Skip to main content

23.04.2024 | Engine and Emissions, Fuels and Lubricants

Local Planning Strategy Based on Deep Reinforcement Learning Over Estimation Suppression

verfasst von: Ling Han, Yiren Wang, Ruifeng Chi, Ruoyu Fang, Guopeng Liu, Qiang Yi, Changsheng Zhu

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Local planning is a critical and difficult task for intelligent vehicles in dynamic transportation environments. In this paper, a new method Suppress Q Deep Q Network (SQDQN) combining traditional deep reinforcement learning Deep Q Network (DQN) with information entropy is proposed for local planning in automatic driving. In the proposed approach, local planning strategy in complex traffic environment established by the actor–critic network based on DQN, the method adopts the way of execution action-evaluation action-update network to explore the optimal local planning strategy. Proposed strategy does not rely on accurate modeling of the scene, so it is suitable for complex and changeable traffic scenes. At the same time, evaluate the update process and determine the update range by using information entropy to solve a common problem in the network that over expectation of actions damage the performance of strategies. Use this approach to improve strategic performance. The trained local planning strategy is evaluated in three simulation scenarios: overtaking, following, driving in hazardous situations. The results illustrate the advantages of the proposed SQDQN method in solving local planning problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.CrossRef Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.CrossRef
Zurück zum Zitat Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.CrossRef Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.CrossRef
Zurück zum Zitat Chu, K., Lee, M., & Sunwoo, M. (2012). Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1599–1616.CrossRef Chu, K., Lee, M., & Sunwoo, M. (2012). Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1599–1616.CrossRef
Zurück zum Zitat Gao, H. B., Zhu, J. P., Zhang, T., Xie, G. T., Kan, Z., Hao, Z. Y., & Liu, K. (2022). Situational assessment for intelligent vehicles based on stochastic model and Gaussian distributions in typical traffic scenarios. IEEE Transactions on Systems, Man, and Cybernetics: System, 52(3), 1426–1436.CrossRef Gao, H. B., Zhu, J. P., Zhang, T., Xie, G. T., Kan, Z., Hao, Z. Y., & Liu, K. (2022). Situational assessment for intelligent vehicles based on stochastic model and Gaussian distributions in typical traffic scenarios. IEEE Transactions on Systems, Man, and Cybernetics: System, 52(3), 1426–1436.CrossRef
Zurück zum Zitat Gao, S. H., Huang, S. N., Xiang, C., & Lee, T. H. (2020). A review of optimal motion planning for unmanned vehicles. Journal of Marine Science and Technology-Taiwan, 28(25), 321–330. Gao, S. H., Huang, S. N., Xiang, C., & Lee, T. H. (2020). A review of optimal motion planning for unmanned vehicles. Journal of Marine Science and Technology-Taiwan, 28(25), 321–330.
Zurück zum Zitat Hassaballah, M., Kenk, M. A., Muhammad, K., & Minaee, S. (2021). Vehicle detection and tracking in adverse weather using a deep learning framework. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4230–4242.CrossRef Hassaballah, M., Kenk, M. A., Muhammad, K., & Minaee, S. (2021). Vehicle detection and tracking in adverse weather using a deep learning framework. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4230–4242.CrossRef
Zurück zum Zitat Huang, Y. J., Ding, H. T., Zhang, Y. B., Wang, H., Cao, D. P., Xu, N., & Hu, C. (2020). A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 67(2), 1376–1386.CrossRef Huang, Y. J., Ding, H. T., Zhang, Y. B., Wang, H., Cao, D. P., Xu, N., & Hu, C. (2020). A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 67(2), 1376–1386.CrossRef
Zurück zum Zitat Jeong, Y., & Yi, K. (2021). Target vehicle motion prediction-based motion planning framework for autonomous driving in uncontrolled intersections. IEEE Transactions on Intelligent Transportation Systems, 22(1), 168–177.CrossRef Jeong, Y., & Yi, K. (2021). Target vehicle motion prediction-based motion planning framework for autonomous driving in uncontrolled intersections. IEEE Transactions on Intelligent Transportation Systems, 22(1), 168–177.CrossRef
Zurück zum Zitat Kong, D. W., List, G. F., Guo, X. C., & Wu, D. X. (2018). Modeling vehicle car-following behavior in congested traffic conditions based on different vehicle combinations. Transportation Letters-the International Journal of Transportation Research, 10(5), 280–293. Kong, D. W., List, G. F., Guo, X. C., & Wu, D. X. (2018). Modeling vehicle car-following behavior in congested traffic conditions based on different vehicle combinations. Transportation Letters-the International Journal of Transportation Research, 10(5), 280–293.
Zurück zum Zitat Li, L. J., Gan, Z. Y., Xu, Qu., & Ran, B. (2020). Risk perception and the warning strategy based on safety potential field theory. Accident Analysis & Prevention, 148, 1–17.CrossRef Li, L. J., Gan, Z. Y., Xu, Qu., & Ran, B. (2020). Risk perception and the warning strategy based on safety potential field theory. Accident Analysis & Prevention, 148, 1–17.CrossRef
Zurück zum Zitat Li, X., Sun, Z., Dongpu, C., Liu, D., & He, H. (2017a). Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 87, 118–137.CrossRef Li, X., Sun, Z., Dongpu, C., Liu, D., & He, H. (2017a). Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 87, 118–137.CrossRef
Zurück zum Zitat Li, Y., Wang, Jq., & Wu, J. (2017b). Model calibration concerning risk coefficients of driving safety field model. Journal of Central South University, 24(1), 1494–1502.CrossRef Li, Y., Wang, Jq., & Wu, J. (2017b). Model calibration concerning risk coefficients of driving safety field model. Journal of Central South University, 24(1), 1494–1502.CrossRef
Zurück zum Zitat Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 1–15.CrossRef Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 1–15.CrossRef
Zurück zum Zitat Morales, E. F., Murrieta-Cid, R., Becerra, I., & Esquivel-Basaldua, M. A. (2021). A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning. Intelligent Service Robotics, 14(5), 773–805.CrossRef Morales, E. F., Murrieta-Cid, R., Becerra, I., & Esquivel-Basaldua, M. A. (2021). A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning. Intelligent Service Robotics, 14(5), 773–805.CrossRef
Zurück zum Zitat Rafiei, A., Fasakhodi, A. O., & Hajati, F. (2022). Pedestrian collision avoidance using deep reinforcement learning. International Journal of Automotive Technology, 23, 613–622.CrossRef Rafiei, A., Fasakhodi, A. O., & Hajati, F. (2022). Pedestrian collision avoidance using deep reinforcement learning. International Journal of Automotive Technology, 23, 613–622.CrossRef
Zurück zum Zitat Sajjad, M., Irfan, M., Muhammad, K., Del Ser, J., Sanchez-Medina, J., Andreev, S., Ding, W. P., & Lee, J. W. (2021). An efficient and scalable simulation model for autonomous vehicles with economical hardware. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1718–1732.CrossRef Sajjad, M., Irfan, M., Muhammad, K., Del Ser, J., Sanchez-Medina, J., Andreev, S., Ding, W. P., & Lee, J. W. (2021). An efficient and scalable simulation model for autonomous vehicles with economical hardware. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1718–1732.CrossRef
Zurück zum Zitat Sakhare, K. V., Tewari, T., & Vyas, V. (2020). Review of vehicle detection systems in advanced driver assistant systems. Archives of Computational Methods in Engineering, 27(2), 591–610.CrossRef Sakhare, K. V., Tewari, T., & Vyas, V. (2020). Review of vehicle detection systems in advanced driver assistant systems. Archives of Computational Methods in Engineering, 27(2), 591–610.CrossRef
Zurück zum Zitat van Hasselt, H. (2010). Double Q-learning[C]. In 23rd Advances in Neural Information Processing Systems (NeurIPS). Vancouver, British Columbia: MIT Press, pp. 2613–2621. van Hasselt, H. (2010). Double Q-learning[C]. In 23rd Advances in Neural Information Processing Systems (NeurIPS). Vancouver, British Columbia: MIT Press, pp. 2613–2621.
Zurück zum Zitat Wang, H., Huang, Y. A., Khajepour, Y., Zhang, Y. R., & Cao, D. (2019). Crash mitigation in motion planning for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3313–3323.CrossRef Wang, H., Huang, Y. A., Khajepour, Y., Zhang, Y. R., & Cao, D. (2019). Crash mitigation in motion planning for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3313–3323.CrossRef
Zurück zum Zitat Wang, H., Wang, Q., Chen, W., Zhao, L., & Tan, D. (2021). Path tracking based on model predictive control with variable predictive horizon. Transactions of the Institute of Measurement and Control, 43(12), 2676–2688.CrossRef Wang, H., Wang, Q., Chen, W., Zhao, L., & Tan, D. (2021). Path tracking based on model predictive control with variable predictive horizon. Transactions of the Institute of Measurement and Control, 43(12), 2676–2688.CrossRef
Zurück zum Zitat Wang, Liu, X. J., Qiu, T., Mu, C., Chen, C., & Zhou, P. (2020). A real-time collision prediction mechanism with deep learning for intelligent transportaton system. IEEE Transactions on Vehicular Technology, 69(9), 9497–9508.CrossRef Wang, Liu, X. J., Qiu, T., Mu, C., Chen, C., & Zhou, P. (2020). A real-time collision prediction mechanism with deep learning for intelligent transportaton system. IEEE Transactions on Vehicular Technology, 69(9), 9497–9508.CrossRef
Zurück zum Zitat Watkins, C. J. C. H. (1989). Learning from delayed rewards[D]. University of Cambridge. Watkins, C. J. C. H. (1989). Learning from delayed rewards[D]. University of Cambridge.
Zurück zum Zitat Wen, S., Zhao, Y., Yuan, X., Wang, Z., Zhang, D., & Manfredi, L. (2020). Path planning for active SLAM based on deep reinforcement learning under unknown environments. Intelligent Service Robotics, 13, 263–272.CrossRef Wen, S., Zhao, Y., Yuan, X., Wang, Z., Zhang, D., & Manfredi, L. (2020). Path planning for active SLAM based on deep reinforcement learning under unknown environments. Intelligent Service Robotics, 13, 263–272.CrossRef
Zurück zum Zitat Yoo, J. M., Jeong, Y., & Yi, K. (2021). Virtual target-based longitudinal motion planning of autonomous vehicles at urban intersections: determining control inputs of acceleration with human driving characteristic-based constraints. IEEE Vehicular Technology Magazine, 16(3), 38–46.CrossRef Yoo, J. M., Jeong, Y., & Yi, K. (2021). Virtual target-based longitudinal motion planning of autonomous vehicles at urban intersections: determining control inputs of acceleration with human driving characteristic-based constraints. IEEE Vehicular Technology Magazine, 16(3), 38–46.CrossRef
Zurück zum Zitat Zhang, X., Ma, H., Luo, X., & Yuan, J. (2022). LIDAR: Learning from imperfect demonstrations with advantage rectification. Frontiers of Computer Science, 16(1), 1–9.CrossRef Zhang, X., Ma, H., Luo, X., & Yuan, J. (2022). LIDAR: Learning from imperfect demonstrations with advantage rectification. Frontiers of Computer Science, 16(1), 1–9.CrossRef
Zurück zum Zitat Zhao, Z. Y., Wang, Q., & Li, X. L. (2020). Deep reinforcement learning based lane detection and localization. Neurocomputing, 413, 328–338.CrossRef Zhao, Z. Y., Wang, Q., & Li, X. L. (2020). Deep reinforcement learning based lane detection and localization. Neurocomputing, 413, 328–338.CrossRef
Zurück zum Zitat Zuo, Z. Q., Yang, X., Li, Z., Wang, Y. J., Han, Q. N., Wang, L., & Luo, X. Y. (2021). MPC-based cooperative control strategy of path planning and trajectory tracking for intelligent vehicles. IEEE Transactions on Intelligent Vehicles, 6(3), 513–522.CrossRef Zuo, Z. Q., Yang, X., Li, Z., Wang, Y. J., Han, Q. N., Wang, L., & Luo, X. Y. (2021). MPC-based cooperative control strategy of path planning and trajectory tracking for intelligent vehicles. IEEE Transactions on Intelligent Vehicles, 6(3), 513–522.CrossRef
Metadaten
Titel
Local Planning Strategy Based on Deep Reinforcement Learning Over Estimation Suppression
verfasst von
Ling Han
Yiren Wang
Ruifeng Chi
Ruoyu Fang
Guopeng Liu
Qiang Yi
Changsheng Zhu
Publikationsdatum
23.04.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00076-w

    Premium Partner