TBP and Cyanex 921. Arab J Nucl Sci Appl 49 (3): 107–119. www.esnsa-eg.com/Journal.aspx

  2. World Health Organization (2011) Guidelines for drinking-water quality, Geneva, Switzerland

  3. Bhutani MM, Mitra AK, Kumari R (1991) Adsorption of 51Cr (VI) on manganese dioxide from aqueous solution. Mikrochim Acta 107:19–26. https://doi.org/10.1007/BF01772349

    Article  Google Scholar 

  4. Ajouyed O, Hurel C, Ammari M, Ben Allal L, Marmier N (2010) Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration. J Hazard Mater 174(1–3):616–622. https://doi.org/10.1016/j.jhazmat.2009.09.096

    Article  CAS  PubMed  Google Scholar 

  5. Chmielewská E, Tylus W (2016) Adsorption of Al(III), Sb (III), chromate and halides onto some natural versus commercial materials. J Radioanal Nucl Chem 308(3):887–893. https://doi.org/10.1007/s10967-015-4517-3

    Article  CAS  Google Scholar 

  6. Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729(1):3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001

    Article  CAS  Google Scholar 

  7. Snyder GT, Fabryka-Martin JT (2007) 129I and 36Cl in dilute hydrocarbon waters: marine-cosmogenic, in situ, and anthropogenic sources. Appl Geochem 22(3):692–714. https://doi.org/10.1016/j.apgeochem.2006.12.011

    Article  CAS  Google Scholar 

  8. Hupf HB, Eldridge JS, Beaver JE (1968) Production of iodine-123 for medical applications. J Appl Radiat Isot 19(4):345–346. https://doi.org/10.1016/0020-708X(68)90178-6

    Article  CAS  Google Scholar 

  9. Harper PV, Siemens WD, Lathrop KA, Brizel HE, Harrison RW (1961) Iodine-125. Proc Japan Conf Radioisot 4

  10. Rivkees SA, Sklar C, Freemark M (1998) The management of graves’ disease in children, with special emphasis on radioiodine treatment. J Clin Endocrinol Metab 83(11):3767–3776. https://doi.org/10.1210/jcem.83.11.5239

    Article  CAS  PubMed  Google Scholar 

  11. Zanzonico PB, Becker DV (2000) Effects of time of administration and dietary iodine levels on potassium iodide (KI) blockade of thyroid irradiation by I-131 from radioactive fallout. Health Phys 78(6): 660–667. https://journals.lww.com/health-physics/toc/2000/06000

  12. Zhang K, Chen T (2018) Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder. J Radioanal Nucl Chem 316(2):543–551. https://doi.org/10.1007/s10967-018-5807-3

    Article  CAS  Google Scholar 

  13. Couture RA, Seitz MG (1983) Sorption of anions of iodine by iron oxides and kaolinite. Nucl Chem Waste Manag 4(4):301–305. https://doi.org/10.1016/0191-815X(83)90055-4

    Article  CAS  Google Scholar 

  14. Levitskaia TG, Chatterjee S, Bruce WA, Campbell EL, Hong Y, Kovarik L, Peterson JM, Pence NK, Romero J, Shutthanandan J, Schwenzer B (2016) Redox-controlled sorption of iodine anions by hydrotalcite composits. RSC Adv 6:76042–76055. https://doi.org/10.1039/C6RA13092E

    Article  CAS  Google Scholar 

  15. Okoshi M, Momma T (2015) Radioactive waste treatment technologies, in Book Title: Radioactive waste engineering and management, pp 119–151, Springer, New York. https://doi.org/10.1007/978-4-431-55417-2_5

  16. Attallah MF, Elgazzar AH, Borai EH, El-Tabl Abdou Saad (2016) Preparation and characterization of aluminum silicotitante: ion exchange behavior for some lanthanides and iron. J Chem Technol Biotechnol 91(8):2243–2252. https://doi.org/10.1002/jctb.4810

    Article  CAS  Google Scholar 

  17. El Afifi EM, Attallah MF, Borai EH (2016) Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J Environ Radioact 151(Part 1): 156–165. https://doi.org/10.1016/j.jenvrad.2015.10.001

  18. Attallah MF, Allan KF, Mahmoud MR (2016) Synthesis of poly(acrylic acid-maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J Radioanal Nucl Chem 307(2):1231–1241. https://doi.org/10.1007/s10967-015-4349-1

    Article  CAS  Google Scholar 

  19. Attallah MF, Borai EH, Shady SA (2014) Kinetic investigation for sorption of europium and samarium from aqueous solution using resorcinol-formaldehyde polymeric resin. J Radioanal Nucl Chem 299(3):1927–1933. https://doi.org/10.1007/s10967-013-2916-x

    Article  CAS  Google Scholar 

  20. Hamed MM, Attallah MF, Metwally SS (2014) Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochim Acta 102(11):1017–1024. https://doi.org/10.1515/ract-2013-2200

    Article  CAS  Google Scholar 

  21. El-khouly SH, Attallah MF, Allan KF (2013) Studies on separation of binary mixture of Cs/Ba and Zn/Cu on zirconium antimonite as ion exchanger. Radiochem 55(5):486–491. https://doi.org/10.1134/S1066362213050068

    Article  CAS  Google Scholar 

  22. Attallah MF, Ahmed IM, Hamed MM (2013) Treatment of industrial wastewater containing congo red and naphthol green B using low cost adsorbent. Environ Sci Pollut Res 20(2):1106–1116. https://doi.org/10.1007/s11356-012-0947-4

    Article  CAS  Google Scholar 

  23. Borai E, Attallah M, Koivula R, Paajanen A, Harjula R (2012) Separation of europium from cobalt using antimony silicates in sulfate acidic media. J Mineral Proc Extract Metal Rev 33(3):204–219. https://doi.org/10.1080/08827508.2011.562951

    Article  CAS  Google Scholar 

  24. Attallah MF, Borai EH, Harjula R, Paajanen A, Karesoja M, Koivula R (2011) Selective removal of cesium using zirconium (IV) tungstate as a new inorganic ion exchanger from aqueous solution. J Mater Sci Eng B 1:736–746

    Google Scholar 

  25. Attallah MF, Borai EH, Hilal MA, Shehata FA, Abo-Aly MM (2011) Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J Hazard Mater 195:73–81. https://doi.org/10.1016/j.jhazmat.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  26. Shady SA, Attallah MF, Borai EH (2011) Efficient sorption of light rare Eearth elements using resorcinol-formaldehyde polymeric resin. Radiochem 53(4):396–400. https://doi.org/10.1134/S1066362211040102

    Article  CAS  Google Scholar 

  27. Shehata FA, Attallah MF, Borai EH, Hilal MA, Abo-Aly MM (2010) Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl Radiat Isot 68(2):239–249. https://doi.org/10.1016/j.apradiso.2009.10.040

    Article  CAS  PubMed  Google Scholar 

  28. Hassan HS, Attallah MF, Yakout SM (2010) Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J Radioanal Nucl Chem 286:17–26. https://doi.org/10.1007/s10967-010-0654-x

    Article  CAS  Google Scholar 

  29. Attallah MF, Borai EH, Allan KF (2009) Kinetic and thermodynamic studies for cesium removal from low level liquid radioactive waste using impregnated polymeric material. Radiochemistry 151(6):622–627. https://doi.org/10.1134/S1066362209060113

    Article  CAS  Google Scholar 

  30. Borai EH, Hilal MA, Attallah MF, Shehata FA (2008) Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim Acta 96(7):441–447. https://doi.org/10.1524/ract.2008.1506

    Article  CAS  Google Scholar 

  31. Allan KF, El Afifi EM, Holiel M (2017) Synthesis and application of poly(acrylamide-itaconic acid)/zirconium tungstate composite material for cesium removal from different solutions. Particul Sci Technol 35(2):127–138. https://doi.org/10.1080/02726351.2015.1131793

    Article  CAS  Google Scholar 

  32. Khalil M, Al-Aryan YF, El Afifi EM (2018) Sorption performance of light rare earth elements using zirconium titanate and zirconium titanate ion exchangers. Particul Sci Technol 36(5):618–627. https://doi.org/10.1080/02726351.2017.1287141

    Article  CAS  Google Scholar 

  33. Baig SA, Wang Q, Wang Z, Zhu J, Lou Z, Sheng T, Xu X (2014) Hexavalent chromium removal from solutions: surface efficacy and characterizations of three iron containing minerals. Clean-Soil Air Water 42(10):1409–1414. https://doi.org/10.1002/clen.201300805

    Article  CAS  Google Scholar 

  34. Budimana F, Kianb TW, Razaka KA, Matsudac A, Lockmana Z (2016) The assessment of Cr(VI) removal by iron oxide nanosheets and nanowires synthesized by thermal oxidation of iron in water vapour. Procedia Chem 19:586–593. https://doi.org/10.1016/j.proche.2016.03.057

    Article  CAS  Google Scholar 

  35. Lempinen J, Muuri E, Lusa M, Lehto J (2018) Sorption of inorganic radiocarbon on iron oxides. J Radioanal Nucl Chem 316(2):717–723. https://doi.org/10.1007/s10967-018-5793-5(0123456789(),-volV)(0123456789().,-

    Article  CAS  Google Scholar 

  36. Hamárová A, Rosskopfová O, Pivarčiová L (2015) Adsorption pertechnetate ions on the substituted Sn-hydroxyapatite. In: Student Scientific Conference PriF UK 2015, vol. 1. Bratislava: Univerzita Komenského v Bratislave, 2015, ISBN 978-80-223-3859-2, pp 949–954

  37. Suhada N, Tahiruddin M, Ya’akub NA (2013) Chromium (IV) removal from K2Cr2O7 solution using charcoal modified with oxidizing agents. Inter J Environ Eng Sci Technol Res 1 (7): 133–140. ISSN: 2326-3113 (online)

  38. Madhava Rao M, Chandra Rao GP, Seshaiah K, Choudary NV, Wang MC (2008) Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Manag 28(5):849–858. https://doi.org/10.1016/j.wasman.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  39. Avila M, Burks T, Akhtar F, Gothelid M, Lansaker PC, Toprak MS, Muhammed M, Uheida A (2014) Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions. Chem Eng J 245:201–209. https://doi.org/10.1016/j.cej.2014.02.034

    Article  CAS  Google Scholar 

  40. Baraka NAM (2012) Synthesis and characterization of maghemite iron oxide (γ-Fe2O3) nanofibers: novel semiconductor with magnetic feature. J Mater Sci 47:6237–6245. https://doi.org/10.1007/s10853-012-6543-7

    Article  CAS  Google Scholar 

  41. Asmaly HA, Abussaud B, Ihsanullah Saleh TA, Gupta VK, Ali Atieh A (2015) Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol. J Saudi Chem Soc 19(5):511–920. https://doi.org/10.1016/j.jscs.2015.06.002

    Article  Google Scholar 

  42. Wu C, Fan J, Jiang J, Wang J (2015) pH/temperature dependent selective removal of trace Cr(VI) from aqueous solution by imidazolium ionic liquid functionalized magnetic carbon nanotubes. RSC Adv 5:47165–47173. https://doi.org/10.1039/C5RA06026E

    Article  CAS  Google Scholar 

  43. Cui L, Qingqiang M, Zheng J, Wei X, Ye Z (2013) Adsorption of Cr(VI) on 1,2- ethylenediamine-aminated macroporous polystyrene particles. Vacuum 89:1–6. https://doi.org/10.1016/j.vacuum.2012.08.012

    Article  CAS  Google Scholar 

  44. Senthil Kumar P, Ramakrishnan K, Dinesh Kirupha S, Sivanesan S (2010) Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazil J Chem Eng 27(2):347–355. https://doi.org/10.1590/S0104-66322010000200013

    Article  Google Scholar 

  45. Burks T (2016) Application of nanomaterials for the removal of hexavalent chromium and their biological implications, PhD thesis, KTH Royal Institute of Technology School of Chemical Science and Engineering, Stockholm, Sweden

  46. Waranusantigula P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ Pollut 125:385–392. https://doi.org/10.1016/S0269-7491(03)00107-6

    Article  CAS  Google Scholar 

  47. Horsfall M, Spiff AI, Abia AA (2004) Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste Biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bull Korean Chem Soc 25(7):969–976. https://doi.org/10.5012/bkcs.2004.25.7.969

    Article  CAS  Google Scholar 

  48. Saha P, Chowdhury S (2011) Insight into adsorption thermodynamics, Ch 16. In: Tadashi M (ed) Thermodynamics, pp. 349–364. ISBN: 978-953-307-544-0, InTech, http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics

  49. Hamadi NK, Chen XD, Farid MM, Lu MGQ (2001) Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem Eng J 84(2):95–105. https://doi.org/10.1016/S1385-8947(01)00194-2

    Article  CAS  Google Scholar 

  50. Srivastava V, Sharma YC (2013) Synthesis and characterization of Fe3O4@n-SiO2 nanoparticles from an agrowaste material and its application for the removal of Cr(VI) from aqueous solutions. Water Air Soil Pollut 225(1): 1776. https://doi.org/10.1007/s11270-013-1776-x

  51. Jiang W, Pelaez M, Dionysios DD, Entezar MH, Tsoutsou D, O’Shea K (2013) Chromium(VI) removal by maghemite nanoparticles. Chem Eng J 222:527–533. https://doi.org/10.1016/j.cej.2013.02.049

    Article  CAS  Google Scholar 

  52. Parsons JG, Hernandez J, Gonzalez CM, Gardea-Torresdey JL (2014) Sorption of Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite (FeO) particles. Chem Eng J 254:171–180. https://doi.org/10.1016/j.cej.2014.05.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91(11):2238–2247. https://doi.org/10.1016/j.jenvman.2010.06.003

    Article  CAS  Google Scholar 

  54. Hu J, Chen CL, Zhu XX, Wang XK (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162(2–3):1542–1550. https://doi.org/10.1016/j.jhazmat.2008.06.058

    Article  CAS  PubMed  Google Scholar 

  55. Weng C, Sharma YC, Chu S (2008) Adsorption of Cr(VI) from aqueous solutions by spent activated clay. J Hazard Mater 155(1–2):65–75. https://doi.org/10.1016/j.jhazmat.2007.11.029

    Article  CAS  PubMed  Google Scholar 

  56. Song KC, Kim HD, Lee HK, Park HS, Lee KJ (1997) Adsorption characteristics of radiotoxic cesium and iodine from low-level liquid wastes. J Radioanal Nucl Chem 223(1–2):199–205

    Article  CAS  Google Scholar 

  57. Persson I (2010) Hydrated metal ions in aqueous solutions: how regular are their structures? Pure Appl Chem 82(10):1901–1917. https://doi.org/10.1351/PAC-CON-09-10-22

    Article  CAS  Google Scholar 

  58. Tansel B, Sager J, Rector T, Garland J, Strayer RF, Levine L, Roberts M, Hummerick M, Bauer J (2006) Significance of hydrated radius and hydration shells onionic permeability during nanofiltration in dead end and cross flow modes. Sep Purif Technol 51(1):40–47. https://doi.org/10.1016/j.seppur.2005.12.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Attallah or E. M. El Afifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attallah, M.F., Rizk, S.E. & El Afifi, E.M. Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J Radioanal Nucl Chem 317, 933–945 (2018). https://doi.org/10.1007/s10967-018-5938-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5938-6

Keywords

Navigation