skip to main content
10.1145/3056540.3076193acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

The Design Space of Augmented and Virtual Reality Applications for Assistive Environments in Manufacturing: A Visual Approach

Authors Info & Claims
Published:21 June 2017Publication History

ABSTRACT

Research on how to take advantage of Augmented Reality and Virtual Reality applications and technologies in the domain of manufacturing has brought forward a great number of concepts, prototypes, and working systems. Although comprehensive surveys have taken account of the state of the art, the design space of industrial augmented and virtual reality keeps diversifying. We propose a visual approach towards assessing this space and present an interactive, community-driven tool which supports interested researchers and practitioners in gaining an overview of the aforementioned design space. Using such a framework we collected and classified relevant publications in terms of application areas and technology platforms. This tool shall facilitate initial research activities as well as the identification of research opportunities. Thus, we lay the groundwork, forthcoming workshops and discussions shall address the refinement.

References

  1. M. Aehnelt and S. Bader. From information assistance to cognitive automation: A smart assembly use case. In B. Duval, van den Herik, Jaap, S. Loiseau, and J. Filipe, editors, Agents and artificial intelligence, volume 9494 of Lecture Notes in Computer Science, pages 207--222. Springer, Cham and Heidelberg, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Aehnelt and K. Wegner. Learn but work! towards self-directed learning at mobile assembly workplaces. In S. Lindstaedt, T. Ley, and H. Sack, editors, Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business, pages 1--7. ACM Press, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. Recent advances in augmented reality. IEEE computer graphics and applications, 21(6):34--47, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. T. Azuma. A survey of augmented reality. Presence: Teleoperators and virtual environments, 6(4):355--385, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Baechler, A. Baechler, M. Funk, S. Autenrieth, G. Kruell, T. Hoerz, and T. Heidenreich. The Use and Impact of an Assistance System for Supporting Participation in Employment for Individuals with Cognitive Disabilities, pages 329--332. Springer International Publishing, Cham, 2016.Google ScholarGoogle Scholar
  6. A. Bannat, F. Wallhoff, G. Rigoll, F. Friesdorf, H. Bubb, S. Stork, H. Müller, A. Schubö, M. Wiesbeck, and M. F. Zäh. Towards optimal worker assistance: a framework for adaptive selection and presentation of assembly instructions. In Proceedings of the 1st international workshop on cognition for technical systems, Cotesys, 2008.Google ScholarGoogle Scholar
  7. F. Biocca, A. Tang, C. Owen, and F. Xiao. Attention funnel: omnidirectional 3d cursor for mobile augmented reality platforms. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 1115--1122. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Boud, D. J. Haniff, C. Baber, and S. Steiner. Virtual reality and augmented reality as a training tool for assembly tasks. In Information Visualization, 1999. Proceedings. 1999 IEEE International Conference on, pages 32--36. IEEE, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. C. Boud, D. J. Haniff, C. Baber, and S. J. Steiner. Virtual reality and augmented reality as a training tool for assembly tasks. In 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210), pages 32--36, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. P. Brooks. What's real about virtual reality? IEEE Computer graphics and applications, 19(6):16--27, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Büttner, M. Funk, O. Sand, and C. Röcker. Using head-mounted displays and in-situ projection for assistive systems: A comparison. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, page 44. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Büttner, O. Sand, and C. Röcker. Extending the design space in industrial manufacturing through mobile projection. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, pages 1130--1133. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Büttner, O. Sand, and C. Röcker. Exploring design opportunities for intelligent worker assistance: A new approach using projection-based ar and a novel hand-tracking algorithm. In Proceedings of the 2017 European Conference on Ambient Intelligence. Springer International Publishing, 2017 (forthcoming).Google ScholarGoogle ScholarCross RefCross Ref
  14. T. P. Caudell and D. W. Mizell. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, volume ii, pages 659--669 vol.2, Jan 1992.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. D. Fehling, A. Mueller, and M. Aehnelt. Enhancing vocational training with augmented reality. In S. Lindstaedt, T. Ley, and H. Sack, editors, Proceedings of the 16th International Conference on Knowledge Technologies and Data-driven Business. ACM Press, 2016.Google ScholarGoogle Scholar
  16. S. Feiner, B. Macintyre, and D. Seligmann. Knowledge-based augmented reality. Communications of the ACM, 36(7):53--62, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Fite-Georgel. Is there a reality in industrial augmented reality? In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on, pages 201--210. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. W. Friedrich. Arvika-augmented reality in Entwicklung, Produktion und Service. John Wiley & Sons, 2004.Google ScholarGoogle Scholar
  19. M. Funk, A. Bächler, L. Bächler, O. Korn, C. Krieger, T. Heidenreich, and A. Schmidt. Comparing projected in-situ feedback at the manual assembly workplace with impaired workers. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, PETRA '15, pages 1:1--1:8, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Funk, T. Kosch, S. W. Greenwald, and A. Schmidt. A benchmark for interactive augmented reality instructions for assembly tasks. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, MUM '15, pages 253--257, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Funk, T. Kosch, R. Kettner, O. Korn, and A. Schmidt. motioneap: An overview of 4 years of combining industrial assembly with augmented reality for industry 4.0.Google ScholarGoogle Scholar
  22. M. Funk, T. Kosch, and A. Schmidt. Interactive worker assistance: Comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp '16, pages 934--939, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Funk, S. Mayer, M. Nistor, and A. Schmidt. Mobile in-situ pick-by-vision: Order picking support using a projector helmet. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, page 45. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Funk, S. Mayer, and A. Schmidt. Using in-situ projection to support cognitively impaired workers at the workplace. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS '15, pages 185--192, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Funk, A. S. Shirazi, S. Mayer, L. Lischke, and A. Schmidt. Pick from here!: an interactive mobile cart using in-situ projection for order picking. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 601--609. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. N. Gavish, T. Gutiérrez, S. Webel, J. Rodríguez, M. Peveri, U. Bockholt, and F. Tecchia. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6):778--798, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. Geissbauer, J. Vedso, and S. Schrauf. Industry 4.0: Building the digital enterprise. PWC, 2016.Google ScholarGoogle Scholar
  28. W. A. Günthner. Pick-by-Vision: Augmented Reality unterstützte Kommissionierung. Lehrstuhl für Fördertechnik Materialfluss Logistik, 2009.Google ScholarGoogle Scholar
  29. A. Gupta, D. Fox, B. Curless, and M. Cohen. Duplotrack: A real-time system for authoring and guiding duplo block assembly. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST '12, pages 389--402, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Gurevich, J. Lanir, B. Cohen, and R. Stone. Teleadvisor: a versatile augmented reality tool for remote assistance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 619--622. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Hakkarainen, C. Woodward, and M. Billinghurst. Augmented assembly using a mobile phone. In Mixed and Augmented Reality, 2008. ISMAR 2008. 7th IEEE/ACM International Symposium on, pages 167--168. IEEE, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. O. Korn. Industrial playgrounds: How gamification helps to enrich work for elderly or impaired persons in production. In Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS '12, pages 313--316, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. O. Korn, M. Funk, S. Abele, T. Hörz, and A. Schmidt. Context-aware assistive systems at the workplace: Analyzing the effects of projection and gamification. In Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA '14, pages 38:1--38:8, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O. Korn, M. Funk, and A. Schmidt. Towards a gamification of industrial production: a comparative study in sheltered work environments. In Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pages 84--93. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. Kosch, R. Kettner, M. Funk, and A. Schmidt. Comparing tactile, auditory, and visual assembly error-feedback for workers with cognitive impairments. In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS '16, pages 53--60, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Kritzler, M. Murr, and F. Michahelles. Remotebob: Support of on-site workers via a telepresence remote expert system. In Proceedings of the 6th International Conference on the Internet of Things, pages 7--14. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. R. Marner, A. Irlitti, and B. H. Thomas. Improving procedural task performance with augmented reality annotations. In 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 39--48, Oct 2013.Google ScholarGoogle ScholarCross RefCross Ref
  38. S. Mattsson, Å. Fast-Berglund, and J. Stahre. Managing production complexity by supporting cognitive processes in final assembly. In Proceedings of the 6th Swedish Production Symposium (SPS) 2014. 2014.Google ScholarGoogle Scholar
  39. N. Navab. Developing killer apps for industrial augmented reality. IEEE Computer Graphics and applications, 24(3):16--20, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Nee, S. Ong, G. Chryssolouris, and D. Mourtzis. Augmented reality applications in design and manufacturing. CIRP Annals-manufacturing technology, 61(2):657--679, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  41. U. Neumann and A. Majoros. Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In Virtual Reality Annual International Symposium, 1998. Proceedings., IEEE 1998, pages 4--11. IEEE, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Otto, M. Prieur, and E. Rukzio. Using scalable, interactive floor projection for production planning scenario. In Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, pages 363--368. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. V. Paelke. Augmented reality in the smart factory: Supporting workers in an industry 4.0. environment. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pages 1--4, Sept 2014.Google ScholarGoogle ScholarCross RefCross Ref
  44. V. Paelke, C. Röcker, N. Koch, H. Flatt, and S. Büttner. User interfaces for cyber-physical systems. at-Automatisierungstechnik, 63(10):833--843, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  45. G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann. A survey of mobile and wireless technologies for augmented reality systems. Computer Animation and Virtual Worlds, 19(1):3--22, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Pentenrieder, C. Bade, F. Doil, and P. Meier. Augmented reality-based factory planning-an application tailored to industrial needs. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 31--42. IEEE, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Platonov, H. Heibel, P. Meier, and B. Grollmann. A mobile markerless ar system for maintenance and repair. In Mixed and Augmented Reality, 2006. ISMAR 2006. IEEE/ACM International Symposium on, pages 105--108. IEEE, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. H. Regenbrecht, G. Baratoff, and W. Wilke. Augmented reality projects in the automotive and aerospace industries. IEEE Computer Graphics and Applications, 25(6):48--56, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Reif and D. Walch. Augmented & virtual reality applications in the field of logistics. The Visual Computer, 24(11):987--994, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. T. Salonen and J. Sääski. Dynamic and visual assembly instruction for configurable products using augmented reality techniques. In Advanced Design and Manufacture to Gain a Competitive Edge, pages 23--32. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  51. O. Sand, S. Büttner, V. Paelke, and C. Röcker. smart. assembly--projection-based augmented reality for supporting assembly workers. In International Conference on Virtual, Augmented and Mixed Reality, pages 643--652. Springer International Publishing, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  52. B. Sarupuri, G. A. Lee, and M. Billinghurst. An augmented reality guide for assisting forklift operation. In Mixed and Augmented Reality (ISMAR-Adjunct), 2016 IEEE International Symposium on, pages 59--60. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  53. B. Schwald and B. De Laval. An augmented reality system for training and assistance to maintenance in the industrial context. 2003.Google ScholarGoogle Scholar
  54. B. Schwerdtfeger and G. Klinker. Supporting order picking with augmented reality. In Mixed and Augmented Reality, 2008. ISMAR 2008. 7th IEEE/ACM International Symposium on, pages 91--94. IEEE, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Speicher, K. Tenhaft, S. Heinen, and H. Handorf. Enabling industry 4.0 with holobuilder. In GI-Jahrestagung, pages 1561--1575, 2015.Google ScholarGoogle Scholar
  56. A. Tang, C. Owen, F. Biocca, and W. Mou. Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '03, pages 73--80, New York, NY, USA, 2003. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. D. Van Krevelen and R. Poelman. Augmented reality: Technologies, applications, and limitations. 2007.Google ScholarGoogle Scholar
  58. S. Webel, U. Bockholt, T. Engelke, N. Gavish, M. Olbrich, and C. Preusche. An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems, 61(4):398--403, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Weidenhausen, C. Knoepfle, and D. Stricker. Lessons learned on the way to industrial augmented reality applications, a retrospective on arvika. Computers & Graphics, 27(6):887--891, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  60. P. Wellner. Interacting with paper on the digitaldesk. Commun. ACM, 36(7):87--96, July 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. W. Wohlgemuth and G. Triebfürst. Arvika: augmented reality for development, production and service. In Proceedings of DARE 2000 on Designing augmented reality environments, pages 151--152. ACM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. X. Wu, M. Haynes, A. Guo, and T. Starner. A comparison of order picking methods augmented with weight checking error detection. In Proceedings of the 2016 ACM International Symposium on Wearable Computers, pages 144--147. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. X. S. Zheng, C. Foucault, P. Matos da Silva, S. Dasari, T. Yang, and S. Goose. Eye-wearable technology for machine maintenance: Effects of display position and hands-free operation. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, pages 2125--2134, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The Design Space of Augmented and Virtual Reality Applications for Assistive Environments in Manufacturing: A Visual Approach

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          PETRA '17: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments
          June 2017
          455 pages
          ISBN:9781450352277
          DOI:10.1145/3056540

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 June 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader