Paper The following article is Open access

Handling huge and complex 3D geometries with Semantic Web technology

, , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Peter Bonsma et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 364 012041 DOI 10.1088/1757-899X/364/1/012041

1757-899X/364/1/012041

Abstract

In INCEPTION, a European collaborative research project, a Heritage BIM (H-BIM) ontology is being developed to store all relevant semantic data concerning cultural heritage objects. Similar to other projects dealing with storing semantics, one of the major questions is whether, and if yes, how should geometry be stored using semantic web technology. The INCEPTION cross-disciplinary research consortium chose to allow the storage of all relevant geometric information using semantic web technology. The alternative is to store geometry in a different way, or storing only the aggregated parts of geometry, for example through bounding box representations.

The geometry is originally generated by a CAD/BIM system and, as we are dealing with Cultural Heritage, in many cases it is derived from 3D point clouds. These result in a large amount of 3D data to be stored using semantic web technology. A well-known issue is that the performance of databases and inferencing engines for semantic web data drops considerably when the data grows to very large sizes. This paper explains how the performance issues on these large sets of geometric data can be solved while still being able to use the databases, inferencing engines, and the geometric data effectively.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/364/1/012041