DOI QR코드

DOI QR Code

Evaluation of Progressive Collapse-Resisting Capability of RC Structures due to Load Redistribution

하중 재분배에 의한 RC 구조물의 연쇄붕괴 저항성능 평가

  • Park, Hoon (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Suk, Chul-Gi (Korea Kacoh Co.,Ltd.)
  • 박훈 (전북대학교 자원에너지공학과) ;
  • 석철기 ((주)코리아카코)
  • Received : 2013.07.25
  • Accepted : 2013.08.26
  • Published : 2013.12.31

Abstract

Progressive collapse indicates the partial or total collapse of structures caused by the local damage of structural members arising from an abnormal load. To induce ideal collapse behavior, the progressive collapse is applied to most explosive demolition design for structures. To apply this progressive collapse phenomenon to the explosive demolition of structures, studies on progressive collapse resisting capacity depending on load redistribution are required. In this study, the progressive collapse analysis of a 10-story RC frame structure was performed by the applied element method for various 1st column removal cases. For each case, the progressive collapse resisting capacity of columns, girder, and slabs was evaluated by the increase rates of the vertical internal force in columns, the normal stress of reinforcing bars in girder, and the tensile stress of slab, respectively.

비정상하중에 의해 발생하는 구조부재의 국부손상이 구조물의 국부파괴 또는 전체파괴로 이어지는 연쇄붕괴는 이상적인 붕괴거동을 유도하기 위해 대부분의 구조물 발파해체 설계에 적용된다. 이러한 연쇄붕괴 현상을 구조물 발파해체에 적용하기 위해서는 하중의 재분배에 따른 연쇄붕괴 저항성능에 대한 연구가 요구된다. 본 연구에서는 응용요소법을 이용하여 10층 철근콘크리트 구조물의 연쇄붕괴 해석을 수행하였다. 구조부재인 기둥 요소의 제거 수와 제거 위치를 달라하여 하중의 재분배에 따른 기둥, 보, 슬래브에 대한 연쇄붕괴 저항성능을 평가하였다. 기둥의 수직내력 증가율은 하중의 재분배 경로수와 재분배 면적비에 영향을 받으며, 거더 하부근과 슬래브의 인장응력이 현수작용을 증대시키고, 연쇄붕괴에 저항하고 있음을 알 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. ASCE Standard ASCE/SEI 7-05 (2001) Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Reston, Virginia, USA.
  2. ASI (2010) Extreme Loading for Structures Theoretical Manual. Applied Science International, LCC., pp. 45-49.
  3. Baciu, C. and Lupoae, M. (2012) Nonlinear analysis for a reinforced concrete frame structure under extreme loads. Constructii Review, Vol. 13. No. 1, pp. 51-61.
  4. GSA (2003) Progressive Collapse Analysis and Design Guidelines. General Service Administration, USA, pp. 2-9.
  5. Krauthammer, T. (2008) Modern Protection Structures. CRC Press, pp. 373-377.
  6. Loizeaux, M. and Osborn, A. (2006) Progressive Collapse-An Implosion Contractorís Stock in Trade. J. Performance of constructed Facilities, ASCE, Vol. 20, No. 4, pp. 391-402. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(391)
  7. Lupoae, M., Baciu, C. and Constantin, D. (2013) Theoretical and experimental research on progressive collapse of RC frame buildings. Urbanism. Arhitectur. Constructii, Vol. 4, No. 3, pp. 71-87.
  8. Lupoae, M., Baciu, C., Constantin, D., and Puscau, H. (2011) Aspects concerning progressive collapse of a reinforced concrete frame structure with infill walls. Lecture Notes in Engineering and Computer Science, World Congress on Engineering, London, Vol. 3, No. 2, pp. 2198-2204.
  9. Maekawa, K. and Okamura. H. (1983) The deformational behavior and constitutive equation of concrete using the elasto-plastic and fracture model. J. the Faculty of Engineering, Vol. 37, No. 2, pp. 253-328.
  10. Park, H., Suk, C.G., Ko, Y.H., Jung, W.J., and Cho, S.H. (2012) Explosive demolition design for RC structure using progressive collapse analysis. 2012 Blasting Techniques Special Joint Symposium, Seoul, South Korea, pp. 145-152.
  11. Ristic, D., Yamada, Y., and Iemura, H. (1986) Stress-strain based modeling of hysteretic structures under earthquake induced bending and varying axial loads. Research report No. 86-ST-01, School.