skip to main content
research-article

Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

Authors Info & Claims
Published:08 May 2021Publication History
Skip Abstract Section

Abstract

Generative Adversarial Networks (GANs) is a novel class of deep generative models that has recently gained significant attention. GANs learn complex and high-dimensional distributions implicitly over images, audio, and data. However, there exist major challenges in training of GANs, i.e., mode collapse, non-convergence, and instability, due to inappropriate design of network architectre, use of objective function, and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions, and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on the broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present promising research directions in this rapidly growing field.

Skip Supplemental Material Section

Supplemental Material

References

  1. Y.-W. Hinton, Geoffrey E. Osindero, and Simon Teh. 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18, 7 (2006), 1527--1554.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Salakhutdinov and G. Hinton. 2009. Deep boltzmann machines. J. Mach. Learn. Res. 5, (2009) 448--455.Google ScholarGoogle Scholar
  3. D. P. Kingma and M. Welling. 2014. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations (ICLR’14).Google ScholarGoogle Scholar
  4. I. J. Goodfellow et al. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. 2672--2680.Google ScholarGoogle Scholar
  5. E. Denton, S. Chintala, A. Szlam, and R. Fergus. 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems. 1486--1494.Google ScholarGoogle Scholar
  6. A. Radford, L. Metz, and S. Chintala. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In 4th International Conference on Learning Representations (ICLR’16).Google ScholarGoogle Scholar
  7. M. Y. Liu and O. Tuzel. 2016. Coupled generative adversarial networks. In Advances in Neural Information Processing Systems. 469--477.Google ScholarGoogle Scholar
  8. T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2018. Progressive growing of GANs for improved quality, stability, and variation. In 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  9. T. Karras, S. Laine, and T. Aila. 2019. A style-based generator architecture for generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition. 4401--4410.Google ScholarGoogle Scholar
  10. C. Ledig et al. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Spampinato, S. Palazzo, P. D'Oro, D. Giordano, and M. Shah. 2019. Adversarial framework for unsupervised learning of motion dynamics in videos. Int. J. Comput. Vis. (Mar. 2019).Google ScholarGoogle Scholar
  12. T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. 2017. Learning to discover cross-domain relations with generative adversarial networks. In 34th International Conference on Machine Learning (ICML’17). 2941--2949.Google ScholarGoogle Scholar
  13. Y. Hong, U. Hwang, J. Yoo, and S. Yoon. 2019. How generative adversarial networks and their variants work: An overview. ACM Comput. Surv. 52, 1 (2019).Google ScholarGoogle Scholar
  14. Z. Wang, Q. She, and T. E. Ward. 2019. Generative adversarial networks: A survey and taxonomy. arXiv Preprint arXiv1906.01529, 2019.Google ScholarGoogle Scholar
  15. Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng. 2019. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 7 (2019), 36322--36333.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Hitawala. 2018. Comparative study on generative adversarial networks. arXiv Preprint arXiv1801.04271, 2018.Google ScholarGoogle Scholar
  17. K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F. Y. Wang. 2017. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Automat. Sin. 4, 4 (2017), 588--598.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye. 2020. A review on generative adversarial networks: Algorithms, theory, and applications. arXiv preprint arXiv:2001.06937.Google ScholarGoogle Scholar
  19. A. Bissoto, E. Valle, and S. Avila. 2019. The six fronts of the generative adversarial networks. arXiv Preprint arXiv1910.13076, 2019.Google ScholarGoogle Scholar
  20. T. Motwani and M. Parmar. 2020. A novel framework for selection of GANs for an application. arXiv Preprint arXiv2002.08641, 2020.Google ScholarGoogle Scholar
  21. Y.-J. CAO. 2019. Recent advances of generative adversarial networks in computer vision. IEEE Access 7 (2019).Google ScholarGoogle Scholar
  22. A. Jabbar, X. Li, and B. Omar. 2020. A survey on generative adversarial networks: Variants, applications, and training. arXiv preprint arXiv:2006.05132.Google ScholarGoogle Scholar
  23. L. Jin, F. Tan, and S. Jiang. 2020. Generative adversarial network technologies and applications in computer vision. Computational Intelligence and Neuroscience.Google ScholarGoogle Scholar
  24. M. Wiatrak, S. V. Albrecht, and A. Nystrom. 2019. Stabilizing generative adversarial networks: A survey. arXiv preprint arXiv:1910.00927.Google ScholarGoogle Scholar
  25. M. Lee and J. Seok. 2020. Regularization methods for generative adversarial networks: An overview of recent studies. arXiv preprint arXiv:2005.09165.Google ScholarGoogle Scholar
  26. S. N. Esfahani and S. Latifi. 2019. A survey of state-of-the-Art GAN-based approaches to image synthesis. In Computer Science & Information Technology (CS & IT) Computer Science Conference Proceedings (CSCP). 63--76.Google ScholarGoogle Scholar
  27. N. Akhtar and A. Mian. 2018. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 6, (2018), 14410--14430.Google ScholarGoogle Scholar
  28. A. Chakraborty, A. Manaar, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay. 2018. Adversarial attacks and defences: A survey. arXiv Preprint arXiv1810.00069, 2018.Google ScholarGoogle Scholar
  29. F. Huszár. 2015. How (not) to train your generative model: Scheduled sampling, likelihood, adversary? arXiv Preprint arXiv1511.05101, 2015.Google ScholarGoogle Scholar
  30. L. Theis, A. Van Den Oord, and M. Bethge. 2016. A note on the evaluation of generative models. In 4th International Conference on Learning Representations (ICLR’16).Google ScholarGoogle Scholar
  31. M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed. 2017. Variational approaches for auto-encoding generative adversarial networks. arXiv Preprint arXiv1706.04987, 2017.Google ScholarGoogle Scholar
  32. A. Statnikov, C. F. Aliferis, D. P. Hardin, and I. Guyon. 2011. Support vector clustering. In A Gentle Introduction to Support Vector Machines in Biomedicine, Vol. 1 (Feb. 2011), 136--153.Google ScholarGoogle Scholar
  33. T. Le, H. Vu, T. D. Nguyen, and D. Phung. 2018. Geometric enclosing networks. In International Joint Conference on Artificial Intelligence (IJCAI’18). 2355--2361.Google ScholarGoogle Scholar
  34. M. Mirza and S. Osindero. 2014. Conditional generative adversarial nets. arXiv Preprint arXiv1411.1784, 2014.Google ScholarGoogle Scholar
  35. M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein generative adversarial networks. In International Conference on Machine Learning. 214--223.Google ScholarGoogle Scholar
  36. J. Adler and S. Lunz. 2018. Banach Wasserstein GAN. In Advances in Neural Information Processing Systems. 6754--6763.Google ScholarGoogle Scholar
  37. X. Guo, J. Hong, T. Lin, and N. Yang. 2017. Relaxed Wasserstein with applications to GANs. arXiv Preprint arXiv1705.07164, 2017.Google ScholarGoogle Scholar
  38. L. Mescheder, S. Nowozin, and A. Geiger. 2017. The numerics of GANs. In Advances in Neural Information Processing Systems. 1826--1836.Google ScholarGoogle Scholar
  39. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances in Neural Information Processing Systems. 6627--6638.Google ScholarGoogle Scholar
  40. X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. 2017. Least squares generative adversarial networks. In IEEE International Conference on Computer Vision. 2813--2821.Google ScholarGoogle Scholar
  41. A. Yadav, S. Shah, Z. Xu, D. Jacobs, and T. Goldstein. 2018. Stabilizing adversarial nets with prediction methods. arXiv Preprint arXiv1705.07364, 2018.Google ScholarGoogle Scholar
  42. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. 2016. Improved techniques for training GANs. In Advances in Neural Information Processing Systems. 2234--2242.Google ScholarGoogle Scholar
  43. Z. Lin, G. Fanti, A. Khetan, and S. Oh. 2018. PacGan: The power of two samples in generative adversarial networks. In Advances in Neural Information Processing Systems. 1498--1507.Google ScholarGoogle Scholar
  44. I. Goodfellow. 2016. Tutorial: Generative adversarial networks. arXiv Preprint arXiv1701.00160, 2016.Google ScholarGoogle Scholar
  45. L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. 2016. Unrolled generative adversarial networks. arXiv Preprint arXiv:1611.02163, 2016.Google ScholarGoogle Scholar
  46. T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. 2019. Mode regularized generative adversarial networks. In 5th International Conference on Learning Representations (ICLR’19).Google ScholarGoogle Scholar
  47. D. Warde-Farley and Y. Bengio. 2019. Improving generative adversarial networks with denoising feature matching. In 5th International Conference on Learning Representations (ICLR’19).Google ScholarGoogle Scholar
  48. M. Arjovsky and L. Bottou. 2019. Towards principled methods for training generative adversarial networks. In 5th International Conference on Learning Representations (ICLR’19).Google ScholarGoogle Scholar
  49. S. Huang, Xun Li, Yixuan Poursaeed, Omid Hopcroft, and John Belongie. 2017. Stacked generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition. 5077--5086.Google ScholarGoogle ScholarCross RefCross Ref
  50. Y. Wang, L. Zhang, and J. van de Weijer. 2016. Ensembles of generative adversarial networks. arXiv Preprint arXiv1612.00991, 2016.Google ScholarGoogle Scholar
  51. I. Tolstikhin, S. Gelly, O. Bousquet, C. J. Simon-Gabriel, and B. Schölkopf. 2017. AdaGAN: Boosting generative models. In Advances in Neural Information Processing Systems. 5425--5434.Google ScholarGoogle Scholar
  52. C. L. Li, W. C. Chang, Y. Cheng, Y. Yang, and B. Póczos. 2017. MMD GAN: Towards deeper understanding of moment matching network. In Advances in Neural Information Processing Systems. 2204--2214.Google ScholarGoogle Scholar
  53. H. Kwak and B.-T. Zhang. 2016. Ways of conditioning generative adversarial networks. arXiv Preprint arXiv1611.01455, 2016.Google ScholarGoogle Scholar
  54. D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. 2016. Generating images with recurrent adversarial networks. arXiv Preprint arXiv1602.05110, 2016.Google ScholarGoogle Scholar
  55. G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez. 2016. Invertible conditional GANs for image editing. arXiv Preprint arXiv1611.06355, 2016.Google ScholarGoogle Scholar
  56. A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan. 2019. Bidirectional conditional generative adversarial networks. Lect. Notes Comput. Sci. (incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.), Vol. 11363. 216--232.Google ScholarGoogle Scholar
  57. G. Máttyus and R. Urtasun. 2018. Matching adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition. 8024--8032.Google ScholarGoogle Scholar
  58. S. Liu, T. Wang, D. Bau, J.-Y. Zhu, and A. Torralba. 2020. Diverse image generation via self-conditioned GANs. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14274--14283.Google ScholarGoogle Scholar
  59. A. Odena, C. Olah, and J. Shlens. 2017. Conditional image synthesis with auxiliary classifier GANs. In 34th International Conference on Machine Learning (ICML’17). 4043--4055.Google ScholarGoogle Scholar
  60. L. Chongxuan, T. Xu, J. Zhu, and B. Zhang. 2017. Triple generative adversarial nets. In Advances in Neural Information Processing Systems. 4088--4098.Google ScholarGoogle Scholar
  61. X. Wang, Y. Sun, R. Zhang, and J. Qi. 2018. KDGAN: Knowledge distillation with generative adversarial networks. In Advances in Neural Information Processing Systems. 775--786.Google ScholarGoogle Scholar
  62. M. Lee and J. Seok. 2019. Controllable generative adversarial network. IEEE Access 7 (2019), 28158--28169.Google ScholarGoogle ScholarCross RefCross Ref
  63. Y. Saatchi and A. G. Wilson. 2017. Bayesian GAN. In Advances in Neural Information Processing Systems. 3623--3632.Google ScholarGoogle Scholar
  64. A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan. 2019. CapsuleGAN: Generative adversarial capsule network. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 11131. 526--535.Google ScholarGoogle Scholar
  65. S. Lloyd and C. Weedbrook. 2018. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 4 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  66. A. Zhang, Han Goodfellow, Ian Metaxas, and Dimitris Odena. 2018. Self-attention generative adversarial networks. arXiv Preprint arXiv1805.08318, 2018.Google ScholarGoogle Scholar
  67. A. Ghosh, V. Kulharia, V. Namboodiri, P. H. S. Torr, and P. K. Dokania. 2018. Multi-agent diverse generative adversarial networks. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 8513--8521.Google ScholarGoogle Scholar
  68. Q. Hoang, T. D. Nguyen, T. Le, and D. Phung. 2017. Multi-generator generative adversarial nets. arXiv Preprint arXiv1708.02556, 2017.Google ScholarGoogle Scholar
  69. A. Ghosh, V. Kulharia, and V. Namboodiri. 2016. Message passing multi-agent GANs. arXiv Preprint arXiv1612.01294, 2016.Google ScholarGoogle Scholar
  70. H. Ge, Y. Xia, X. Chen, R. Berry, and Y. Wu. 2017. Fictitious GAN: Training GANs with historical models. In Proceedings of the European Conference on Computer Vision (ECCV'18). 119--134.Google ScholarGoogle Scholar
  71. S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. 2017. Generalization and equilibrium in generative adversarial nets (GANs). In 34th International Conference on Machine Learning (ICML’17). 322--349.Google ScholarGoogle Scholar
  72. T. D. Nguyen, T. Le, H. Vu, and D. Phung. 2017. Dual discriminator generative adversarial nets. In Advances in Neural Information Processing Systems. 2671--2681.Google ScholarGoogle Scholar
  73. I. Durugkar, I. Gemp, and S. Mahadevan. 2019. Generative multi-adversarial networks. In 5th International Conference on Learning Representations (ICLR’17).Google ScholarGoogle Scholar
  74. B. Neyshabur, S. Bhojanapalli, and A. Chakrabarti. 2017. Stabilizing GAN training with multiple random projections. arXiv Preprint arXiv1705.07831, 2017.Google ScholarGoogle Scholar
  75. G. Mordido, H. Yang, and C. Meinel. 2018. Dropout-GAN: Learning from a dynamic ensemble of discriminator. arXiv preprint arXiv:1807.11346, 2018.Google ScholarGoogle Scholar
  76. G. Mordido, H. Yang, and C. Meinel. 2020. MicrobatchGAN: Stimulating diversity with multi-adversarial discrimination. In IEEE Winter Conference on Applications of Computer Vision. 3050--3059.Google ScholarGoogle Scholar
  77. T. Chavdarova and F. Fleuret. 2018. SGAN: An alternative training of generative adversarial networks. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 9407--9415.Google ScholarGoogle Scholar
  78. A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. 2016. Autoencoding beyond pixels using a learned similarity metric. In 33rd International Conference on Machine Learning (ICML’16). 2341--2349.Google ScholarGoogle Scholar
  79. A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. 2015. Adversarial autoencoders. arXiv Preprint arXiv1511.05644, 2015.Google ScholarGoogle Scholar
  80. L. Mescheder, S. Nowozin, and A. Geiger. 2017. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. In 34th International Conference on Machine Learning (ICML’17). 3694--3707.Google ScholarGoogle Scholar
  81. Y. Pu et al. 2017. Adversarial symmetric variational autoencoder. In Advances in Neural Information Processing Systems. 4331--4340.Google ScholarGoogle Scholar
  82. N. T. Tran, T. A. Bui, and N. M. Cheung. 2018. Dist-GAN: An improved GAN using distance constraints. Lect. Notes Comput. Sci. (incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.), Vol. 11218. 387--401.Google ScholarGoogle Scholar
  83. V. Dumoulin et al. 2019. Adversarially learned inference. In 5th International Conference on Learning Representations (ICLR’19).Google ScholarGoogle Scholar
  84. J. Donahue, T. Darrell, and P. Krähenbühl. 2016. Adversarial feature learning. arXiv preprint arXiv:1605.09782, 2016.Google ScholarGoogle Scholar
  85. A. H. Li, Y. Wang, C. Chen, and J. Gao. 2020. Decomposed adversarial learned inference. arXiv Preprint arXiv2004.10267, 2020.Google ScholarGoogle Scholar
  86. M. Chen and L. Denoyer. 2017. Multi-view generative adversarial networks. In Lect. Notes Comput. Sci. (incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.), Vol. 10535. 175--188.Google ScholarGoogle Scholar
  87. M. I. Belghazi, S. Rajeswar, O. Mastropietro, N. Rostamzadeh, J. Mitrovic, and A. Courville. 2018. Hierarchical adversarially learned Inference. arXiv Preprint arXiv1802.01071, 2018.Google ScholarGoogle Scholar
  88. D. Ulyanov, A. Vedaldi, and V. Lempitsky. 2018. It takes (only) two: Adversarial generator-encoder networks. In 32nd AAAI Conference on Artificial Intelligence. 1250--1257.Google ScholarGoogle Scholar
  89. A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. 2017. VEEGAN: Reducing mode collapse in GANs using implicit variational learning. In Advances in Neural Information Processing Systems. 3309--3319.Google ScholarGoogle Scholar
  90. D. Bang and H. Shim. 2018. MGGAN: Solving mode collapse using manifold guided training. arXiv Preprint arXiv1804.04391, 2018.Google ScholarGoogle Scholar
  91. J. Zhao, M. Mathieu, and Y. LeCun. 2016. Energy-based generative adversarial networks. arXiv preprint arXiv:1609.03126, 2016.Google ScholarGoogle Scholar
  92. D. Berthelot, T. Schumm, and L. Metz. 2017. BEGAN: Boundary equilibrium generative adversarial networks. arXiv Preprint arXiv1703.10717, 2017.Google ScholarGoogle Scholar
  93. R. Wang, A. Cully, H. J. Chang, and Y. Demiris. 2017. MAGAN: Margin adaptation for generative adversarial networks. arXiv Preprint arXiv1704.03817, 2017.Google ScholarGoogle Scholar
  94. G. Zheng, J. Sang, and C. Xu. 2020. MMCGAN: Generative adversarial network with explicit manifold prior. arXiv Preprint arXiv2006.10331, 2020.Google ScholarGoogle Scholar
  95. X. Di and P. Yu. 2017. Max-Boost-GAN: Max operation to boost generative ability of generative adversarial networks. In IEEE International Conference on Computer Vision Workshops. 1156--1164.Google ScholarGoogle Scholar
  96. Y. Kim, M. Kim, and G. Kim. 2018. Memorization precedes generation: Learning unsupervised GANs with memory networks. arXiv preprint arXiv:1803.01500.Google ScholarGoogle Scholar
  97. S. Gurumurthy, R. K. Sarvadevabhatla, and R. V. Babu. 2017. DeLiGAN : Generative adversarial networks for diverse and limited data. In 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 4941--4949.Google ScholarGoogle Scholar
  98. D. Mishra, Prathosh A. P., A. Jayendran, V. Srivastava, and S. Chaudhury. 2018. NEMGAN: Noise engineered mode-matching GAN. arXiv Preprint arXiv1811.03692, 2018.Google ScholarGoogle Scholar
  99. X. Di and P. Yu. 2017. Multiplicative noise channel in generative adversarial networks. In IEEE International Conference on Computer Vision Workshops. 1165--1172.Google ScholarGoogle Scholar
  100. G. Zhong, W. Gao, Y. Liu, and Y. Yang. 2018. Generative adversarial networks with decoder-encoder output noise. arXiv Preprint arXiv1807.03923, 2018.Google ScholarGoogle Scholar
  101. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. 2016. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems. 2172--2180.Google ScholarGoogle Scholar
  102. G.-J. Qi. 2017. Loss-sensitive generative adversarial networks on Lipschitz densities. Int. J. Comput. Vis 128, 5 (2017), 1118--1140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. S. Nowozin, B. Cseke, and R. Tomioka. 2016. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems. 271--279.Google ScholarGoogle Scholar
  104. M. Uehara, I. Sato, M. Suzuki, K. Nakayama, and Y. Matsuo. 2016. Generative adversarial nets from a density ratio estimation perspective. arXiv Preprint arXiv1610.02920, 2016.Google ScholarGoogle Scholar
  105. C. Tao, L. Chen, R. Henao, J. Feng, and L. Carin. 2018. X2 generative adversarial network. In 35th International Conference on Machine Learning (ICML’18). 7787--7796.Google ScholarGoogle Scholar
  106. T. Salimans, D. Metaxas, H. Zhang, and A. Radford. 2018. Improving GANs using optimal transport. In 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  107. M. Lin. 2017. Softmax GAN. arXiv Preprint arXiv1704.06191, 2017.Google ScholarGoogle Scholar
  108. Y. Li, N. Xiao, and W. Ouyang. 2019. Improved generative adversarial networks with reconstruction loss. Neurocomputing 323 (2019), 363--372.Google ScholarGoogle ScholarCross RefCross Ref
  109. F. Juefei-Xu, V. N. Boddeti, and M. Savvides. 2017. Gang of GANs: Generative adversarial networks with maximum margin ranking. arXiv Preprint arXiv1704.04865, 2017.Google ScholarGoogle Scholar
  110. Y. Mroueh, T. Sercu, and V. Goel. 2017. McGAN: Mean and covariance feature matching GAN. In 34th International Conference on Machine Learning (ICML’17). 3885--3899.Google ScholarGoogle Scholar
  111. N. Park et al. 2018. MMGAN: Manifold-matching generative adversarial networks. In International Conference on Pattern Recognition. 1343--1348.Google ScholarGoogle ScholarCross RefCross Ref
  112. M. G. Bellemare et al. 2017. The cramer distance as a solution to biased Wasserstein gradients. arXiv Preprint arXiv1705.10743, 2017.Google ScholarGoogle Scholar
  113. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. 2017. Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems. 5768--5778.Google ScholarGoogle Scholar
  114. H. Petzka, A. Fischer, and D. Lukovnikov. 2018. On the regularization of Wasserstein GANs. In 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  115. X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang. 2018. Improving the improved training of Wasserstein GANs: A consistency term and its dual effect. arXiv Preprint arXiv1803.01541, 2018.Google ScholarGoogle Scholar
  116. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. 2018. Spectral normalization for generative adversarial networks. In 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  117. K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. 2017. Stabilizing training of generative adversarial networks through regularization. In Advances in Neural Information Processing Systems. 2019--2029.Google ScholarGoogle Scholar
  118. Y. Mroueh and T. Sercu. 2017. Fisher GAN. In Advances in Neural Information Processing Systems. 2514--2524.Google ScholarGoogle Scholar
  119. V. Nagarajan and J. Z. Kolter. 2017. Gradient descent GAN optimization is locally stable. In Advances in Neural Information Processing Systems. 5586--5596.Google ScholarGoogle Scholar
  120. L. Mescheder, A. Geiger, and S. Nowozin. 2018. Which training methods for GANs do actually converge? In 35th International Conference on Machine Learning (ICML’18). 5589--5626.Google ScholarGoogle Scholar
  121. N. Kodali, J. Abernethy, J. Hays, and Z. Kira. 2017. On convergence and stability of GANs. arXiv Preprint arXiv1705.07215, 2017.Google ScholarGoogle Scholar
  122. C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. 2018. Training GaNs with optimism. 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  123. H. Prasad, Prashanth L. A., and S. Bhatnagar. 2015. Two-timescale algorithms for learning Nash equilibria in general-sum stochastic games. In International Conference on Autonomous Agents and Multiagent Systems.Google ScholarGoogle Scholar
  124. A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. 2016. Multimodal compact bilinear pooling for visual question answering and visual grounding. In Conference on Empirical Methods in Natural Language Processing. 457--468.Google ScholarGoogle Scholar
  125. M. Mathieu, J. Zhao, P. Sprechmann, A. Ramesh, and Y. Le Cun. 2016. Disentangling factors of variation in deep representations using adversarial training. In Advances in Neural Information Processing Systems. 5047--5055.Google ScholarGoogle Scholar
  126. Z. Xu, Y. C. Hsu, and J. Huang. 2018. Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks. In 6th International Conference on Learning Representations Workshop (ICLRW’18).Google ScholarGoogle Scholar
  127. M. Mirza and S. Osindero. 2014. Conditional generative adversarial nets. arXiv Preprint arXiv1411.1784, 2014.Google ScholarGoogle Scholar
  128. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. 1997. Improved techniques for training GANs. arXiv preprint arXiv:1606.03498.Google ScholarGoogle Scholar
  129. Y. Freund and R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci 55, 1 (1997), 119--139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. I. Albuquerque, J. Monteiro, T. Doan, B. Considine, T. Falk, and I. Mitliagkas. 2019. Multi-objective training of generative adversarial networks with multiple discriminators. In 36th International Conference on Machine Learning (ICML’19). 292--301.Google ScholarGoogle Scholar
  131. A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski. 2017. Plug and play generative networks: Conditional iterative generation of images in latent space. In 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 3510--3520.Google ScholarGoogle Scholar
  132. R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic image inpainting with deep generative models. In 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 6882--6890.Google ScholarGoogle Scholar
  133. I. J. Goodfellow. 2015. On distinguishability criteria for estimating generative models. In 3rd International Conference on Learning Representations Workshop (ICLRW’15).Google ScholarGoogle Scholar
  134. S. Mohamed and B. Lakshminarayanan. 2016. Learning in implicit generative models. arXiv Preprint arXiv1610.03483, 2016.Google ScholarGoogle Scholar
  135. Y. Bengio, N. Léonard, and A. Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv Preprint arXiv1308.3432, 2013.Google ScholarGoogle Scholar
  136. Y. Bengio, É. Thibodeau-Laufer, G. Alain, and J. Yosinski. 2014. Deep generative stochastic networks trainable by backprop. In 31st International Conference on Machine Learning (ICML’14). 1470--1485.Google ScholarGoogle Scholar
  137. H. De Meulemeester, J. Schreurs, M. Fanuel, B. De Moor, and J. A. K. Suykens. 2020. The Bures metric for taming mode collapse in generative adversarial networks. arXiv Preprint arXiv2006.09096, 2020.Google ScholarGoogle Scholar
  138. Y. LeCun, S. Chopra, R. Hadsell, F. J. Huang, and E. Al. 2006. A tutorial on energy-based learning. Predict. Struct. Data 1, 0 (2006).Google ScholarGoogle Scholar
  139. Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and A. Courville. 2017. Calibrating energy-based generative adversarial networks. arXiv Preprint arXiv1702.01691, 2017.Google ScholarGoogle Scholar
  140. S. Mukherjee, H. Asnani, E. Lin, and S. Kannan. 2019. ClusterGAN: Latent space clustering in generative adversarial networks. In AAAI Conference on Artificial Intelligence. 4610--4617.Google ScholarGoogle Scholar
  141. D. P. Kingma and M. Welling. 2014. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations (ICLR’14).Google ScholarGoogle Scholar
  142. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. 2014. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems. 3581--3589.Google ScholarGoogle Scholar
  143. B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen. 2015. Discovering hidden factors of variation in deep networks. In 3rd International Conference on Learning Representations Workshop (ICLRW’15).Google ScholarGoogle Scholar
  144. T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. B. Tenenbaum. 2015. Deep convolutional inverse graphics network. In Advances in Neural Information Processing Systems. 2539--2547.Google ScholarGoogle Scholar
  145. W. F. Whitney, M. Chang, T. Kulkarni, and J. B. Tenenbaum. 2016. Understanding visual concepts with continuation learning. arXiv Preprint arXiv1602.06822, 2016.Google ScholarGoogle Scholar
  146. F. Huszár. 2017. Variational inference using implicit distributions. arXiv Preprint arXiv1702.08235, 2017.Google ScholarGoogle Scholar
  147. T. Karaletsos. 2016. Adversarial message passing for graphical models. arXiv Preprint arXiv1612.05048, 2016.Google ScholarGoogle Scholar
  148. D. Tran, R. Ranganath, and D. M. Blei. 2017. Hierarchical implicit models and likelihood-free variational inference. In Advances in Neural Information Processing Systems. 5524--5534.Google ScholarGoogle Scholar
  149. Y. Rubner, C. Tomasi, and L. J. Guibas. 2000. Earth mover's distance as a metric for image retrieval. Int. J. Comput. Vis 40, 2, (2000), 99--121.Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. I. Goodfellow, Y. Bengio, and A. Courville. 2017. Deep Learning. The MIT Press.Google ScholarGoogle Scholar
  151. A. Gretton, O. Bousquet, A. Smola, and B. Scḧlkopf. 2005. Measuring statistical dependence with Hilbert-Schmidt norms. In Lect. Notes Comput. Sci. (incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.), Vol. 3734. 63--77.Google ScholarGoogle Scholar
  152. K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. 2009. Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  153. A. Smola, A. Gretton, L. Song, and B. Schölkopf. 2007. A Hilbert space embedding for distributions. In Lect. Notes Comput. Sci. (incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.), Vol. 4754. 13--31.Google ScholarGoogle Scholar
  154. Y. Li, K. Swersky, and R. Zemel. 2015. Generative moment matching networks. In 32nd International Conference on Machine Learning (ICML’15). 1718--1727.Google ScholarGoogle Scholar
  155. G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. 2015. Training generative neural networks via maximum mean discrepancy optimization. In 31st Conference on Uncertainty in Artificial Intelligence. 258--267.Google ScholarGoogle Scholar
  156. S. Ioffe and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In 32nd International Conference on Machine Learning (ICML’15). 448--456.Google ScholarGoogle Scholar
  157. W. Zellinger, E. Lughofer, S. Saminger-Platz, T. Grubinger, and T. Natschläger. 2019. Central moment discrepancy (CMD) for domain-invariant representation learning. In 5th International Conference on Learning Representations (ICLR’19).Google ScholarGoogle Scholar
  158. T. Salimans and D. P. Kingma. 2016. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Advances in Neural Information Processing Systems. 901--909.Google ScholarGoogle Scholar
  159. A. Müller. 1997. Integral probability metrics and their generating classes of functions. Adv. Appl. Probab. 29, 2 (1997), 429--443.Google ScholarGoogle ScholarCross RefCross Ref
  160. B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. 2009. On integral probability metrics, phi-divergences and binary classification. arXiv preprint arXiv:0901.2698.Google ScholarGoogle Scholar
  161. J. C. Butcher. 2016. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, Chichester, UK.Google ScholarGoogle Scholar
  162. S. I. Amari. 1998. Natural gradient works efficiently in learning. Neural Comput. 10, 2 (1998), 251--276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. P. Grnarova, K. Y. Levy, A. Lucchi, T. Hofmann, and A. Krause. 2018. An online learning approach to generative adversarial networks. In 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  164. D. Volkhonskiy, I. Nazarov, and E. Burnaev. 2017. Steganographic generative adversarial networks. arXiv Preprint arXiv1703.05502, 2017.Google ScholarGoogle Scholar
  165. W. Zhang. 2018. Generative adversarial nets for information retrieval: Fundamentals and advances. In 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. 1375--1378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. D. Saxena and J. Cao. 2019. D-GAN: Deep generative adversarial nets for spatio-temporal prediction. arXiv Preprint arXiv1907.08556, 2019.Google ScholarGoogle Scholar
  167. M. Uricar, P. Krizek, D. Hurych, I. Sobh, S. Yogamani, and P. Denny. 2019. Yes, we GAN: Applying adversarial techniques for autonomous driving. arXiv Preprint arXiv1902.03442, 2019.Google ScholarGoogle Scholar
  168. M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. 2018. DeepRoad: GAN-based metamorphic autonomous driving system testing. In 33rd ACM/IEEE International Conference on Automated Software Engineering. 132--142.Google ScholarGoogle Scholar
  169. M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and R. Urtasun. 2018. MultiNet: Real-time joint semantic reasoning for autonomous driving. In IEEE Intelligent Vehicles Symposium. 1013--1020.Google ScholarGoogle Scholar
  170. S. Pascual, A. Bonafonte, and J. Serra. 2017. SEGAN: Speech enhancement generative adversarial network. In Conference of the International Speech Communication Association. 3642--3646.Google ScholarGoogle Scholar
  171. Y. Xu, Z. Zhang, L. You, J. Liu, Z. Fan, and X. Zhou. 2020. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Res. 48, 15 (2020), 85.Google ScholarGoogle ScholarCross RefCross Ref
  172. M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly. 2018. Are GANs created equal? A large-scale study. In Advances in Neural Information Processing Systems. 700--709.Google ScholarGoogle Scholar
  173. Q. Xu et al. 2018. An empirical study on evaluation metrics of generative adversarial networks. arXiv Preprint arXiv1806.07755, 2018.Google ScholarGoogle Scholar
  174. A. Borji. 2019. Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. 179 (2019), 41--65.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format