Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 4/2023

23.07.2022 | Research Article-Civil Engineering

Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly Expanding Stilling Basin

verfasst von: Mahmut Aydogdu, Enes Gul, Omerul Faruk Dursun

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy dissipation structures, particularly stilling basins, are critical for defining the hydraulic jump characteristics that are suitable. Appropriate sill geometry for abruptly expanding stilling basins has been investigated and a central rectangular sill has been proposed in the literature. This study has examined the suggested central sill and alternative flip buckets for abruptly expanding stilling basins. A series of experimental and numerical studies were carried out for two different heights of the central sill and two different flip buckets. Simulations have been evaluated using experimental data of laboratory scale, which indicated that they were acceptably precise. For the simulations, the kε turbulence model RNG module was preferred using the volume of fluid methods. The PISO approach was chosen to resolve this equation system numerically. The results showed that the hydraulic jump characteristics are strongly influenced by sill geometry. For the Type-3 sill negative static pressures have not occurred and performs better at energy dissipation than other geometries examined in the study. Higher pressures occurred on the rectangular prism-shaped sills. Maximum static pressure happened on the Type-2 sill. The least static pressure was seen in the Type-4 sill type.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bakhmeteff, B.M.: The hydraulic jump in terms of dynamic similarity. Trans. ASCE 101, 630–680 (1936) Bakhmeteff, B.M.: The hydraulic jump in terms of dynamic similarity. Trans. ASCE 101, 630–680 (1936)
2.
Zurück zum Zitat Bradley, J.; Peterka, A.: The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (basin i). J. Hydraul. Div. 83(5), 1–24 (1957) Bradley, J.; Peterka, A.: The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (basin i). J. Hydraul. Div. 83(5), 1–24 (1957)
3.
Zurück zum Zitat Rajaratnam, N.; Murahari, V.: A contribution to forced hydraulic jumps. J. Hydraul. Res. 9(2), 217–240 (1971) Rajaratnam, N.; Murahari, V.: A contribution to forced hydraulic jumps. J. Hydraul. Res. 9(2), 217–240 (1971)
4.
Zurück zum Zitat Hager, W.H.: Hydraulic jump in non-prismatic rectangular channels. J. Hydraul. Res. 23(1), 21–35 (1985) Hager, W.H.: Hydraulic jump in non-prismatic rectangular channels. J. Hydraul. Res. 23(1), 21–35 (1985)
5.
Zurück zum Zitat Hager, W.H.: Hydraulic jump in U-shaped channel. J. Hydraul. Eng. 115(5), 667–675 (1989) Hager, W.H.: Hydraulic jump in U-shaped channel. J. Hydraul. Eng. 115(5), 667–675 (1989)
6.
Zurück zum Zitat Gharangik, A.M.; Chaudhry, M.H.: Numerical simulation of hydraulic jump. J. Hydraul. Eng. 117(9), 1195–1211 (1991) Gharangik, A.M.; Chaudhry, M.H.: Numerical simulation of hydraulic jump. J. Hydraul. Eng. 117(9), 1195–1211 (1991)
7.
Zurück zum Zitat Bremen, R.; Hager, W.H.: T-jump in abruptly expanding channel. J. Hydraul. Res. 31(1), 61–78 (1993) Bremen, R.; Hager, W.H.: T-jump in abruptly expanding channel. J. Hydraul. Res. 31(1), 61–78 (1993)
8.
Zurück zum Zitat Bremen, R.; Hager, W.H.: Expanding stilling basin. Proc. Inst. Civ. Eng.-Water Maritime Energy 106(3), 215–228 (1994) Bremen, R.; Hager, W.H.: Expanding stilling basin. Proc. Inst. Civ. Eng.-Water Maritime Energy 106(3), 215–228 (1994)
9.
Zurück zum Zitat Zare, H.; Doering, J.: Forced hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 137(8), 825–835 (2011) Zare, H.; Doering, J.: Forced hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 137(8), 825–835 (2011)
10.
Zurück zum Zitat Deng, J., et al.: Analysis of pressure differences and water transverse movement in a partial-flip bucket. J. Hydraul. Eng. 146(9), 04020063 (2020) Deng, J., et al.: Analysis of pressure differences and water transverse movement in a partial-flip bucket. J. Hydraul. Eng. 146(9), 04020063 (2020)
11.
Zurück zum Zitat Juon, R.; Hager, W.H.: Flip bucket without and with deflectors. J. Hydraul. Eng. 126(11), 837–845 (2000) Juon, R.; Hager, W.H.: Flip bucket without and with deflectors. J. Hydraul. Eng. 126(11), 837–845 (2000)
12.
Zurück zum Zitat Tian, R.; Wu, J.-H.; Ma, F.: Flow regime and energy dissipation of SFS-type flip buckets. J. Hydrodyn. 32(1), 179–182 (2020) Tian, R.; Wu, J.-H.; Ma, F.: Flow regime and energy dissipation of SFS-type flip buckets. J. Hydrodyn. 32(1), 179–182 (2020)
13.
Zurück zum Zitat Heller, V.; Hager, W.H.; Minor, H.-E.: Ski jump hydraulics. J. Hydraul. Eng. 131(5), 347–355 (2005) Heller, V.; Hager, W.H.; Minor, H.-E.: Ski jump hydraulics. J. Hydraul. Eng. 131(5), 347–355 (2005)
14.
Zurück zum Zitat Moghadam, M.K.; Amini, A.; Hosseini, H.: Experimental evidence dynamic pressures reduction on plunge pool floors downstream flip bucket for increasing downstream face slopes. Water Supply 20(5), 1834–1846 (2020) Moghadam, M.K.; Amini, A.; Hosseini, H.: Experimental evidence dynamic pressures reduction on plunge pool floors downstream flip bucket for increasing downstream face slopes. Water Supply 20(5), 1834–1846 (2020)
15.
Zurück zum Zitat Parsaie, A.; Azamathulla, H.M.; Haghiabi, A.H.: Prediction of discharge coefficient of cylindrical weir–gate using GMDH-PSO. ISH J. Hydraul. Eng. 24(2), 116–123 (2018) Parsaie, A.; Azamathulla, H.M.; Haghiabi, A.H.: Prediction of discharge coefficient of cylindrical weir–gate using GMDH-PSO. ISH J. Hydraul. Eng. 24(2), 116–123 (2018)
16.
Zurück zum Zitat Chanson, H.; Brattberg, T.: Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 26(4), 583–607 (2000)MATH Chanson, H.; Brattberg, T.: Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 26(4), 583–607 (2000)MATH
17.
Zurück zum Zitat Dey, S.; Nath, T.K.; Bose, S.K.: Submerged wall jets subjected to injection and suction from the wall. J. Fluid Mech. 653, 57–97 (2010)MATH Dey, S.; Nath, T.K.; Bose, S.K.: Submerged wall jets subjected to injection and suction from the wall. J. Fluid Mech. 653, 57–97 (2010)MATH
18.
Zurück zum Zitat Ohtsu, I.: Free Hydraulic Jump and Submerged Hydraulic Jump in Trapezoidal and Rectangular Channels. Japan Society of Civil Engineers, Tokyo (1976) Ohtsu, I.: Free Hydraulic Jump and Submerged Hydraulic Jump in Trapezoidal and Rectangular Channels. Japan Society of Civil Engineers, Tokyo (1976)
19.
Zurück zum Zitat Torkamanzad, N., et al.: Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed. Water 11(9), 1756 (2019) Torkamanzad, N., et al.: Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed. Water 11(9), 1756 (2019)
20.
Zurück zum Zitat Chachereau, Y.; Chanson, H.: Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Thermal Fluid Sci. 35(6), 896–909 (2011) Chachereau, Y.; Chanson, H.: Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Thermal Fluid Sci. 35(6), 896–909 (2011)
21.
Zurück zum Zitat Felder, S.; Pfister, M.: Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows. Int. J. Multiph. Flow 90, 88–101 (2017) Felder, S.; Pfister, M.: Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows. Int. J. Multiph. Flow 90, 88–101 (2017)
23.
Zurück zum Zitat Zhang, G.; Chanson, H.: Air-water flow properties in stepped chutes with modified step and cavity geometries. Int. J. Multiph. Flow 99, 423–436 (2018)MathSciNet Zhang, G.; Chanson, H.: Air-water flow properties in stepped chutes with modified step and cavity geometries. Int. J. Multiph. Flow 99, 423–436 (2018)MathSciNet
24.
Zurück zum Zitat Demirel, E.: Measured and simulated flow downstream of the submerged sluice gate. Water Environ. J. 29(3), 446–455 (2015) Demirel, E.: Measured and simulated flow downstream of the submerged sluice gate. Water Environ. J. 29(3), 446–455 (2015)
25.
Zurück zum Zitat Javan, M.; Eghbalzadeh, A.: 2D numerical simulation of submerged hydraulic jumps. Appl. Math. Model. 37(10–11), 6661–6669 (2013)MathSciNet Javan, M.; Eghbalzadeh, A.: 2D numerical simulation of submerged hydraulic jumps. Appl. Math. Model. 37(10–11), 6661–6669 (2013)MathSciNet
26.
Zurück zum Zitat Ma, F.; Hou, Y.; Prinos, P.: Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 39(5), 493–503 (2001) Ma, F.; Hou, Y.; Prinos, P.: Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 39(5), 493–503 (2001)
27.
Zurück zum Zitat Jesudhas, V., et al.: Closure to “turbulence characteristics of classical hydraulic jump using DES” by Vimaldoss Jesudhas, Ram Balachandar, Vesselina Roussinova, and Ron Barron. J. Hydraul. Eng. 146(9), 07020012 (2020) Jesudhas, V., et al.: Closure to “turbulence characteristics of classical hydraulic jump using DES” by Vimaldoss Jesudhas, Ram Balachandar, Vesselina Roussinova, and Ron Barron. J. Hydraul. Eng. 146(9), 07020012 (2020)
28.
Zurück zum Zitat Witt, A.; Gulliver, J.S.; Shen, L.: Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids 172, 162–180 (2018)MathSciNetMATH Witt, A.; Gulliver, J.S.; Shen, L.: Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids 172, 162–180 (2018)MathSciNetMATH
29.
Zurück zum Zitat Foda, A.S., et al.: Three-dimensional numerical study of submerged spatial hydraulic jumps. J. Hydrol. Hydromech. 68(3), 211–222 (2020) Foda, A.S., et al.: Three-dimensional numerical study of submerged spatial hydraulic jumps. J. Hydrol. Hydromech. 68(3), 211–222 (2020)
30.
Zurück zum Zitat Jesudhas, V.; Balachandar, R.; Bolisetti, T.: Numerical study of a symmetric submerged spatial hydraulic jump. J. Hydraul. Res. 58(2), 335–349 (2020) Jesudhas, V.; Balachandar, R.; Bolisetti, T.: Numerical study of a symmetric submerged spatial hydraulic jump. J. Hydraul. Res. 58(2), 335–349 (2020)
31.
Zurück zum Zitat Jesudhas, V., et al.: Turbulence characteristics of classical hydraulic jump using DES. J. Hydraul. Eng. 144(6), 04018022 (2018) Jesudhas, V., et al.: Turbulence characteristics of classical hydraulic jump using DES. J. Hydraul. Eng. 144(6), 04018022 (2018)
32.
Zurück zum Zitat Riasi, A.; Nourbakhsh, A.; Raisee, M.: Energy dissipation in unsteady turbulent pipe flows caused by water hammer. Comput. Fluids 73, 124–133 (2013)MathSciNetMATH Riasi, A.; Nourbakhsh, A.; Raisee, M.: Energy dissipation in unsteady turbulent pipe flows caused by water hammer. Comput. Fluids 73, 124–133 (2013)MathSciNetMATH
33.
Zurück zum Zitat Li, L.-X., et al.: Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 27(4), 522–529 (2015) Li, L.-X., et al.: Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 27(4), 522–529 (2015)
34.
Zurück zum Zitat Zhang, Q.-L., et al.: Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation. Eng. Fail. Anal. 122, 105270 (2021) Zhang, Q.-L., et al.: Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation. Eng. Fail. Anal. 122, 105270 (2021)
35.
Zurück zum Zitat Novak, P., et al.: Hydraulic Modelling: An Introduction: Principles, Methods and Applications. CRC Press, Boca Raton (2018) Novak, P., et al.: Hydraulic Modelling: An Introduction: Principles, Methods and Applications. CRC Press, Boca Raton (2018)
36.
Zurück zum Zitat Akoz, M.S.; Kirkgoz, M.S.; Oner, A.A.: Experimental and numerical modeling of a sluice gate flow. J. Hydraul. Res. 47(2), 167–176 (2009) Akoz, M.S.; Kirkgoz, M.S.; Oner, A.A.: Experimental and numerical modeling of a sluice gate flow. J. Hydraul. Res. 47(2), 167–176 (2009)
37.
Zurück zum Zitat Yakhot, V., et al.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)MathSciNetMATH Yakhot, V., et al.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)MathSciNetMATH
38.
Zurück zum Zitat Shaari, K.Z.K.; Awang, M.: Engineering Applications of Computational Fluid Dynamics. Springer, Berlin (2015) Shaari, K.Z.K.; Awang, M.: Engineering Applications of Computational Fluid Dynamics. Springer, Berlin (2015)
39.
Zurück zum Zitat Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH
40.
Zurück zum Zitat Gumus, V., et al.: Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 142(1), 04015037 (2016) Gumus, V., et al.: Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 142(1), 04015037 (2016)
41.
Zurück zum Zitat Ohtsu, I.; Yasuda, Y.; Ishikawa, M.: Submerged hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 125(5), 492–499 (1999) Ohtsu, I.; Yasuda, Y.; Ishikawa, M.: Submerged hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 125(5), 492–499 (1999)
42.
Zurück zum Zitat Zare, H.K.; Baddour, R.E.: Three-dimensional study of spatial submerged hydraulic jump. Can. J. Civ. Eng. 34(9), 1140–1148 (2007) Zare, H.K.; Baddour, R.E.: Three-dimensional study of spatial submerged hydraulic jump. Can. J. Civ. Eng. 34(9), 1140–1148 (2007)
43.
Zurück zum Zitat Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998) Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)
44.
Zurück zum Zitat Herbrand, K.: The spatial hydraulic jump. J. Hydraul. Res. 11(3), 205–218 (1973) Herbrand, K.: The spatial hydraulic jump. J. Hydraul. Res. 11(3), 205–218 (1973)
45.
Zurück zum Zitat de Dios, M., et al.: Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 15, 1–12 (2017) de Dios, M., et al.: Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 15, 1–12 (2017)
Metadaten
Titel
Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly Expanding Stilling Basin
verfasst von
Mahmut Aydogdu
Enes Gul
Omerul Faruk Dursun
Publikationsdatum
23.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 4/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07089-6

Weitere Artikel der Ausgabe 4/2023

Arabian Journal for Science and Engineering 4/2023 Zur Ausgabe

RESEARCH ARTICLE—SPECIAL ISSUE—Frontiers in Parallel Programming Models for Fog and Edge Computing Infrastructures

Adaptive Trading System Based on LSTM Neural Network

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.