Skip to main content

Advertisement

Log in

Effects of microplastics and nanoplastics on marine environment and human health

  • Environmental Pollutants and the Risk of Neurological Disorders
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics (MPs) with an average size of less than 5 mm, along with nanoplastics (NPs) of an average size of fewer than 0.1 μm are the result of huge plastic waste fragmentation or straight environmental emissions. Pollution from micro- and nanoplastics is a worldwide paradigm that raises environmental and human health concerns. They may also comprise very harmful chemicals that are implemented in plants and animals when MPs/NPs are used that may lead to higher accumulation of these compounds in food chains. In addition, higher surface area-to-volume ratio, characteristic of MPs/NPs can contribute to their potentially harmful impact as other pollutants, like continuous organic contaminants, can also be bio-accumulated and adsorbed. A complex issue correlated with MPs/NPs is their ability to absorb and interact with other common pollutants in the environment, such as metals, pharmaceuticals, and other contaminants. Thus, MPs/NPs can directly influence on destiny and toxicity of these substances to the environment and organisms. In this review, first, we introduce possible sources and formation, their destinies, and environmental impact of MPs/NPs and then explain feasible paths of all these particles entering the human body. Then, the review highlights the effect of MPs/NPs on human health. Finally, it provides a brief summary of the potential as well as the neurological toxicity of MPs/NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261(5121):617–619

    CAS  Google Scholar 

  • Awet TT, Kohl Y, Meier F, Straskraba S, Grün AL, Ruf T, Jost C, Drexel R, Tunc E, Emmerling C (2018) Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur 30(1):11

    CAS  Google Scholar 

  • Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789

    CAS  Google Scholar 

  • Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L (2018) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57

    CAS  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998

    CAS  Google Scholar 

  • Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. Marine Anthropogenic Litter

  • Bergmann J, Verbruggen E, Heinze J, Xiang D, Chen B, Joshi J, Rillig MC (2016) The interplay between soil structure, roots, and microbiota as a determinant of plant–soil feedback. Ecol Evol 6(21):7633–7644

    Google Scholar 

  • Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48(20):12336–12343

    CAS  Google Scholar 

  • Bhargava S, Lee SSC, Ying LSM, Mei LN, Teo LM, Valiyaveettil S (2018) Fate of nanoplastics in marine larvae: a case study using barnacles, amphibalanus amphitrite. ACS Sustain Chem Eng 6:6932–6940

    CAS  Google Scholar 

  • Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption ofcharged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561

    CAS  Google Scholar 

  • Bouwmeester H, Hollman PCH, Peters RJB (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production Chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947

    CAS  Google Scholar 

  • Brandts I, Teles M, Gonçalves AP, Barreto A, Franco-Martinez L, Tvarijonaviciute A, Martins MA, Soares AMVM, Tort L, Oliveira M (2018) Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci Total Environ 643:775–784

    CAS  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031

    CAS  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thaompson R (2011) Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ Sci Technol 45(21):9175–9179

    CAS  Google Scholar 

  • Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, Rabilloud T, Mabondzo A, Herlin-Boime N, Carrière M (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol 11:13

    Google Scholar 

  • Cai L, Wang J, Peng J, Wu Z, Tan X (2018) Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Sci Total Environ 628-629:740–747

    CAS  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, Cortese K, Caratto V, Monopoli MP, Dawson K (2016) Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ Res 150:73–81

    CAS  Google Scholar 

  • Cao D, Wang X, Luo X, Liu G, Zheng H (2017) Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf Ser Earth Environ Sci 61(1):012148

    Google Scholar 

  • Carr KE, Smyth SH, McCullough MT, Morris JF, Moyes SM (2012) Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem 46(4):185–252

    Google Scholar 

  • Chadwick SS (1988) Ullmann’s encyclopedia of industrial chemistry. Ref Serv Rev 16:31–34

    Google Scholar 

  • Chen Q, Yin D, Jia Y, Schiwy S, Legradi J, Yang S, Hollert H (2017) Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci Total Environ 609:1312–1321

    CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Tamara SG (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655

    CAS  Google Scholar 

  • De Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN (2018) Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ 645:1029–1039

    Google Scholar 

  • De Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416

    Google Scholar 

  • Dekiff JH, Remy D, Klasmeier J, Fries E (2014) Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut 186:248–256

    CAS  Google Scholar 

  • Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687

    Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    CAS  Google Scholar 

  • Desforges JPW, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79(1-2):94–99

    CAS  Google Scholar 

  • Ding J, Zhang S, Razanajatovo RM, Zou H, Zhu W (2018) Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ Pollut 238:1–9

    CAS  Google Scholar 

  • Dubaish F, Liebezeit G (2013) Suspended microplastics and black carbon particles in the Jade system, southern North Sea. Water Air Soil Pollut 224:1352

    Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    CAS  Google Scholar 

  • Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X, Calafat AM, Petrozza JC, Wright D, Hauser R (2012) Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod 27(12):3583–3592

    CAS  Google Scholar 

  • Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46(22):12302–12315

    CAS  Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Francois G, Peter GR, Julia R (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One:1–15

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3

    CAS  Google Scholar 

  • Fossi MC, Marsili L, Baini M, Giannetti M, Coppola D, Guerranti C, Caliani I, Minutoli R, Lauriano G, Finoia MG, Rubegni F, Panigada S, Bérubé M, Urbán Ramírez J, Panti C (2016) Fin whales and microplastics: the Mediterranean Sea and the Sea of Cortez scenarios. Environ Pollut 209:68–78

    CAS  Google Scholar 

  • Fouad AD, Teng S, Mark JR, Liu A, Alvarez-Illera P, Ji H, Du A, Bhirgoo PD, Cornblath E, Guan SA, Fang-Yen C (2018) Dstributed rhythm generators underlie Caenorhabditis elegans forward locomotion. Elife 7:e29913

    Google Scholar 

  • Frydkjær CK, Iversen N, Roslev P (2017) Ingestion and egestion of microplastics by the Cladoceran Daphnia magna: effects of regular and irregular shaped plastic and sorbed phenanthrene. Bull Environ Contam Toxicol 99(6):655–661

    Google Scholar 

  • Galloway TS (2015) Micro- and nano-plastics and human health. Mar Anthropogenic Litter:343–366

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1(5):0116

    Google Scholar 

  • Gewert B, Plassmann MM, Macleod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17(9):1513–1521

    CAS  Google Scholar 

  • Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Yi L (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    CAS  Google Scholar 

  • Gonzalezfernandez C, Tallec K, Le NG, Lambert C, Soudant P, Huvet A, Suquet M, Berchel M, Paulpont I (2018) Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. Chemosphere 208:764–772

    CAS  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618

    CAS  Google Scholar 

  • Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196

    CAS  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish - a mechanistic analysis. Ecotoxicology 17(5):396–409

    CAS  Google Scholar 

  • Hayman G, Derwent RD (1997) Atmospheric chemical reactivity and ozone-forming potentials of potential CFC replacements. Environ Sci Technol 31:327–336

    CAS  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    CAS  Google Scholar 

  • Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, Völkel W, Wollin K-M, Gundert-Remy U (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41(4):263–291

    CAS  Google Scholar 

  • Hidalgo-Ruz V, Thiel M (2013) Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar Environ Res 87-88:12–18

    CAS  Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    CAS  Google Scholar 

  • Holm P, Schulz G, Athanasopulu K (2013) Meeresverschmutzung der neuen Art: Mikroplastik—ein unsichtbarer Störenfried. Biol Unserer Zeit 43(1):27–33

    Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    CAS  Google Scholar 

  • Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50(1-2):107–142

    CAS  Google Scholar 

  • Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sediments of a sub alpine lake with microplastic particles. Curr Biol 23:R867–R868

    CAS  Google Scholar 

  • Ivar Do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364

    CAS  Google Scholar 

  • Jeong CB, Won EJ, Kang HM, Lee MC, Hwang DS, Hwang UK, Zhou B, Souissi S, Lee SJ, Lee JS (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ Sci Technol 50(16):8849–8857

    CAS  Google Scholar 

  • Kanhai LDK, Gårdfeldt K, Lyashevska O, Hassellöv M, Thompson RC, O’Connor I (2018) Microplastics in sub-surface waters of the Arctic Central Basin. Mar Pollut Bull 130:8–18

    CAS  Google Scholar 

  • Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13(4):e0194970

    Google Scholar 

  • Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A (2016) Microplastic interactions with freshwater microalgae: Heteroaggregation and changes in plastic density appear strongly dependent on polymer type. Envtl. Pollu. 215:331–339

    CAS  Google Scholar 

  • Lambert S, Wagner M (2016a) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268

    CAS  Google Scholar 

  • Lambert S, Wagner M (2016b) Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517

    CAS  Google Scholar 

  • Lambert S, Sinclair CJ, Bradley EL, Boxall ABA (2013) Effects of environmental conditions on latex degradation in aquatic systems. Sci Total Environ 447:225–234

    CAS  Google Scholar 

  • Lambert S, Scherer C, Wagner M (2017) Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integr Environ Assess Manag 13(3):470–475

    CAS  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300(11):1303–1310

    CAS  Google Scholar 

  • Lee KW, Shim WJ, Kwon OY, Kang JH (2013) Size-dependent effects of micro polystyrene particles in the marine copepod tigriopus japonicus. Environ Sci Technol 47(19):11278–11283

    CAS  Google Scholar 

  • Lenz R, Enders K, Nielsen TG (2016) Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci U S A 113(29):E4121–E4122

    CAS  Google Scholar 

  • Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut:190–195

  • Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566-567:333–349

    CAS  Google Scholar 

  • Li P, Xu T, Wu S, Lei L, He D (2017) Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol 37(10):1140–1150

    CAS  Google Scholar 

  • Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374

    CAS  Google Scholar 

  • Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18):3309–3324

    CAS  Google Scholar 

  • Liu Z, Cai M, Yu P, Chen M, Wu D, Zhang M, Zhao Y (2018) Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposureto a polystyrene nanoplastic. Aquat Toxicol 204:1–8

    CAS  Google Scholar 

  • Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173

    CAS  Google Scholar 

  • Machado AAS, Valyi K, Rillig MC (2017) Potential environmental impacts of an “underground revolution”: a response to Bender et al. Trends Ecol Evol 32(1):8–10

    Google Scholar 

  • Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, Shuler ML (2012) Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 7(4):264–271

    CAS  Google Scholar 

  • Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T (2015) Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol 49(1):553–561

    CAS  Google Scholar 

  • McCulloch A (2003) Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J Fluor Chem 123(1):21–29

    CAS  Google Scholar 

  • Miao M, Yuan W, Zhu G, He X, Li DK (2011) In utero exposure to bisphenol-A and its effect on birth weight of offspring. Reprod Toxicol 32(1):64–68

    CAS  Google Scholar 

  • Mintenig SM, Löder MGJ, Primpke S, Gerdts G (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 648:631–635

    CAS  Google Scholar 

  • Murphy F, Quinn B (2018) The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ Pollut 234:487–494

    CAS  Google Scholar 

  • Naik V, Jain AK, Patten KO, Wuebbles DJ (2000) Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs. J Geophys Res 105(D5):6904–6914

    Google Scholar 

  • Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101(1):119–126

    CAS  Google Scholar 

  • Nomura T, Tani S, Yamamoto M, Nakagawa T, Toyoda S, Fujisawa E, Yasui A, Konishi Y (2016) Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. Chemosphere 149:84–90

    CAS  Google Scholar 

  • Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur 2:315–320

    Google Scholar 

  • Ogonowski M, Schur C, Jarsen A, Gorokhova E (2016) The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One 11(5):e0155063

    Google Scholar 

  • Oriekhova O, Stoll S (2018) Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ Sci Nano 5:792–799

    CAS  Google Scholar 

  • Pedà C, Caccamo L, Fossi MC, Gai F, Andaloro F, Genovese L, Perdichizzi A, Romeo T, Maricchiolo G (2016) Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ Pollut 212:251–256

    Google Scholar 

  • Peng G, Xu P, Zhu B, Bai M, Li D (2018) Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities. Environ Pollut 234:448–456

    CAS  Google Scholar 

  • Powell JJ, Thoree V, Pele LC (2007) Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr 98(Suppl 1):S59–S63

    CAS  Google Scholar 

  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM (2015) Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci Total Environ 523:74–81

    CAS  Google Scholar 

  • Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia magna. Chemosphere 153:91–99

    CAS  Google Scholar 

  • Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DKA, Thums M, Chris W, Hardesty BD, Charitha P (2014) Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 9(6):e100289

    Google Scholar 

  • Revel M, Châtel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Google Scholar 

  • Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 4(12):6453–6454

    Google Scholar 

  • Rist S, Baun A, Hartmann NB (2017) Ingestion of micro- and nanoplastics in Daphnia magna - quantification of body burdens and assessment of feeding rates and reproduction. Environ Pollut 228:398–407

    CAS  Google Scholar 

  • Rochman CM (2018) Microplastics research-from sink to source. Science 360:28–29

    CAS  Google Scholar 

  • Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263

    Google Scholar 

  • Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220(Pt A):495–503

    CAS  Google Scholar 

  • Rosenkranz P, Chaudhary Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–2149

    CAS  Google Scholar 

  • Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579–587

    CAS  Google Scholar 

  • Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, Lehr CM, Stallmach A (2013) Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa - a first in vivo study in human patients. J Control Release 165(2):139–145

    CAS  Google Scholar 

  • Setala O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83

    CAS  Google Scholar 

  • Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24(27):21530–21547

    Google Scholar 

  • Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MHS, Vethaak A (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261

    CAS  Google Scholar 

  • Somani A, Nandi TK, Pal SK, Majumder AK (2017) Pre-treatment of rocks prior to comminution – a critical review of present practices. Int J Min Sci Technol 54:202–211

    Google Scholar 

  • Stephens B, Azimi P, El Orch Z, Ramos T (2013) Ultrafine particle emissions from desktop 3D printers. Atmos Environ 79:334–339

    CAS  Google Scholar 

  • Sun X, Chen B, Li Q, Liu N, Xia B, Zhu L, Keming Q (2018) Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila. Sci Total Environ 642:1378–1385

    CAS  Google Scholar 

  • Suquet M, Berchel M, Paulpont I (2018) Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. Chemosphere 208:764–772

    Google Scholar 

  • Tagg AS, Sapp M, Harrison JP, Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem 87(12):6032–6040

    CAS  Google Scholar 

  • Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764

    CAS  Google Scholar 

  • Van A, Rochman CM, Flores EM, Hill KL, Vargas E, Vargas SA, Euhna H (2012) Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere 86:258–263

    CAS  Google Scholar 

  • Van CL, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Google Scholar 

  • Veresoglou SD, Halley JM, Rillig MC (2015) Extinction risk of soil biota. Nat Commun 6:8862

    CAS  Google Scholar 

  • Villarrubia-Gómez P, Cornell SE, Fabres J (2018) Marine plastic pollution as a planetary boundary threat – the drifting piece in the sustainability puzzle. Mar Policy 96:213–220

    Google Scholar 

  • Volkheimer G (1974) Passage of Particles through the wall of of the gastrointestinal tract. Environ Health Perspect 9:215–225

    CAS  Google Scholar 

  • Von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335

    Google Scholar 

  • Wang J, Peng J, Tan Z, Gao Y, Zhan Z, Chen Q, Liqi C (2017) Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171:248–258

    CAS  Google Scholar 

  • Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, Sleight V, Antonio C, Alex DR, Bhavani EN, Richard CT (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317

    Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    CAS  Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    CAS  Google Scholar 

  • Xu T, Zhang M, Hu J, Li Z, Wu T, Bao J, Wu S, Lei L, He D (2017) Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere 181:55–62

    CAS  Google Scholar 

  • Yadav V, Sherly MA, Ranjan P, Tinoco RO, Boldrin A, Damgaard A, Laurent A (2020) Framework for quantifying environmental losses of plastics from landfills. Resour Conserv Recycl 161:104914

    Google Scholar 

  • Yigit E (1976) Three mathematical comminution models based on strain energy. Int J Miner Process 365-374

  • Yoo JW, Doshi N, Mitragotri S (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63(14–15):1247–1256

    CAS  Google Scholar 

  • Yu P, Liu Z, Wu D, Chen M, Lv W, Zhao Y (2018) Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat Toxicol:28–36

  • Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60(10):1810–1814

    CAS  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146

    CAS  Google Scholar 

  • Zhan Z, Wang J, Peng J, Xie Q, Huang Y, Gao Y (2016) Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: a case study of polypropylene. Mar Pollut Bull 110:559–563

    CAS  Google Scholar 

  • Zhao L, Qu M, Wong G, Wang D (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode: Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    CAS  Google Scholar 

  • Zhao J, Ran W, Teng J, Liu Y, Liu H, Yin X, Cao R, Wang Q (2018) Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci Total Environ 640-641:637–645

    CAS  Google Scholar 

  • Zhu H, Duerr JS, Varoqui H, McManus JR, Rand JB, Erickson JD (2001) Analysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation. J Biol Chem 276(45):41580–41587

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Sankar Sana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Christian Gagnon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sana, S.S., Dogiparthi, L.K., Gangadhar, L. et al. Effects of microplastics and nanoplastics on marine environment and human health. Environ Sci Pollut Res 27, 44743–44756 (2020). https://doi.org/10.1007/s11356-020-10573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10573-x

Keywords

Navigation