Skip to main content

Advertisement

Log in

Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis PW-05 was isolated from the Odisha coast and was found to resist 50 ppm of Hg as HgCl2 as well as higher concentrations of CdCl2, ZnSO4, PbNO3 and Na2HAsO4. Resistance towards several antibiotics, viz amoxycillin, ampicillin, methicillin, azithromycin and cephradine (CV) was also observed. The mer operon possessed by most of the mercury-resistant bacteria was also found in this isolate. Atomic absorption spectroscopy revealed that the isolate can volatilize >90 % of inorganic mercury. It showed biofilm formation in the presence of 50 ppm HgCl2 and can produce exopolysaccharide under same conditions. The isolate was found to volatilize mercury efficiently under a wide range of environmental parameters, i.e. pH (7 to 8), temperature (25 °C to 40 °C) and salinity (5 to 25 ppt). merA gene expression has been confirmed by real-time reverse transcriptase PCR study. Fourier transform infrared study revealed that –SH and –COOH groups play a major role in the process of adaptation to Hg. Hence, this isolate B. thuringiensis PW-05 shows an interesting potential for bioremediation of mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aram M, Sharifi A, Kafeelzadeh F, Naghmachi M, Yasari E (2012) Isolating mercury-resistant bacteria from Lake Maharloo. Int J Biol 4:63–71

    Article  Google Scholar 

  • Bafana A, Krishnamurthi K, Patil M, Chakrabarti T (2010) Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. J Hazard Mater 177:481–486

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Bauer A, Kirby W, Sherris J, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Path 45:493–496

    CAS  Google Scholar 

  • Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin AA, Kalyaeva ES, Tiedjet JM, Hobman JL, Brown NL, Nikiforov VG (1998) Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiol 144:609–620

    Article  CAS  Google Scholar 

  • Chikere CB, Chikere BO, Okpokwasili GC (2012) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3. Biotech 2:53–66

    Google Scholar 

  • Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326

    CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards. Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, seventh ed., Approved Standard M7-A7, CLSI, Wayne, PA, USA, 2006.

  • Coral MNU, Korkmaz H, Arikan B, Coral G (2005) Plasmid mediated heavy metal resistances in Enterobacter spp. isolated from Sofulu landfill, in Adana, Turkey. Ann Microbiol 55:175–179

    Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals- an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodeg 75:207–213

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  Google Scholar 

  • De Souza MJ, Nair S, Loka bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicol 15:379–384

    Article  Google Scholar 

  • De J, Ramaiah N (2007) Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals. Ecol Ind 7:511–520

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5:185–193

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresour Technol 121:342–347

    Article  CAS  Google Scholar 

  • Dietz R, Outridge PM, Hobson KA (2009) Anthropogenic contributions to mercury levels in present-day Arctic animals—a review. Sci Total Environ. doi:10.1016/j.scitotenv.2009.08.036

    Google Scholar 

  • Dong W, Bian Y, Liang L, Gu B (2011) Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique. Environ Sci Technol 45:3576–3583

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Jain K, Parida S, Mangwani N, Dash HR, Das S (2013) Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Ann Microbiol DOI. doi:10.1007/s13213-013-0618-9

    Google Scholar 

  • Jordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  Google Scholar 

  • Kargar M, Jahromi MZ, Najafian M, Khajeaian P, Nahavandi R, Jahromi SR, Firoozinia M (2012) Identification and molecular analysis of mercury resistant bacteria in Kor River, Iran. African J Biotechnol 11:6710–6717

    CAS  Google Scholar 

  • Ki JS, Zhang W, Qian PY (2009) Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Met 77:48–57

    Article  CAS  Google Scholar 

  • Krajewska B (2008) Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. J Enzyme Inhib Med Chem 23:535–542

    Article  CAS  Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. 63:507–522.

  • Mack D, Nedelmann M, Krokotsch A, Schwarkopf A, Heesemann J, Laufs R (1994) Charecterization of transposon mutants of biofilm producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intracellular adhesion. Inf Imm 62:3244–3253

    CAS  Google Scholar 

  • Manceau A, Nagy KL (2008) Relationships between Hg(II)-S bond distance and Hg(II) coordination in thiolates. Dalton Trans 11:1421–1425

    Article  Google Scholar 

  • Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227

    Article  CAS  Google Scholar 

  • Mindlin SZ, Bass IA, Bogdanova ES, Gorlenko ZM, Kalyaeva ES, Petrova MA, Nikiforov VG (2002) Horizontal transfer of mercury resistance genes in environmental bacterial populations. Mol Biol 36:160–170

    Article  CAS  Google Scholar 

  • Mindlin S, Minakhin L, Petrova M, Kholodii G, Minakhina S, Gorlenko Z, Nikiforov V (2005) Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Res Microbiol 156:994–1004

    Article  CAS  Google Scholar 

  • Mirzaei N, Kafilzadeh F, Kargar M (2008) Isolation and identification of mercury resistant bacteria from Kor River, Iran. J Biol Sc 8:935–939

    Article  CAS  Google Scholar 

  • Missimer JH, Steinmetz MO, Baron R, Winkler FK, Kammerer RA, Daura X, Gunsteren WFV (2007) Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Sci 16:1349–1359

    Article  CAS  Google Scholar 

  • Mortazavi S, Rezaee A, Khavanin A, Varmazyar S, Jafarzadeh M (2005) Removal of mercuric chloride by a mercury resistant Pseudomonas putida strain. J Biol Sc 5:269–273

    Article  CAS  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Bioremediation of metals mediated by marine bacteria. In Microorganisms in Environmental Management Ed. Satyanarayana, T., and Johri, B. N. :665–682.

  • Nakamura K, Nakahara H (1988) Simplified X-ray film method for detection of bacterial volatilization of mercury chloride by Escherichia coli. Appl Environ Microbiol 54:2871–2873

    CAS  Google Scholar 

  • Nascimento AMA, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Gen Mol Res 2:92–101

    Google Scholar 

  • Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618

    Article  CAS  Google Scholar 

  • Nazaret S, Jeffrey WH, Saouter E, Von Haven R, Barkay T (1994) merA gene expression in aquatic environments measured by mRNA production and Hg (II) volatilization. Appl Environ Microbiol 60(11): 4059–4065

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Ogungbenle HN, Oshodi AA, Oladimeji MO (2009) The proximate and effect of salt applications on some functional properties of quinoa (Chenopodium quinoa) flour. Pakistan J Nutr 8:49–52

    Article  CAS  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  CAS  Google Scholar 

  • Pahan K, Ghosh DK, Chaudhuri J, Gachhui R, Ray S, Mandal A (1995) Mercury detoxifying enzymes within endospores of a broad-spectrum mercury resistant Bacillus pasteurii strain DR2. J Biosc 20:83–88

    Article  CAS  Google Scholar 

  • Parry E (2006) A broad-spectrum mer operon in a multi-drug resistant strain of the fish pathogen, Aeromonas salmonicida. Undergraduate Research Symposium. Paper 52. http://digitalcommons.colby.edu/ugrs/52.

  • Partridge SR, Brown HJ, Stokes HW (2001) Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 45:1263–1270

    Article  CAS  Google Scholar 

  • Pike R, Lucas V, Stapleton P, Gilthorpe MS, Roberts G, Rowbury R, Richards H, Mullany P, Wilson M (2002) Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with or without mercury amalgam fillings. J Antimicrob Chemother 49:777–783

    Article  CAS  Google Scholar 

  • Poulain AJ, Chadhain SMN, Ariya PA, Amyot M, Garcia E, Campbell PGC, Zylstra GJ, Barkay T (2007) Potential for mercury reduction by microbes in the high arctic. Appl Environ Microbiol 73:2230–2238

    Article  CAS  Google Scholar 

  • Raphael EC, Augustina OC, Frank EO (2011) Trace metals distribution in fish tissues, bottom sediments and water from Okumeshi River in Delta State, Nigeria. Environ Res J 5:6–10

    Article  Google Scholar 

  • Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Poll 90:127–130

    Article  CAS  Google Scholar 

  • Rochelle PA, Wetherbee MK, Olson BH (1991) Distribution of DNA sequences encoding narrow and broad spectrum mercury resistance. Appl Environ Microbiol 57:1581–1589

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mo Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001). Molecular cloning: a laboratory manual 3rd Ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY

  • Saurav K, Kannabiran K (2011) Biosorption of Cr(III) and Cr(VI) by Streptomyces VITSVK9 spp. Ann Microbiol 61:833–841

    Article  CAS  Google Scholar 

  • Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437

    Article  CAS  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444

    Article  CAS  Google Scholar 

  • Sotero-Martins A, Jesus MS, Lacerda M, Moreira JC, Filgueiras ALL, Barrocas PRG (2008) A conservative region of the mercuric reductase gene (merA) as a molecular marker of bacterial mercury resistance. Brazilian J Microbiol 39:307–310

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Tribelli PM, Martino CD, Lopez NI, Iustman LJR (2012) Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodeg 23:645–651

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Wireman J, Liebert CA, Smith T, Summers AO (1997) Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 63:4494–4503

    CAS  Google Scholar 

  • Xiao-xi Z, Jian-xin T, Pei J, Hong-wei L, Zhi-min D, Xue-duan L (2010) Isolation, characterization and extraction of mer gene of Hg2+ resisting strain D2. Trans Nonferrous Met Soc China 20:507–512

    Article  Google Scholar 

  • Zeyaullah M, Islam B, Ali A (2010) Isolation, identification and PCR amplification of merA gene from highly polluted Yamuna river. African J Biotechnol 9:3510–3514

    CAS  Google Scholar 

  • Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:1305–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the authorities of NIT, Rourkela, for providing the facilities. H.R.D. and N.M. gratefully acknowledge the receipt of research fellowship from the Ministry of Human Resource Development, Government of India. S.D. thanks the Department of Biotechnology, Government of India, for the research grants on marine bacterial biofilm-based bioremediation of PAHs and heavy metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, H.R., Mangwani, N. & Das, S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21, 2642–2653 (2014). https://doi.org/10.1007/s11356-013-2206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2206-8

Keywords

Navigation