Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2014

01.06.2014 | Review Article

Pathways of lignocellulosic biomass conversion to renewable fuels

verfasst von: Sonil Nanda, Javeed Mohammad, Sivamohan N. Reddy, Janusz A. Kozinski, Ajay K. Dalai

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increased worldwide demand for energy, particularly from petroleum-derived fuels has led to the search for a long-term solution of a reliable source of clean energy. Lignocellulosic biomasses appear to hold the key for a continuous supply of renewable fuels without compromising with the increasing energy needs. However, the major possible solutions to the current energy crisis include ethanol, bio-oils and synthesis gas (syngas) produced from lignocellulosic biomass. Recently, a great deal of research has been made in the fields of biomass conversion through biochemical, hydrothermal or thermochemical pathways to biofuels. However, a broad-spectrum assessment of the above pathways is rare in literature in terms of technology used, biofuel yields, potential challenges and possible outcomes. This review paper discusses different routes for biofuel production, particularly ethanol, bio-oil and syngas with the bio-oil upgrading techniques. This review highlights ethanol fermentation and available biomass pretreatment as the biochemical mode, not limiting to the pros and cons of the pretreatments. Supercritical water gasification (hydrothermal pathway) of biomass for syngas production followed by gas-to-liquid technologies (syngas fermentation and Fischer–Tropsch catalysis) has been discussed. In addition, thermochemical pathway dealing with biomass gasification for syngas and pyrolysis for bio-oils has been presented with compositional analysis of bio-oils and their upgrading technologies. The review focuses on various engineering limitations encountered during biomass conversion and bioprocessing with the potential solutions which do not restrict them to different biofuel production pathways.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion highlights. 2012 ed. Luxembourg International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion highlights. 2012 ed. Luxembourg
7.
Zurück zum Zitat Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna JV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi:10.1016/j.biortech.2009.11.049 Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna JV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi:10.​1016/​j.​biortech.​2009.​11.​049
11.
Zurück zum Zitat Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. doi:10.1007/s10570-009-9317-x Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. doi:10.​1007/​s10570-009-9317-x
14.
Zurück zum Zitat Nanda S, Azargohar R, Kozinski JA, Dalai AK (2013) Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenerg Res. doi:10.1007/s12155-013-9359-7 Nanda S, Azargohar R, Kozinski JA, Dalai AK (2013) Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenerg Res. doi:10.​1007/​s12155-013-9359-7
15.
Zurück zum Zitat Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677. doi:10.1007/s12155-012-9281-4 Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677. doi:10.​1007/​s12155-012-9281-4
18.
Zurück zum Zitat Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. doi:10.1016/j.procbio.2003.09.011 Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. doi:10.​1016/​j.​procbio.​2003.​09.​011
21.
23.
Zurück zum Zitat Sjostrom E (1993) Wood chemistry fundamentals and applications, 2nd edn. Academic Press, San Diego Sjostrom E (1993) Wood chemistry fundamentals and applications, 2nd edn. Academic Press, San Diego
25.
Zurück zum Zitat Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a conversion of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energ 31:219–224. doi:10.1002/ep.11613 Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a conversion of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energ 31:219–224. doi:10.​1002/​ep.​11613
26.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.​1021/​ie801542g
27.
Zurück zum Zitat Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. doi:10.1016/j.biombioe.2012.04.020 Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. doi:10.​1016/​j.​biombioe.​2012.​04.​020
29.
Zurück zum Zitat Youssef BM, Aziz NH (1999) Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97:171–183 Youssef BM, Aziz NH (1999) Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97:171–183
30.
31.
Zurück zum Zitat Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83. doi:10.1016/S1369-703X(03)00141-4 Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83. doi:10.​1016/​S1369-703X(03)00141-4
32.
34.
Zurück zum Zitat Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch R (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025 Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch R (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.​1016/​j.​biortech.​2004.​06.​025
36.
Zurück zum Zitat Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. doi:10.1007/s00253-009-1883-1 Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. doi:10.​1007/​s00253-009-1883-1
38.
Zurück zum Zitat Tomas-Pejo E, Olive JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67:874–884 Tomas-Pejo E, Olive JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67:874–884
39.
Zurück zum Zitat McMillan JD (1994) Pretreatment of lignocelluloses biomass. In: Himmel ME, Baker JO, Overend RP (eds) Conversion of hemicellulose hydrolyzates to ethanol. Am Chem Soc Symp, Washington, pp 292–324 McMillan JD (1994) Pretreatment of lignocelluloses biomass. In: Himmel ME, Baker JO, Overend RP (eds) Conversion of hemicellulose hydrolyzates to ethanol. Am Chem Soc Symp, Washington, pp 292–324
40.
Zurück zum Zitat Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi:10.3390/ijms9091621 Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi:10.​3390/​ijms9091621
42.
Zurück zum Zitat Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. doi:10.1002/bit.20905 Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. doi:10.​1002/​bit.​20905
43.
Zurück zum Zitat Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.1016/j.biortech.2009.10.066 Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.​1016/​j.​biortech.​2009.​10.​066
44.
Zurück zum Zitat Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. doi:10.1002/bit.22179 Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. doi:10.​1002/​bit.​22179
45.
Zurück zum Zitat Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202. doi:10.1007/s001070050039 Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202. doi:10.​1007/​s001070050039
46.
Zurück zum Zitat Biermann CJ, Schultz TP, McGinnis GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128. doi:10.1080/02773818408062286 Biermann CJ, Schultz TP, McGinnis GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128. doi:10.​1080/​0277381840806228​6
47.
Zurück zum Zitat Saska M, Ozer E (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol Bioeng 45:517–523. doi:10.1002/bit.260450609 Saska M, Ozer E (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol Bioeng 45:517–523. doi:10.​1002/​bit.​260450609
48.
Zurück zum Zitat Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153. doi:10.1007/s10086-004-0626-2 Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153. doi:10.​1007/​s10086-004-0626-2
49.
Zurück zum Zitat Peterson AA, Vogel F, Lachance RP, Forling M, Antal J, Micheal WT (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. doi:10.1039/B810100K Peterson AA, Vogel F, Lachance RP, Forling M, Antal J, Micheal WT (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. doi:10.​1039/​B810100K
50.
Zurück zum Zitat Kumar S (2013) Sub- and supercritical water technology for biofuels. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 147–183 Kumar S (2013) Sub- and supercritical water technology for biofuels. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 147–183
51.
Zurück zum Zitat Pasquini D, Pimenta MTB, Ferreira LH, da Silva Curvelo AA (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluid 36:31–39. doi:10.1016/j.supflu.2005.03.004 Pasquini D, Pimenta MTB, Ferreira LH, da Silva Curvelo AA (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluid 36:31–39. doi:10.​1016/​j.​supflu.​2005.​03.​004
53.
Zurück zum Zitat Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96. doi:10.1016/j.biombioe.2008.04.016 Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96. doi:10.​1016/​j.​biombioe.​2008.​04.​016
55.
Zurück zum Zitat Wyman CE, Hinman ND (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753 Wyman CE, Hinman ND (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753
56.
58.
Zurück zum Zitat Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. PNAS 89:5586–5590 Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. PNAS 89:5586–5590
59.
Zurück zum Zitat Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433. doi:10.1080/03601238909372658 Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433. doi:10.​1080/​0360123890937265​8
64.
Zurück zum Zitat Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzym Microb Tech 43:115–119. doi:10.1016/j.enzmictec.2008.03.001 Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzym Microb Tech 43:115–119. doi:10.​1016/​j.​enzmictec.​2008.​03.​001
65.
66.
Zurück zum Zitat Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143. doi:10.1007/s00253-006-0402-x Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143. doi:10.​1007/​s00253-006-0402-x
67.
Zurück zum Zitat Bisaria VS (1991) Bioprocessing of agro-residue to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 187–223 Bisaria VS (1991) Bioprocessing of agro-residue to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 187–223
68.
Zurück zum Zitat Jarboea LR, Shanmugama KT, Ingram LO (2007) Ethanol. In: Majumder-Russell D (ed) Encyclopedia of microbiology. Elsevier, New York Jarboea LR, Shanmugama KT, Ingram LO (2007) Ethanol. In: Majumder-Russell D (ed) Encyclopedia of microbiology. Elsevier, New York
69.
Zurück zum Zitat Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164. doi:10.1016/j.jbiotec.2005.07.003 Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164. doi:10.​1016/​j.​jbiotec.​2005.​07.​003
70.
Zurück zum Zitat Gutierrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340. doi:10.1385/ABAB:98-100:1-9:327 Gutierrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340. doi:10.​1385/​ABAB:​98-100:​1-9:​327
71.
Zurück zum Zitat Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170. doi:10.1002/bit.21536 Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170. doi:10.​1002/​bit.​21536
72.
Zurück zum Zitat Cook GM, Morgan HW (1994) Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41:84–89. doi:10.1007/BF00166086 Cook GM, Morgan HW (1994) Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41:84–89. doi:10.​1007/​BF00166086
73.
Zurück zum Zitat Baskaran S, Ahn HJ, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11:276–281. doi:10.1021/bp00033a006 Baskaran S, Ahn HJ, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11:276–281. doi:10.​1021/​bp00033a006
74.
Zurück zum Zitat Lamed R, Zeikus JG (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257 Lamed R, Zeikus JG (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257
75.
Zurück zum Zitat Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119 Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119
77.
Zurück zum Zitat Houghton TP, Thompson DN, Hess JR, Lacey JA, Wolcot MP, Schirp A, Englund K, Dostal D, Loge F (2004) Fungal upgrading of wheat straw for straw-thermoplastics production. Appl Biochem Biotechnol 113:71–93 Houghton TP, Thompson DN, Hess JR, Lacey JA, Wolcot MP, Schirp A, Englund K, Dostal D, Loge F (2004) Fungal upgrading of wheat straw for straw-thermoplastics production. Appl Biochem Biotechnol 113:71–93
78.
Zurück zum Zitat Biely P, Kremnicky L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312 Biely P, Kremnicky L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312
79.
Zurück zum Zitat Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225 Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225
80.
Zurück zum Zitat Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343. doi:10.1016/j.rser.2009.08.012 Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343. doi:10.​1016/​j.​rser.​2009.​08.​012
81.
Zurück zum Zitat Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.​1021/​cr068360d
83.
Zurück zum Zitat Fang Z, Sato T, Smith RL Jr, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behaviour of lignin in high-temperature supercritical water. Bioresour Technol 99:3424–3430. doi:10.1016/j.biortech.2007.08.008 Fang Z, Sato T, Smith RL Jr, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behaviour of lignin in high-temperature supercritical water. Bioresour Technol 99:3424–3430. doi:10.​1016/​j.​biortech.​2007.​08.​008
84.
Zurück zum Zitat Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energ 37:11677–11690. doi:10.1016/j.ijhydene.2012.05.087 Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energ 37:11677–11690. doi:10.​1016/​j.​ijhydene.​2012.​05.​087
89.
Zurück zum Zitat Zheng CY, Tao HX, Xie XA (2013) Distribution and characterizations of liquefaction of celluloses in sub- and super-critical ethanol. Bioresources 8:648–662 Zheng CY, Tao HX, Xie XA (2013) Distribution and characterizations of liquefaction of celluloses in sub- and super-critical ethanol. Bioresources 8:648–662
90.
Zurück zum Zitat Portofino S, Donatelli A, Iovane P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvagno S (2013) Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manage 33:672–678. doi:10.1016/j.wasman.2012.05.041 Portofino S, Donatelli A, Iovane P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvagno S (2013) Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manage 33:672–678. doi:10.​1016/​j.​wasman.​2012.​05.​041
91.
Zurück zum Zitat Resende FLP, Fraley SA, Berger MJ, Savage PE (2008) Noncatalytic gasification of lignin in supercritical water. Energ Fuel 22:1328–1324. doi:10.1021/ef700574k Resende FLP, Fraley SA, Berger MJ, Savage PE (2008) Noncatalytic gasification of lignin in supercritical water. Energ Fuel 22:1328–1324. doi:10.​1021/​ef700574k
92.
Zurück zum Zitat Elliott DC (2008) Review: catalytic hydrothermal gasification of biomass. Biofuels, Bioprod Bioref 2:254–265. doi:10.1002/bbb.74 Elliott DC (2008) Review: catalytic hydrothermal gasification of biomass. Biofuels, Bioprod Bioref 2:254–265. doi:10.​1002/​bbb.​74
94.
Zurück zum Zitat Zhang L, Xu C, Champagne P (2012) Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose. Fuel 96:541–545. doi:10.1016/j.fuel.2012.01.066 Zhang L, Xu C, Champagne P (2012) Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose. Fuel 96:541–545. doi:10.​1016/​j.​fuel.​2012.​01.​066
95.
96.
Zurück zum Zitat Azadi P, Afif E, Azadi F, Farnood R (2012) Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chem 14:1766–1777. doi:10.1039/C2GC16378K Azadi P, Afif E, Azadi F, Farnood R (2012) Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chem 14:1766–1777. doi:10.​1039/​C2GC16378K
97.
Zurück zum Zitat Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338. doi:10.1016/j.apcatb.2012.01.035 Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338. doi:10.​1016/​j.​apcatb.​2012.​01.​035
98.
Zurück zum Zitat Osada M, Sato M, Arai K, Shirai M (2006) Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energ Fuel 20:2337–2343. doi:10.1021/ef060356h Osada M, Sato M, Arai K, Shirai M (2006) Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energ Fuel 20:2337–2343. doi:10.​1021/​ef060356h
99.
Zurück zum Zitat Yamaguchi A, Hiyoshi N, Sato O, Osada M, Shirai M (2008) Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energ Fuel 22:1485–1492. doi:10.1021/ef8001263 Yamaguchi A, Hiyoshi N, Sato O, Osada M, Shirai M (2008) Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energ Fuel 22:1485–1492. doi:10.​1021/​ef8001263
100.
Zurück zum Zitat Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrogen Energ 32:699–704. doi:10.1016/j.ijhydene.2006.08.001 Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrogen Energ 32:699–704. doi:10.​1016/​j.​ijhydene.​2006.​08.​001
101.
102.
Zurück zum Zitat Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. doi:10.1039/C2CS35188A Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. doi:10.​1039/​C2CS35188A
103.
Zurück zum Zitat Onwudili JA, Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ 132–133:70–79. doi:10.1016/j.apcatb.2012.11.033 Onwudili JA, Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ 132–133:70–79. doi:10.​1016/​j.​apcatb.​2012.​11.​033
104.
106.
Zurück zum Zitat Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15:4255–4273. doi:10.1016/j.rser.2011.07.124 Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15:4255–4273. doi:10.​1016/​j.​rser.​2011.​07.​124
107.
109.
110.
Zurück zum Zitat Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchii gen. nov., sp. nov., a CO-oxidizing, ethanol producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489. doi:10.1099/ijs.0.018507-0 Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchii gen. nov., sp. nov., a CO-oxidizing, ethanol producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489. doi:10.​1099/​ijs.​0.​018507-0
111.
Zurück zum Zitat Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchii. Bioresour Technol 104:336–341. doi:10.1016/j.biortech.2011.10.054 Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchii. Bioresour Technol 104:336–341. doi:10.​1016/​j.​biortech.​2011.​10.​054
113.
114.
Zurück zum Zitat Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101:8784–8789. doi:10.1016/j.biortech.2010.06.072 Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101:8784–8789. doi:10.​1016/​j.​biortech.​2010.​06.​072
115.
116.
Zurück zum Zitat Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0 Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.​1099/​ijs.​0.​63482-0
117.
Zurück zum Zitat Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843. doi:10.1002/jctb.3712 Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843. doi:10.​1002/​jctb.​3712
118.
Zurück zum Zitat Younesi H, Najafpour G, Mohamed AR (2006) Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iran J Biotechnol 4:45–53 Younesi H, Najafpour G, Mohamed AR (2006) Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iran J Biotechnol 4:45–53
119.
Zurück zum Zitat Saxena J, Tanner RS (2012) Optimization of a cornsteep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561. doi:10.1007/s11274-011-0959-0 Saxena J, Tanner RS (2012) Optimization of a cornsteep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561. doi:10.​1007/​s11274-011-0959-0
120.
Zurück zum Zitat Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102:5794–5799. doi:10.1016/j.biortech.2011.02.032 Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102:5794–5799. doi:10.​1016/​j.​biortech.​2011.​02.​032
123.
Zurück zum Zitat Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref 5:93–114. doi:10.1002/bbb.256 Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref 5:93–114. doi:10.​1002/​bbb.​256
125.
Zurück zum Zitat Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi:10.1016/j.biortech.2010.07.054 Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi:10.​1016/​j.​biortech.​2010.​07.​054
127.
Zurück zum Zitat Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi:10.1021/bp990108m Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi:10.​1021/​bp990108m
128.
Zurück zum Zitat Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modelling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136. doi:10.1016/j.biortech.2012.03.053 Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modelling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136. doi:10.​1016/​j.​biortech.​2012.​03.​053
129.
Zurück zum Zitat Hickey R, Datta R, Tsai SP, Basu R (2011) Membrane supported bioreactor for conversion of syngas components to liquid products. U.S. Patent 2011/0256597 A1, 20 October 2011 Hickey R, Datta R, Tsai SP, Basu R (2011) Membrane supported bioreactor for conversion of syngas components to liquid products. U.S. Patent 2011/0256597 A1, 20 October 2011
130.
Zurück zum Zitat Tsai SP, Datta R, Basu R, Yoon SH (2009) Syngas conversion system using asymmetric membrane and anaerobic microorganism. U.S. Patent 2009/0215163 A1, 29 August 2009 Tsai SP, Datta R, Basu R, Yoon SH (2009) Syngas conversion system using asymmetric membrane and anaerobic microorganism. U.S. Patent 2009/0215163 A1, 29 August 2009
133.
Zurück zum Zitat Ahmed A, Cateni BG, Huhnke RL, Lewis SR (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg 30:665–672. doi:10.1016/j.biombioe.2006.01.007 Ahmed A, Cateni BG, Huhnke RL, Lewis SR (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg 30:665–672. doi:10.​1016/​j.​biombioe.​2006.​01.​007
135.
Zurück zum Zitat Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521. doi:10.1007/s10295-010-0794-6 Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521. doi:10.​1007/​s10295-010-0794-6
136.
Zurück zum Zitat Panneerselvam A, Wilkins MR, Delorme MJM, Atiyeh HK, Huhnke RL (2009) Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol Eng 2:135–144 Panneerselvam A, Wilkins MR, Delorme MJM, Atiyeh HK, Huhnke RL (2009) Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol Eng 2:135–144
138.
Zurück zum Zitat Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel 22:814–839. doi:10.1021/ef700411x Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel 22:814–839. doi:10.​1021/​ef700411x
139.
Zurück zum Zitat Li F, Jiang D, Zeng XC, Chen Z (2012) Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale 4:1123–1129. doi:10.1039/c1nr11121c Li F, Jiang D, Zeng XC, Chen Z (2012) Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale 4:1123–1129. doi:10.​1039/​c1nr11121c
140.
141.
Zurück zum Zitat Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528. doi:10.1039/B414039G Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528. doi:10.​1039/​B414039G
142.
Zurück zum Zitat Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511. doi:10.1038/nmat1916 Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511. doi:10.​1038/​nmat1916
145.
Zurück zum Zitat Mei D, Rousseau R, Kathmann SM, Glezakou VA, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study. J Catal 271:325–342. doi:10.1016/j.jcat.2010.02.020 Mei D, Rousseau R, Kathmann SM, Glezakou VA, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study. J Catal 271:325–342. doi:10.​1016/​j.​jcat.​2010.​02.​020
146.
147.
Zurück zum Zitat Chen G, Guo CY, Zhang X, Huang Z, Yuan G (2011) Direct conversion of syngas to ethanol over Rh/Mn supported on modified SBA-15 molecular sieves: effect of supports. Fuel Process Technol 92:456–461. doi:10.1016/j.fuproc.2010.10.012 Chen G, Guo CY, Zhang X, Huang Z, Yuan G (2011) Direct conversion of syngas to ethanol over Rh/Mn supported on modified SBA-15 molecular sieves: effect of supports. Fuel Process Technol 92:456–461. doi:10.​1016/​j.​fuproc.​2010.​10.​012
148.
Zurück zum Zitat Cosultchi A, Parez-Luna M, Morales-Serna JA, Salmon M (2012) Charaterization of modified Fischer–Tropsch catalysts promoted with alkaline metals for higher alcohol synthesis. Catal Lett 142:368–377 Cosultchi A, Parez-Luna M, Morales-Serna JA, Salmon M (2012) Charaterization of modified Fischer–Tropsch catalysts promoted with alkaline metals for higher alcohol synthesis. Catal Lett 142:368–377
149.
Zurück zum Zitat Surisetty VR, Dalai AK, Kozinski J (2010) Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Appl Catal A Gen 385:153–162. doi:10.1016/j.apcata.2010.07.009 Surisetty VR, Dalai AK, Kozinski J (2010) Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Appl Catal A Gen 385:153–162. doi:10.​1016/​j.​apcata.​2010.​07.​009
150.
Zurück zum Zitat Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134:13922–13925. doi:10.1021/ja3034153 Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134:13922–13925. doi:10.​1021/​ja3034153
151.
Zurück zum Zitat Yang G, San X, Jiang N, Tanaka Y, Li X, Jin Q, Tao K, Meng F, Tsubaki N (2011) A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with modified zeolite and Cu/ZnO catalysts. Catal Today 164:425–428. doi:10.1016/j.cattod.2010.10.027 Yang G, San X, Jiang N, Tanaka Y, Li X, Jin Q, Tao K, Meng F, Tsubaki N (2011) A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with modified zeolite and Cu/ZnO catalysts. Catal Today 164:425–428. doi:10.​1016/​j.​cattod.​2010.​10.​027
152.
Zurück zum Zitat Liu Y, Murata K, Inaba M, Takahara I (2013) Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation and methyl acetate hydrogenolysis. Fuel Process Technol 110:206–213. doi:10.1016/j.fuproc.2012.12.016 Liu Y, Murata K, Inaba M, Takahara I (2013) Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation and methyl acetate hydrogenolysis. Fuel Process Technol 110:206–213. doi:10.​1016/​j.​fuproc.​2012.​12.​016
153.
Zurück zum Zitat Sai Prasad PS, Bae JW, Kang SH, Lee YJ, Jun KW (2008) Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over other zeolites. Fuel Process Technol 89:1281–1286. doi:10.1016/j.fuproc.2008.07.014 Sai Prasad PS, Bae JW, Kang SH, Lee YJ, Jun KW (2008) Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over other zeolites. Fuel Process Technol 89:1281–1286. doi:10.​1016/​j.​fuproc.​2008.​07.​014
154.
Zurück zum Zitat Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Direct synthesis of dimethyl ether from (H2 + CO) and (H2 + CO2) feeds. Effect of feed composition. Int J Chem React Eng 3:1–15. doi:10.2202/1542-6580.1295 Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Direct synthesis of dimethyl ether from (H2 + CO) and (H2 + CO2) feeds. Effect of feed composition. Int J Chem React Eng 3:1–15. doi:10.​2202/​1542-6580.​1295
155.
Zurück zum Zitat Aguayo AT, Erena J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106:265–270. doi:10.1016/j.cattod.2005.07.144 Aguayo AT, Erena J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106:265–270. doi:10.​1016/​j.​cattod.​2005.​07.​144
156.
Zurück zum Zitat Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N (2013) Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: preparing catalyst by bimetallic physical sputtering. Fuel 112:140–144. doi:10.1016/j.fuel.2013.05.026 Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N (2013) Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: preparing catalyst by bimetallic physical sputtering. Fuel 112:140–144. doi:10.​1016/​j.​fuel.​2013.​05.​026
157.
159.
Zurück zum Zitat Surisetty VR, Dalai AK, Kozinski J (2010) Effect of Rh promoter on MWCNT-supported alkali modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation. Appl Catal A Gen 381:282–288. doi:10.1016/j.apcata.2010.04.036 Surisetty VR, Dalai AK, Kozinski J (2010) Effect of Rh promoter on MWCNT-supported alkali modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation. Appl Catal A Gen 381:282–288. doi:10.​1016/​j.​apcata.​2010.​04.​036
160.
Zurück zum Zitat Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N (2012) Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst. Fuel 92:122–129. doi:10.1016/j.fuel.2011.07.041 Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N (2012) Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst. Fuel 92:122–129. doi:10.​1016/​j.​fuel.​2011.​07.​041
161.
Zurück zum Zitat Ma W, Kugler EL, Dadyburjor DB (2011) Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer–Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon. Energ Fuel 25:1931–1938. doi:10.1021/ef101720c Ma W, Kugler EL, Dadyburjor DB (2011) Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer–Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon. Energ Fuel 25:1931–1938. doi:10.​1021/​ef101720c
162.
Zurück zum Zitat Subramanian ND, Gao J, Mo X, Goodwin JG Jr, Torres W, Spivey JJ (2010) La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity and pressure on ethanol selectivity from syngas. J Catal 272:204–209. doi:10.1016/j.jcat.2010.03.019 Subramanian ND, Gao J, Mo X, Goodwin JG Jr, Torres W, Spivey JJ (2010) La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity and pressure on ethanol selectivity from syngas. J Catal 272:204–209. doi:10.​1016/​j.​jcat.​2010.​03.​019
163.
Zurück zum Zitat Chiang SW, Chang CC, Shie JL, Chang CY, Ji DR, Tseng JY, Chang CF, Chen YH (2012) Synthesis of alcohols and alkanes from CO and H2 over MoS2/γ-Al2O3 catalyst in a packed bed with continuous flow. Energies 5:4147–4164. doi:10.3390/en5104147 Chiang SW, Chang CC, Shie JL, Chang CY, Ji DR, Tseng JY, Chang CF, Chen YH (2012) Synthesis of alcohols and alkanes from CO and H2 over MoS2/γ-Al2O3 catalyst in a packed bed with continuous flow. Energies 5:4147–4164. doi:10.​3390/​en5104147
164.
Zurück zum Zitat Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. doi:10.1039/C1CS15008A Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. doi:10.​1039/​C1CS15008A
166.
167.
168.
171.
Zurück zum Zitat Wei L, Pordesimo LO, Igathinathane C, Batchelor WD (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenerg 33:255–266. doi:10.1016/j.biombioe.2008.05.017 Wei L, Pordesimo LO, Igathinathane C, Batchelor WD (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenerg 33:255–266. doi:10.​1016/​j.​biombioe.​2008.​05.​017
172.
Zurück zum Zitat Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrol. doi:10.1016/j.jaap.2013.05.022 Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrol. doi:10.​1016/​j.​jaap.​2013.​05.​022
173.
Zurück zum Zitat Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19:337–350. doi:10.1016/S0961-9534(00)00043-X Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19:337–350. doi:10.​1016/​S0961-9534(00)00043-X
175.
Zurück zum Zitat Ba TA, Chaala M, Garcia-Perez D, Rodrigue RC (2004) Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ Fuel 18:704–712. doi:10.1021/ef030118b Ba TA, Chaala M, Garcia-Perez D, Rodrigue RC (2004) Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ Fuel 18:704–712. doi:10.​1021/​ef030118b
179.
Zurück zum Zitat E4tech (2009) Review of technologies for gasification of biomass and wastes. NNFCC Project 09/008 E4tech (2009) Review of technologies for gasification of biomass and wastes. NNFCC Project 09/008
180.
Zurück zum Zitat Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. doi:10.1002/anie.200604504 Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. doi:10.​1002/​anie.​200604504
181.
Zurück zum Zitat Sharma RK, Bakhshi NN (1991) Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals. Can J Chem Eng 69:1071–1081. doi:10.1002/cjce.5450690505 Sharma RK, Bakhshi NN (1991) Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals. Can J Chem Eng 69:1071–1081. doi:10.​1002/​cjce.​5450690505
183.
Zurück zum Zitat Couper JR, Penney WR, Fair JR, Walas SM (2010) Chemical process equipment-selection and design, 2nd edn. Elsevier, USA Couper JR, Penney WR, Fair JR, Walas SM (2010) Chemical process equipment-selection and design, 2nd edn. Elsevier, USA
184.
Zurück zum Zitat Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598. doi:10.1021/ef034067u Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598. doi:10.​1021/​ef034067u
185.
Zurück zum Zitat Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energ Fuel 10:293–298. doi:10.1021/ef950202u Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energ Fuel 10:293–298. doi:10.​1021/​ef950202u
186.
Zurück zum Zitat Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energ Fuel 13:914–921. doi:10.1021/ef980272b Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energ Fuel 13:914–921. doi:10.​1021/​ef980272b
187.
Zurück zum Zitat Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091. doi:10.1021/ef9700339 Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091. doi:10.​1021/​ef9700339
188.
Zurück zum Zitat Oasmaa A, Sipila K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquids: effect of light volatiles on the stability of pyrolysis liquids. Energ Fuel 19:2556–2561. doi:10.1021/ef0400924 Oasmaa A, Sipila K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquids: effect of light volatiles on the stability of pyrolysis liquids. Energ Fuel 19:2556–2561. doi:10.​1021/​ef0400924
189.
Zurück zum Zitat Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) Alternative energy in agriculture. CRC Press, New York, pp 83–102 Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) Alternative energy in agriculture. CRC Press, New York, pp 83–102
190.
Zurück zum Zitat Higman C, van der Burgt M (2008) Gasification. Elsevier, London Higman C, van der Burgt M (2008) Gasification. Elsevier, London
191.
Zurück zum Zitat Roddy DJ, Whitton CM (2012) Comprehensive renewable energy. Biomass gasification and pyrolysis. Elsevier, New York, pp 133–137 Roddy DJ, Whitton CM (2012) Comprehensive renewable energy. Biomass gasification and pyrolysis. Elsevier, New York, pp 133–137
192.
Zurück zum Zitat Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36:1535–1543. doi:10.1021/ie960273w Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36:1535–1543. doi:10.​1021/​ie960273w
196.
Zurück zum Zitat Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol 100:1419–1427. doi:10.1016/j.biortech.2008.08.002 Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol 100:1419–1427. doi:10.​1016/​j.​biortech.​2008.​08.​002
197.
Zurück zum Zitat Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind Eng Chem Res 42:3929–3936. doi:10.1021/ie0300575 Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind Eng Chem Res 42:3929–3936. doi:10.​1021/​ie0300575
201.
202.
204.
Zurück zum Zitat Blaschek HP, Ezeji TC, Scheffran J (2010) Biofuels from agricultural wastes and byproducts. Blackwell, New York. doi:10.1002/9780813822716. ISBN 978-0-813-80252-7 Blaschek HP, Ezeji TC, Scheffran J (2010) Biofuels from agricultural wastes and byproducts. Blackwell, New York. doi:10.​1002/​9780813822716. ISBN 978-0-813-80252-7
205.
Zurück zum Zitat Miller IJ, Fellows SK (1981) Liquefaction of biomass as a source of fuels or chemicals. Nature 289:398–399. doi:10.1038/289398a0 Miller IJ, Fellows SK (1981) Liquefaction of biomass as a source of fuels or chemicals. Nature 289:398–399. doi:10.​1038/​289398a0
207.
Zurück zum Zitat Mun SP, Hassan EM (2004) Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem 10:722–727 Mun SP, Hassan EM (2004) Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem 10:722–727
209.
Zurück zum Zitat Krzan A, Kunaver M, Tisler V (2005) Wood liquefaction using dibasic organic acids and glycols. Acta Chim Slov 52:253–258 Krzan A, Kunaver M, Tisler V (2005) Wood liquefaction using dibasic organic acids and glycols. Acta Chim Slov 52:253–258
210.
Zurück zum Zitat Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, Zhang L (2006) Liquefaction of crop residues for polyol production. Bioresources 1:248–256 Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, Zhang L (2006) Liquefaction of crop residues for polyol production. Bioresources 1:248–256
211.
Zurück zum Zitat Food and Agriculture Organization of the United Nations, FAO (2008) The state of food and agriculture. Biofuels: prospects, risks, and opportunities. FAO, Rome Food and Agriculture Organization of the United Nations, FAO (2008) The state of food and agriculture. Biofuels: prospects, risks, and opportunities. FAO, Rome
213.
214.
Zurück zum Zitat Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861 Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.​1126/​science.​1151861
215.
Zurück zum Zitat Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72. doi:10.1080/02773819708003118 Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72. doi:10.​1080/​0277381970800311​8
217.
Zurück zum Zitat Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016 Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.​1126/​science.​1137016
220.
Zurück zum Zitat Basilio ACM, de Araujo PRL, de Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326. doi:10.1007/s00284-007-9085-5 Basilio ACM, de Araujo PRL, de Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326. doi:10.​1007/​s00284-007-9085-5
221.
Zurück zum Zitat Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101:129–134. doi:10.1073/pnas.0307128101 Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101:129–134. doi:10.​1073/​pnas.​0307128101
223.
Zurück zum Zitat Gaddy JL (1998) Biological production of acetic acid from waste gases with Clostridium ljungdahlii. U.S. Patent 5807722, 15 September 1998 Gaddy JL (1998) Biological production of acetic acid from waste gases with Clostridium ljungdahlii. U.S. Patent 5807722, 15 September 1998
224.
Zurück zum Zitat Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. U.S. Patent 2011/0229947 A1, 22 September 2011 Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. U.S. Patent 2011/0229947 A1, 22 September 2011
225.
Zurück zum Zitat Heijstra B, Kern E, Koepke M, Segovia S, Liew F (2012) Novel bacteria and methods of use thereof. Patent WO/2012/015317, 2 February 2012 Heijstra B, Kern E, Koepke M, Segovia S, Liew F (2012) Novel bacteria and methods of use thereof. Patent WO/2012/015317, 2 February 2012
229.
Zurück zum Zitat Perez MG, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energ Fuel 20:364–375. doi:10.1021/ef050248f Perez MG, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energ Fuel 20:364–375. doi:10.​1021/​ef050248f
230.
231.
Zurück zum Zitat Wild PD (2011) Biomass pyrolysis for chemicals. Dissertation, University of Groningen. ISBN: 978-90-367-4994-7 Wild PD (2011) Biomass pyrolysis for chemicals. Dissertation, University of Groningen. ISBN: 978-90-367-4994-7
232.
Zurück zum Zitat Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouce JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng. doi:10.1155/2012/542426 Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouce JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng. doi:10.​1155/​2012/​542426
Metadaten
Titel
Pathways of lignocellulosic biomass conversion to renewable fuels
verfasst von
Sonil Nanda
Javeed Mohammad
Sivamohan N. Reddy
Janusz A. Kozinski
Ajay K. Dalai
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2014
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-013-0097-z

Weitere Artikel der Ausgabe 2/2014

Biomass Conversion and Biorefinery 2/2014 Zur Ausgabe