Skip to main content
Erschienen in: Measurement Techniques 5/2023

09.09.2023

Measurements of Electrical Characteristics of Mammalian Oocytes

verfasst von: V. A. Shigimaga, A. A. Kolesnikova, E. V. Somova, A. A. Tishchenko, A. M. Feskov

Erschienen in: Measurement Techniques | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article describes the development of cell engineering technologies that use various electroporation modes and require knowledge of the electrical characteristics of living cells. Usually, cells are taken from laboratory animals of the same species, and the question of specific features of electrical characteristics of living cells remains open. Using the method of pulsed conductometry in an electric field of increasing strength, the electrical characteristics (conductivity, strength) were measured during electroporation and electrical breakdown of oocytes membranes of the following mammalian species: Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Sus scrofa (pig), Bos taurus (cow), and Homo sapiens (human). Mathematical analysis of the experimental dependences of the conductivity of mammalian oocytes based on polynomial approximation was performed. The electrical characteristics of oocytes were obtained based on the analysis of approximating polynomials for the presence of maximum curvature (membrane electrical breakdown) and inflection points and local extrema (the degree of reversible electroporation). Significant species differences in the measured electrical characteristics of the studied oocytes were established. The measurement results showed a significant species specificity of electrical characteristics, reflecting the different resistance of oocytes to electrical breakdown and the degree of reversible electroporation of membranes, which is probably associated with the peculiarities of the lipid composition of oocyte membranes, the integrity of the cytoskeleton structure, and the resistance of cells as a whole to the impact of a pulsed field. The results obtained can be used to implement various modes of electromanipulation with a living cell, i.e., electrotransfection of deoxyribonucleic acid (DNA), genes, electrofusion, as well as for point lysis of cells with a lost apoptosis mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Series of European Treaties No. 123. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (Strasbourg, France, 1986).
 
2
Order of the Ministry of Health of Ukraine No. 787 “On the Approval of the Procedure for the Use of Assisted Reproductive Technologies in Ukraine” dated September 9, 2013.
 
Literatur
1.
Zurück zum Zitat G. I. Skanavi, Physics of Dielectrics (Strong Fields Zone), Fizmatlit, Moscow (1958). G. I. Skanavi, Physics of Dielectrics (Strong Fields Zone), Fizmatlit, Moscow (1958).
2.
Zurück zum Zitat V. W. Franz, Breakdown of Dielectrics, IIL, Moscow (1961). V. W. Franz, Breakdown of Dielectrics, IIL, Moscow (1961).
3.
Zurück zum Zitat V. Ya. Ushakov, Impulse Electrical Breakdown of Liquids, Izd. TGU, Tomsk (1975). V. Ya. Ushakov, Impulse Electrical Breakdown of Liquids, Izd. TGU, Tomsk (1975).
4.
Zurück zum Zitat I. Adamchevskii, Electrical Conductivity of Liquid Dielectrics, Energiya, Leningrad (1977). I. Adamchevskii, Electrical Conductivity of Liquid Dielectrics, Energiya, Leningrad (1977).
5.
Zurück zum Zitat M. Beier, V. Bek, K. Meller, and V. Tsaengl, High Voltage Technique: Theoretical and Practical Foundations of Application, Energoatomizdat, Moscow (1989). M. Beier, V. Bek, K. Meller, and V. Tsaengl, High Voltage Technique: Theoretical and Practical Foundations of Application, Energoatomizdat, Moscow (1989).
6.
Zurück zum Zitat A. I. Dolginov, High Voltage Technique in the Electric Power Industry, Energiya, Moscow (1968). A. I. Dolginov, High Voltage Technique in the Electric Power Industry, Energiya, Moscow (1968).
7.
Zurück zum Zitat P. Kramar, D. Miklavcic, and A. M. Lebar, Determination of the Lipid Bilayer Breakdown Voltage by Means of Linear Rising Signal, Bioelectrochemistry, 70, No. 1, 23–27 (2007).CrossRef P. Kramar, D. Miklavcic, and A. M. Lebar, Determination of the Lipid Bilayer Breakdown Voltage by Means of Linear Rising Signal, Bioelectrochemistry, 70, No. 1, 23–27 (2007).CrossRef
8.
Zurück zum Zitat D. V. Karpunin, Study of the Properties of Bilayer Lipid Membranes Containing Lysolipids and Cholesterol: Synopsis of Doctor of Science Thesis, MFTI, Moscow (2005). D. V. Karpunin, Study of the Properties of Bilayer Lipid Membranes Containing Lysolipids and Cholesterol: Synopsis of Doctor of Science Thesis, MFTI, Moscow (2005).
9.
Zurück zum Zitat N. E. Bogatyryeva, Single Pores of Bilayer Lipid Membranes in the Temperature Zone of the Gel–Liquid Crystal Phase Transition: Synopsis of Doctor of Science Thesis, Moskovskaya Meditsinskaya Akademiya im. I. M. Sechenova, Moscow (1999) N. E. Bogatyryeva, Single Pores of Bilayer Lipid Membranes in the Temperature Zone of the Gel–Liquid Crystal Phase Transition: Synopsis of Doctor of Science Thesis, Moskovskaya Meditsinskaya Akademiya im. I. M. Sechenova, Moscow (1999)
10.
Zurück zum Zitat K. L. Chan, P. R. Gascoyne, F. F. Becker, and R. Pethig, Electrorotation of Liposomes: Verifi cation of Dielectric Multi-Shell Model for Cells, Biochim. Biophys. Acta, 1349, No. 2, 182–196 (1997).CrossRef K. L. Chan, P. R. Gascoyne, F. F. Becker, and R. Pethig, Electrorotation of Liposomes: Verifi cation of Dielectric Multi-Shell Model for Cells, Biochim. Biophys. Acta, 1349, No. 2, 182–196 (1997).CrossRef
11.
Zurück zum Zitat A. Iglic, C. Kulkarni, and M. Rappolt (eds.), Advances in Planar Lipid Bilayers and Liposomes, Academic Press (2015). A. Iglic, C. Kulkarni, and M. Rappolt (eds.), Advances in Planar Lipid Bilayers and Liposomes, Academic Press (2015).
12.
Zurück zum Zitat M. Di Muzio, R. Millan-Solsona, A. Dols-Perez, et al., Dielectric Properties and Lamellarity of Single Liposomes Measured by in-Liquid Scanning Dielectric Microscopy, J. Nanobiotechnol., 19, No. 1, 167 (2021). M. Di Muzio, R. Millan-Solsona, A. Dols-Perez, et al., Dielectric Properties and Lamellarity of Single Liposomes Measured by in-Liquid Scanning Dielectric Microscopy, J. Nanobiotechnol., 19, No. 1, 167 (2021).
13.
Zurück zum Zitat T. R. Galimzyanov, R. Yu. Molotkovskiy, M. A. Kalutskiy, et al., Lateral Interaction Aff ects the Kinetics of Metastable Through Pores in Lipid Membranes, Biol. Membran. Zh. Membran. Kletochn. Biol., 37, No. 2, 83–93 (2020). T. R. Galimzyanov, R. Yu. Molotkovskiy, M. A. Kalutskiy, et al., Lateral Interaction Aff ects the Kinetics of Metastable Through Pores in Lipid Membranes, Biol. Membran. Zh. Membran. Kletochn. Biol., 37, No. 2, 83–93 (2020).
14.
Zurück zum Zitat V. A. Shigimaga, Pulse Conductometry of Animal Cells and Liquid Media: Monograph, TOV Planeta-Print, Kharkiv (2021). V. A. Shigimaga, Pulse Conductometry of Animal Cells and Liquid Media: Monograph, TOV Planeta-Print, Kharkiv (2021).
15.
Zurück zum Zitat V. A. Shigimaga, Pulsed Conductometry in a Variable Electric Field: Outlook for the Development of Measurements, Meas. Tech., 57, No. 10, 1213–1218 (2015).CrossRef V. A. Shigimaga, Pulsed Conductometry in a Variable Electric Field: Outlook for the Development of Measurements, Meas. Tech., 57, No. 10, 1213–1218 (2015).CrossRef
16.
Zurück zum Zitat V. A. Shigimaga, Measurement of the Capacitance of a Biological Cell by a Pulse Method, Meas. Tech., 57, No. 2, 213–217 (2014).CrossRef V. A. Shigimaga, Measurement of the Capacitance of a Biological Cell by a Pulse Method, Meas. Tech., 57, No. 2, 213–217 (2014).CrossRef
17.
Zurück zum Zitat V. A. Shigimaga and Yu. E. Megel’, Investigation of Cell Conductivity with a Change in the Osmotic Concentration of the Medium, Vostoch. Evrop. Zh. Peredov. Tekhnol., 50, No. 2/5, 53–55 (2011). V. A. Shigimaga and Yu. E. Megel’, Investigation of Cell Conductivity with a Change in the Osmotic Concentration of the Medium, Vostoch. Evrop. Zh. Peredov. Tekhnol., 50, No. 2/5, 53–55 (2011).
18.
19.
Zurück zum Zitat E. I. Smolyaninova, V. A. Shigimaga, O. A. Strikha, et al., Eff ect of Cryopreservation Stages by Vitrifi cation in Ethylene Glycol and Sucrose Medium on 2-Cell Murine Embryos Electric Conductivity, Probl. Cryobiol. Cryomed., 23, No. 3, 228–239 (2013). E. I. Smolyaninova, V. A. Shigimaga, O. A. Strikha, et al., Eff ect of Cryopreservation Stages by Vitrifi cation in Ethylene Glycol and Sucrose Medium on 2-Cell Murine Embryos Electric Conductivity, Probl. Cryobiol. Cryomed., 23, No. 3, 228–239 (2013).
20.
Zurück zum Zitat L. Craven, M. X. Tang, G. S. Gorman, et al., Novel Reproductive Technologies to Prevent Mitochondrial Disease, Hum. Reprod. Update, 23, No. 5, 501–519 (2017).CrossRef L. Craven, M. X. Tang, G. S. Gorman, et al., Novel Reproductive Technologies to Prevent Mitochondrial Disease, Hum. Reprod. Update, 23, No. 5, 501–519 (2017).CrossRef
21.
Zurück zum Zitat V. A. Shigimaga, Pulsed Conductometer for Biological Cells and Liquid Media, Meas. Tech., 55, No. 11, 1294–1300 (2013).CrossRef V. A. Shigimaga, Pulsed Conductometer for Biological Cells and Liquid Media, Meas. Tech., 55, No. 11, 1294–1300 (2013).CrossRef
22.
Zurück zum Zitat L. A. Hyslop, P. Blakeley, L. Craven, et al., Towards Clinical Application of Pronuclear Transfer to Prevent Mitochondrial DNA Disease, Nature, 534, No. 7607, 383–386 (2016).ADSCrossRef L. A. Hyslop, P. Blakeley, L. Craven, et al., Towards Clinical Application of Pronuclear Transfer to Prevent Mitochondrial DNA Disease, Nature, 534, No. 7607, 383–386 (2016).ADSCrossRef
23.
Zurück zum Zitat G. Chia, J. Agudo, N. Treff , et al., Genomic Instability during Reprogramming by Nuclear Transfer is DNA Replication Dependent, Nat. Cell Biol., 19, No. 4, 282–291 (2017).CrossRef G. Chia, J. Agudo, N. Treff , et al., Genomic Instability during Reprogramming by Nuclear Transfer is DNA Replication Dependent, Nat. Cell Biol., 19, No. 4, 282–291 (2017).CrossRef
24.
Zurück zum Zitat C. Moros-Nicolás, P. Chevret, M. Jiménez-Movilla, et al., New Insights into the Mammalian Egg Zona Pellucida, Int. J. Mol. Sci., 22, No. 6, Article ID 3276 (2021). C. Moros-Nicolás, P. Chevret, M. Jiménez-Movilla, et al., New Insights into the Mammalian Egg Zona Pellucida, Int. J. Mol. Sci., 22, No. 6, Article ID 3276 (2021).
25.
Zurück zum Zitat K. G. Claw and W. J. Swanson, Evolution of the Egg: New Findings and Challenges, Annu. Rev. Genom. Hum. G, 13, 109–125 (2012).CrossRef K. G. Claw and W. J. Swanson, Evolution of the Egg: New Findings and Challenges, Annu. Rev. Genom. Hum. G, 13, 109–125 (2012).CrossRef
26.
Zurück zum Zitat P. J. McKeegan and R. G. Sturmey, The Role of Fatty Acids in Oocyte and Early Embryo Development, Reprod. Fert. Develop., 24, No. 1, 59–67 (2011).CrossRef P. J. McKeegan and R. G. Sturmey, The Role of Fatty Acids in Oocyte and Early Embryo Development, Reprod. Fert. Develop., 24, No. 1, 59–67 (2011).CrossRef
27.
Zurück zum Zitat T. G. McEvoy, G. D. Coull, P. J. Broadbent, et al., Fatty Acid Composition of Lipids in Immature Cattle, Pig and Sheep Oocytes with Intact Zona Pellucida, J. Reprod. Fert., 118, No. 1, 163–170 (2000).CrossRef T. G. McEvoy, G. D. Coull, P. J. Broadbent, et al., Fatty Acid Composition of Lipids in Immature Cattle, Pig and Sheep Oocytes with Intact Zona Pellucida, J. Reprod. Fert., 118, No. 1, 163–170 (2000).CrossRef
28.
Zurück zum Zitat G. Genikot, J. L. M. R. Leroy, A. Van Soom, and I. Donnay, The Use of a Fluorescent Dye, Nile Red, to Evaluate the Lipid Content of Single Mammalian Oocytes, Theriogenology, 63, No. 4, 1181–1194 (2005).CrossRef G. Genikot, J. L. M. R. Leroy, A. Van Soom, and I. Donnay, The Use of a Fluorescent Dye, Nile Red, to Evaluate the Lipid Content of Single Mammalian Oocytes, Theriogenology, 63, No. 4, 1181–1194 (2005).CrossRef
29.
Zurück zum Zitat R. Matorras, J. I. Ruiz, R. Mendoza, et al., Fatty Acid Composition of Fertilization-Failed Human Oocytes, Hum. Reprod., 13, No. 8, 2227–2230 (1998).CrossRef R. Matorras, J. I. Ruiz, R. Mendoza, et al., Fatty Acid Composition of Fertilization-Failed Human Oocytes, Hum. Reprod., 13, No. 8, 2227–2230 (1998).CrossRef
30.
Zurück zum Zitat H. B. Kim, S. Lee, J. H. Chung, et al., Eff ects of Actin Cytoskeleton Disruption on Electroporation in Vitro, Appl. Biochem. Biotech., 191, 1545–1561 (2020).CrossRef H. B. Kim, S. Lee, J. H. Chung, et al., Eff ects of Actin Cytoskeleton Disruption on Electroporation in Vitro, Appl. Biochem. Biotech., 191, 1545–1561 (2020).CrossRef
31.
Zurück zum Zitat K. Balantič, D. Miklavčič, I. Križaj, and P. Kramar, The Good and the Bad of Cell Membrane Electroporation, Acta Chim. Slov., 68, No. 4, 753–764 (2021).CrossRef K. Balantič, D. Miklavčič, I. Križaj, and P. Kramar, The Good and the Bad of Cell Membrane Electroporation, Acta Chim. Slov., 68, No. 4, 753–764 (2021).CrossRef
32.
Zurück zum Zitat P. M. Graybill and R. V. Davalos, Cytoskeletal Disruption After Electroporation and Its Signifi cance to Pulsed Electric Field Therapies, Cancers, 12, No. 5, Article ID 1132 (2020). P. M. Graybill and R. V. Davalos, Cytoskeletal Disruption After Electroporation and Its Signifi cance to Pulsed Electric Field Therapies, Cancers, 12, No. 5, Article ID 1132 (2020).
Metadaten
Titel
Measurements of Electrical Characteristics of Mammalian Oocytes
verfasst von
V. A. Shigimaga
A. A. Kolesnikova
E. V. Somova
A. A. Tishchenko
A. M. Feskov
Publikationsdatum
09.09.2023
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 5/2023
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-023-02236-3

Weitere Artikel der Ausgabe 5/2023

Measurement Techniques 5/2023 Zur Ausgabe