Skip to main content
Log in

Relationship between somaclonal variation and type of culture in cucumber

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Highly inbred B line of cucumber was used to compare the effect of four types of in vitro culture on somaclonal variation. The plants were regenerated from the following types of culture: twelve- and eighteen-month-old liquid culture of meristematic clumps (LMC12(18)), ten-month-old embryogenic cytokinin-dependent suspension (CDS), eighteen-month-old embryogenic cytokinin-dependent suspension in medium with modified NH+ 4/NO3 - ratio (CDS 1.7), twelve-month-old embryogenic auxin-dependent suspension (ADS), thirty six-month-old embryogenic auxin-dependent suspension in medium with modified NH+ 4/NO3 - ratio (ADS 1.7) and recurrent leaf callus regeneration (RLC) – repeated 5 times. The differences in the incidence of the following properties were observed: the ploidy of R0 plants, the segregation of new morphological traits in R1 and the germination ability of R1 seeds. R1 families with the segregation of new phenotypes were most numerous in CDS (62.5%) and LMC18 (57.9%), next in CDS1.7 (35.7%), while the smallest number was found in LMC12 (11.1%) and RLC (3.4%).Tetraploid and mixoploid plants occurred in ADS1.7 and ADS (100%) whereas CDS and RLC were observed to contain only tetraploids, respectively 33.3% and 55.2%. There were no changes of ploidy after LMC12, LMC18 and CDS1.7. Among new phenotypes there were such that have not been described so far in cucumber: ginkgolike leaf (gll), yellow-green chlorophyll mutants (y-gc), serrate margin of corolla in male and female flowers (smc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burza, W. & S. Malepszy, 1995. Direct plant regeneration from leaf explants in cucumber is free of stable genetic variation. Plant Breed 114: 341–345.

    Article  Google Scholar 

  • Burza, W., S. Malepszy & E. Rostek, 1996. The effect of simple and recurrent in vitro regeneration on a cucumber inbred line under field cultivation. Horticultural Science – Kertészeti Tudomány 28 1–2): 11–13 (Hungary).

    Google Scholar 

  • Burza, W. & S. Malepszy, 1998. Cytokinin control of cucumber (Cucumis sativus L.) somatic embryogenesis. Abstracts of IX International Congress on Plant Tissue and Cell Culture. Jerusalem, Israel, June 14–19, p. 68.

  • Colijn-Hooymans, C.M., J.C. Hakkert, J. Jansen & J.B.M. Custers, 1994. Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Pl Cell Tiss Org Cult 39: 211–217.

    Article  Google Scholar 

  • Creemers-Molenaar, J., J.P.M. Loeffen, M. van Rossum & C.M. Colijn-Hooymans,1992. The effect of genotype, cold storage and ploidy level on the morphogenic response of perennial ryegrass (Lolium perenne L.) suspension cultures. Plant Sci 83: 87–94.

    Article  Google Scholar 

  • Custers, J.B.M., S. Zijlstra & J. Jansen, 1990. Somaclonal variation in cucumber (Cucumis sativus L.) plants regenerated via embryogenesis. Acta Bot Neerl 39(2): 153–161.

    Google Scholar 

  • De Paepe, R., D. Bleton & F. Gnangble, 1981. Basis and extent of genetic variability among doubled haploid plants obtained by pollen culture in Nicotiana sylvestris. Theor Appl Genet 59: 177–184.

    Article  Google Scholar 

  • Doležel, J., S. Lucretti & F.J. Novak, 1987. The influence of 2,4-dichlorophenoxyacetic acid on cell cycle kinetics and sisterchromatid exchange frequency in garlic (Allium sativum) meristem cells. Biol Plant (Prague) 29: 253–257.

    Google Scholar 

  • Faris, N.M., W. Burza, S. Malepszy & K. Niemirowicz-Szczytt, 1997. Direct regeneration from leaf explants of cucumber (Cucumis sativus L.) haploid. Mat. VIII Ogólnopolsk. Konf. Polskiej Sekcji Kultur in vitro PTB 'Roslinne kultury in vitro w badaniach podstawowych i stosowanych.' Kraków, Poland, Aug. 25–27, pp. 249–252.

  • Fujishige, I., R. Tanaka & K. Taniguchi, 1996. Efficient isolation of non-chimeric tetraploids artificially induced in a stable culture of Haplopappus gracilis. Theor Appl Genet 92: 157–162.

    Article  Google Scholar 

  • Geier, T., A. Beck & W. Preil, 1992. High uniformity of plants regenerated from cytogenetically variable embryogenic suspension cultures of Poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch). Plant Cell Rep 11: 150–154.

    Article  Google Scholar 

  • Gilissen, L.J.W., M.J. van Staveren, J. Creemers-Molenaar & H.A. Verhoeven, 1993. Development of polysomaty in seedlings and plants of Cucumis sativus L. Plant Sci 91: 171–179.

    Article  CAS  Google Scholar 

  • Lilly, J.W., G. Bartoszewski, S. Malepszy & M.J. Harvey, 2001. A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype.

  • Karp, A., 1991. On the current understanding of somaclonal variation. Oxford Surv Pl Mol Cell Biol 7: 1–58.

    Google Scholar 

  • Karp, A., 1995. Somaclonal variation as a tool for crop improvement. Euphytica 85: 295–302.

    Article  Google Scholar 

  • Kim, S.G., J.R. Chang, H.C. Cha & K.W. Lee, 1988. Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.). Pl Cell Tiss Org Cult 12: 67–74.

    Article  Google Scholar 

  • Kondo, K., S. Nadamitsu, R. Tanaka & K. Taniguchi, 1991. Micropropagation of Spinacia oleracea L. through culture of shoot primodia. Plant Tiss Cult Lett 8(1): 1–4.

    Google Scholar 

  • Kreuger, M., E. Postma, Y. Brouwer & G.-J. van Holst, 1995. Somatic embryogenesis of Cyclamen persicum in liquid medium. Physiol Plant 94: 605–612.

    Article  CAS  Google Scholar 

  • Kreuger, M., W. van der Meer, E. Postma, R. Abbestee, N. Raaijmakers & G.-J. van Holst, 1996. Genetically stable cell lines of cucumber for the large-scale production of diploid somatic embryos. Physiologia Plantarum 97: 303–310.

    Article  CAS  Google Scholar 

  • Kubaláková, M., J. Doležel & A. Lebeda, 1996. Ploidy instability of embryogenic cucumber (Cucumis sativus L.) callus culture. Biologia Plantarum 38(3): 475–480.

    Google Scholar 

  • Larkin, P.J. & W.R. Scowcroft, 1981. Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197–214.

    Article  Google Scholar 

  • ?ady?zy´nski, M., A. Korzeniewska & S. Malepszy, 2001. Recurrent regeneration through somatic embryogenesis reduces yield in cucumber. HortScience 36(5): 987.

    Google Scholar 

  • Malepszy, S., de J. Grunewaldt & M. Maluszynski, 1977. Uber die selektion von Mutanten in Zellkulturen aus haploider Nicotiana silvestris Spegazz. et Comes. Z Pflanzenz 79: 160–166.

    Google Scholar 

  • Malepszy, S. & A. Nadolska-Orczyk, 1989. In vitro culture of Cucumis sativus VIII. Variation in the progeny of phenotypically not altered R1 plants. Plant Breed 102: 66–72.

    Article  Google Scholar 

  • Malepszy, S., W. Burza & M. Smiech, 1996. Characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J Appl Genet 37(1): 65–78.

    Google Scholar 

  • May, R.A. & K.C. Sink, 1995. Genotype and auxin influence direct somatic embryogenesis from protoplasts derived from embryogenic cell suspensions of Asparagus officinalis L. Plant Sci 108: 71–84.

    Article  CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–495.

    Article  CAS  Google Scholar 

  • Murata, M., 1989. Effects of auxin and cytokinin on induction of sister chromatid exchanges in cultured cells of wheat (Triticum aestivum L.). Theor Appl Genet 78: 521–524

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk, A., S. Malepszy & S. Belz, 1989. Effect of recurrent in vitro culture on somaclonal variation. XII Eucarpia Congress, Vorträge für Pflanzenzüchtung, pp. 26–1.

    Google Scholar 

  • Pierce, L.K. & T.C. Wehner, 1990. Review of genes and linkage groups in cucumber. HortScience 25(6): 605–615.

    CAS  Google Scholar 

  • Pl¸ader, W., S. Malepszy, W. Burza & Z. Rusinowski, 1998. The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103: 9–15.

    Article  Google Scholar 

  • Tanaka, R., K. Taniguchi, H. Miyagawa, I. Fujishige & H. Ikeda, 1988. Stock of chromosome-types and tissue cultured shoot primordium (in Japanese with English summary). J Pharm Soc Jpn 108: 1023–1039.

    CAS  Google Scholar 

  • Wróblewski, T., M. Filipecki & S. Malepszy, 1995. Factor influencing cucumber (Cucumis sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension cuclture. Acta Soc Bot Pol 64(3): 223–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ładyżyński, M., Burza, W. & Malepszy, S. Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125, 349–356 (2002). https://doi.org/10.1023/A:1016017825907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016017825907

Navigation