Skip to main content

2024 | OriginalPaper | Buchkapitel

Material Microstructure Design Using VAE-Regression with a Multimodal Prior

verfasst von : Avadhut Sardeshmukh, Sreedhar Reddy, B. P. Gautham, Pushpak Bhattacharyya

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a variational autoencoder (VAE)-based model for building forward and inverse structure-property linkages, a problem of paramount importance in computational materials science. Our model systematically combines VAE with regression, linking the two models through a two-level prior conditioned on the regression variables. The regression loss is optimized jointly with the reconstruction loss of the variational autoencoder, learning microstructure features relevant for property prediction and reconstruction. The resultant model can be used for both forward and inverse prediction i.e., for predicting the properties of a given microstructure as well as for predicting the microstructure required to obtain given properties. Since the inverse problem is ill-posed (one-to-many), we derive the objective function using a multi-modal Gaussian mixture prior enabling the model to infer multiple microstructures for a target set of properties. We show that for forward prediction, our model is as accurate as state-of-the-art forward-only models. Additionally, our method enables direct inverse inference. We show that the microstructures inferred using our model achieve desired properties reasonably accurately, avoiding the need for expensive optimization loops.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The mean-field assumption [1], commonly used in variational inference derivations (e.g., [15]).
 
Literatur
1.
Zurück zum Zitat Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)MathSciNetCrossRef Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)MathSciNetCrossRef
2.
Zurück zum Zitat Cang, R., Li, H., Yao, H., Jiao, Y., Ren, Y.: Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comput. Mater. Sci. 150, 212–221 (2018)CrossRef Cang, R., Li, H., Yao, H., Jiao, Y., Ren, Y.: Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comput. Mater. Sci. 150, 212–221 (2018)CrossRef
3.
Zurück zum Zitat Cecen, A., Dai, H., Yabansu, Y.C., Kalidindi, S.R., Song, L.: Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 146, 76–84 (2018)CrossRef Cecen, A., Dai, H., Yabansu, Y.C., Kalidindi, S.R., Song, L.: Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 146, 76–84 (2018)CrossRef
4.
Zurück zum Zitat Dilokthanakul, N., et al.: Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders. arXiv e-prints (2016) Dilokthanakul, N., et al.: Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders. arXiv e-prints (2016)
5.
Zurück zum Zitat Fernandez-Zelaia, P., Yabansu, Y.C., Kalidindi, S.R.: A comparative study of the efficacy of local/global and parametric/nonparametric machine learning methods for establishing structure-property linkages in high-contrast 3D elastic composites. Integrat. Mater. Manuf. Innov. 8(2), 67–81 (2019)CrossRef Fernandez-Zelaia, P., Yabansu, Y.C., Kalidindi, S.R.: A comparative study of the efficacy of local/global and parametric/nonparametric machine learning methods for establishing structure-property linkages in high-contrast 3D elastic composites. Integrat. Mater. Manuf. Innov. 8(2), 67–81 (2019)CrossRef
6.
Zurück zum Zitat Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
7.
Zurück zum Zitat Griffiths, R.R., Hernández-Lobato, J.M.: Constrained bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11, 577–586 (2020)CrossRef Griffiths, R.R., Hernández-Lobato, J.M.: Constrained bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11, 577–586 (2020)CrossRef
8.
Zurück zum Zitat Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018)CrossRef Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018)CrossRef
9.
Zurück zum Zitat Hershey, J.R., Olsen, P.A.: Approximating the kullback leibler divergence between gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 4, pp. IV-317–IV-320 (2007) Hershey, J.R., Olsen, P.A.: Approximating the kullback leibler divergence between gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 4, pp. IV-317–IV-320 (2007)
10.
Zurück zum Zitat Joy, T., Schmon, S., Torr, P., Siddharth, N., Rainforth, T.: Capturing label characteristics in vaes. In: International Conference on Learning Representations (2021) Joy, T., Schmon, S., Torr, P., Siddharth, N., Rainforth, T.: Capturing label characteristics in vaes. In: International Conference on Learning Representations (2021)
11.
Zurück zum Zitat Joy, T., Shi, Y., Torr, P., Rainforth, T., Schmon, S.M., Siddharth, N.: Learning multimodal VAEs through mutual supervision. In: International Conference on Learning Representations (2022) Joy, T., Shi, Y., Torr, P., Rainforth, T., Schmon, S.M., Siddharth, N.: Learning multimodal VAEs through mutual supervision. In: International Conference on Learning Representations (2022)
12.
Zurück zum Zitat Kim, Y.: Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder. Mater. Des. 202, 109544 (2021)CrossRef Kim, Y.: Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder. Mater. Des. 202, 109544 (2021)CrossRef
13.
Zurück zum Zitat Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, vol. 2, pp. 3581-3589. MIT Press (2014) Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, vol. 2, pp. 3581-3589. MIT Press (2014)
14.
Zurück zum Zitat Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014 (2014) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014 (2014)
15.
Zurück zum Zitat Lavda, F., Gregorová, M., Kalousis, A.: Data-dependent conditional priors for unsupervised learning of multimodal data. Entropy 22(8), 888 (2020)MathSciNetCrossRef Lavda, F., Gregorová, M., Kalousis, A.: Data-dependent conditional priors for unsupervised learning of multimodal data. Entropy 22(8), 888 (2020)MathSciNetCrossRef
16.
Zurück zum Zitat Li, X., Zhang, Y., Zhao, H., Burkhart, C., Brinson, L.C., Chen, W.: A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci. Rep. 8, 13461 (2018)CrossRef Li, X., Zhang, Y., Zhao, H., Burkhart, C., Brinson, L.C., Chen, W.: A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci. Rep. 8, 13461 (2018)CrossRef
17.
Zurück zum Zitat Mao, Y., et al.: Generative adversarial networks and mixture density networks-based inverse modeling for microstructural materials design. Integrat. Mater. Manuf. Innov. 11, 637–647 (2022)CrossRef Mao, Y., et al.: Generative adversarial networks and mixture density networks-based inverse modeling for microstructural materials design. Integrat. Mater. Manuf. Innov. 11, 637–647 (2022)CrossRef
18.
Zurück zum Zitat Sardeshmukh, A., Reddy, S., P., G.B., Bhattacharyya, P.: TextureVAE: learning interpretable representations of material microstructures using variational autoencoders. In: Proceedings of the AAAI 2021 Spring Symposium on Machine Learning for Physical Sciences. CEUR Workshop Proceedings, vol. 2964 (2021) Sardeshmukh, A., Reddy, S., P., G.B., Bhattacharyya, P.: TextureVAE: learning interpretable representations of material microstructures using variational autoencoders. In: Proceedings of the AAAI 2021 Spring Symposium on Machine Learning for Physical Sciences. CEUR Workshop Proceedings, vol. 2964 (2021)
19.
Zurück zum Zitat Serway, R., Jewett, J.: Physics for Scientists and Engineers. Cengage Learning (2013) Serway, R., Jewett, J.: Physics for Scientists and Engineers. Cengage Learning (2013)
20.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015 (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015 (2015)
21.
Zurück zum Zitat Yang, Z., et al.: Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278–287 (2018)CrossRef Yang, Z., et al.: Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278–287 (2018)CrossRef
23.
Zurück zum Zitat Yang, Z., Li, X., Catherine Brinson, L., Choudhary, A.N., Chen, W., Agrawal, A.: Microstructural materials design via deep adversarial learning methodology. J. Mech. Des. 140(11), 111416 (2018)CrossRef Yang, Z., Li, X., Catherine Brinson, L., Choudhary, A.N., Chen, W., Agrawal, A.: Microstructural materials design via deep adversarial learning methodology. J. Mech. Des. 140(11), 111416 (2018)CrossRef
Metadaten
Titel
Material Microstructure Design Using VAE-Regression with a Multimodal Prior
verfasst von
Avadhut Sardeshmukh
Sreedhar Reddy
B. P. Gautham
Pushpak Bhattacharyya
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2266-2_3

Premium Partner