Skip to main content
Log in

Crack growth in a single crystal superalloy at elevated temperature

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of temperature and frequency on the crack propagation behavior of a single crystal superalloy has been investigated. At applied stress intensities approaching the fracture toughness, failure at all temperatures is associated with the fracture of script carbides ahead of the crack tip. At low and intermediate levels of ΔK the fatigue crack growth behavior is influenced by the temperature and frequency. At room temperature crack growth is found to occur by failure on {111} planes; at 600 °C and 850 °C crack growth is parallel to {100} . It has been shown that this behavior is not attributable to environmental interactions but arises from the morphology and distribution of the strengthening γ’ precipitate. Dislocations within the crack tip plastic zone are contained within the matrix, and crack propagation occurs primarily within the γ matrix by plasticity-controlled failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Min and R. Raj: ASTM STP75, 979, p. 569.

    Google Scholar 

  2. G. J. Lloyd and J. Wareing:J. Eng. Mat. and Tech., 1979, vol. 101, p. 275.

    CAS  Google Scholar 

  3. J.S. Crompton and J.W. Martin:Mat. Sci. Eng., 1984, vol. 64, p. 37.

    Article  CAS  Google Scholar 

  4. R.B. Scarlin: ASTM STP 675, 1979, p. 396.

    Google Scholar 

  5. S. Floreen and R. H. Kane:Fat. Eng. Mat. Struct., 1980, vol. 2, p. 401.

    Article  Google Scholar 

  6. M. Gell and G. R. Leverant:Metall. Trans. A, 1975, vol. 6A, p. 367.

    Google Scholar 

  7. K. Sadananda and P. Shahinian:Eng. Fract. Mech., 1979, vol. 11, p. 73.

    Article  CAS  Google Scholar 

  8. K. Sadananda and P. Shahinian:Metall. Trans. A, 1981, vol. 12A, p. 343.

    Google Scholar 

  9. K. Sadananda and P. Shahinian: inCavities and Cracks in Creep and Fatigue, Applied Science Publishers, 1981, p. 109.

  10. S. Purushothamen and J.K. Tien:Metall. Trans. A, 1978, vol. 9A, p. 351.

    Google Scholar 

  11. C.J. McMahon and L. F. Coffin:Metall. Trans. A, 1970, vol. 1, p. 3443.

    CAS  Google Scholar 

  12. R.O. Ritchie:Proc. Int. Conf. on Fat. Thresh., Stockholm, Pub. E.M.A.S. Ltd., 1982, p. 503.

  13. W. Elber:Eng. Fract. Mech., 1970, vol. 2, p. 37.

    Article  Google Scholar 

  14. J.R. Haigh:Eng. Fract. Mech., 1975, vol. 7, p. 271.

    Article  CAS  Google Scholar 

  15. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1982, vol. 12A, p. 1435.

    Google Scholar 

  16. P. J. Duquette and M. Gell:Metall. Trans., 1971, vol. 2, p. 1325.

    CAS  Google Scholar 

  17. E. Hornbogen and K.M. Zum Gahr:Metallography, 1975, vol. 8, p. 181.

    Article  CAS  Google Scholar 

  18. R.B. Scarlin:Metall. Trans. A, 1976, vol. 7A, p. 1535.

    CAS  Google Scholar 

  19. D. A. Jablonski and S. Sargent:Scripta Met., 1981, vol. 15, p. 1003.

    Article  CAS  Google Scholar 

  20. R. G. Davies and N. S. Stoloff:Trans. AIME, 1965, vol. 233, p. 714.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crompton, J.S., Martin, J.W. Crack growth in a single crystal superalloy at elevated temperature. Metall Trans A 15, 1711–1719 (1984). https://doi.org/10.1007/BF02666354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666354

Keywords

Navigation