Skip to main content

2023 | OriginalPaper | Buchkapitel

8. Microbial Remediation of Mercury: An Overview

verfasst von : Marwa Eltarahony, Eman Ibrahim, Ghada Hegazy, Amira Sabry

Erschienen in: Mercury Toxicity

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mercury (Hg) jeopardizes ecological balance and public health globally owing to its cytotoxicity, indegradability, coexistence in different chemical forms, uneven distribution, mobility, and long-lasting in the atmosphere. Therefore, the endeavors for feasible, economic, systematic, easily available, and sustainable approaches can be customized, which are conclusively enduring. Bioremediation, particularly microbial remediation means, as a greener and cheaper strategy has piqued the interest of biotechnologists and ecologists to mitigate Hg risk. By the virtue of versatile physiological performance, microorganism either prokaryotic or eukaryotic in planktonic or in the sessile-biofilm state, solitary or in consortium, indigenously occurred or intendedly introduced as GMO under aerobic or anaerobic circumstances and even extremophiles, have the ability to detoxify Hg and transform its phase to less-toxic valence through various metabolic scenarios like biosorption, bioprecipitation, bioleaching, bioaccumulation, and biovolatilization. Importantly, all previous mechanisms were catalyzed by different enzymatic systems including mercuric reductase and organomercurial lyase. However, their recruitment in in situ or ex situ technologies also implemented sensibly. Interestingly, the combined remediation technology boosted microbial-remediating efficiency and potentiality, especially upon hybridizing microbes with novel biosorbents such as carbon-based material, polymer, and nanoparticles. All preceding aspects were addressed in detail inclusively in this chapter to compensate the gap among knowledge, lab-scale practice, and field-scale application for alleviating Hg-toxicity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abo-Alkasem M, Nemat H, Hassan M, Mostafa A (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent 47:31CrossRef Abo-Alkasem M, Nemat H, Hassan M, Mostafa A (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent 47:31CrossRef
Zurück zum Zitat Agarwal M, Rathore RS, Jagoe C, Chauhan A (2019) Multiple lines of evidences reveal mechanisms underpinning mercury resistance and volatilization by Stenotrophomonas sp. MA5 isolated from the Savannah River Site (SRS), USA. Cells 8:1–14CrossRef Agarwal M, Rathore RS, Jagoe C, Chauhan A (2019) Multiple lines of evidences reveal mechanisms underpinning mercury resistance and volatilization by Stenotrophomonas sp. MA5 isolated from the Savannah River Site (SRS), USA. Cells 8:1–14CrossRef
Zurück zum Zitat Aiking H, Govers H, Van’t Riet J (1985) Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 50(5):1262–1267CrossRef Aiking H, Govers H, Van’t Riet J (1985) Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 50(5):1262–1267CrossRef
Zurück zum Zitat Akhtar N, Khan S, Rehman S, Rehman Z, Khatoon A, Rha E, Jamil M (2021) Synergistic effects of zinc oxide nanoparticles and bacteria reduce heavy metals toxicity in rice (Oryza sativa L.) plant. Toxics 9(5):113 Akhtar N, Khan S, Rehman S, Rehman Z, Khatoon A, Rha E, Jamil M (2021) Synergistic effects of zinc oxide nanoparticles and bacteria reduce heavy metals toxicity in rice (Oryza sativa L.) plant. Toxics 9(5):113
Zurück zum Zitat Alcántara C, Coll-Marqués JM, Jadán-Piedra C, Vélez D, Devesa V, Zúñiga M, Monedero V (2018) Polyphosphate in Lactobacillus and its link to stress tolerance and probiotic properties. Front Microbiol 9:1–10CrossRef Alcántara C, Coll-Marqués JM, Jadán-Piedra C, Vélez D, Devesa V, Zúñiga M, Monedero V (2018) Polyphosphate in Lactobacillus and its link to stress tolerance and probiotic properties. Front Microbiol 9:1–10CrossRef
Zurück zum Zitat Al-Mailem DM, Al-Awadhi H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44CrossRef Al-Mailem DM, Al-Awadhi H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44CrossRef
Zurück zum Zitat Alviz-Gazitua P, Fuentes-Alburquenque S, Rojas LA, Turner RJ, Guiliani N, Seeger M (2019) The response of Cupriavidus metallidurans CH34 to cadmium involves inhibition of the initiation of biofilm formation, decrease in intracellular c-di-GMP levels, and a novel metal regulated phosphodiesterase. Front Microbiol 10:1499CrossRef Alviz-Gazitua P, Fuentes-Alburquenque S, Rojas LA, Turner RJ, Guiliani N, Seeger M (2019) The response of Cupriavidus metallidurans CH34 to cadmium involves inhibition of the initiation of biofilm formation, decrease in intracellular c-di-GMP levels, and a novel metal regulated phosphodiesterase. Front Microbiol 10:1499CrossRef
Zurück zum Zitat Amin A, Latif Z (2011) Isolation and characterization of H2S producing yeast to detoxify mercury containing compounds. Int J Microbiol 2:517–525 Amin A, Latif Z (2011) Isolation and characterization of H2S producing yeast to detoxify mercury containing compounds. Int J Microbiol 2:517–525
Zurück zum Zitat Amin A, Naveed M, Sarwar A, Rasheed S, Saleem HG, Latif Z, Bechthold A (2022) In vitro and in silico studies reveal Bacillus cereus AA-18 as a potential candidate for bioremediation of mercury-contaminated wastewater. Front Microbiol 13:847806CrossRef Amin A, Naveed M, Sarwar A, Rasheed S, Saleem HG, Latif Z, Bechthold A (2022) In vitro and in silico studies reveal Bacillus cereus AA-18 as a potential candidate for bioremediation of mercury-contaminated wastewater. Front Microbiol 13:847806CrossRef
Zurück zum Zitat Anthony E (2014) Bioremediation of mercury by biofilm forming mercury resistant marine bacteria. Doctoral dissertation. National Institute of Technology, Rourkela, India Anthony E (2014) Bioremediation of mercury by biofilm forming mercury resistant marine bacteria. Doctoral dissertation. National Institute of Technology, Rourkela, India
Zurück zum Zitat Anuar SN, Othman F, Chay TC, Nasir NA (2020) Biosorption of mercury ion (Hg2+) using live and dead cells of Rhizopus oryzae and Aspergillus niger: characterization, kinetic and isotherm studies. J Pure Appl Microbiol 14(3):1749–1760CrossRef Anuar SN, Othman F, Chay TC, Nasir NA (2020) Biosorption of mercury ion (Hg2+) using live and dead cells of Rhizopus oryzae and Aspergillus niger: characterization, kinetic and isotherm studies. J Pure Appl Microbiol 14(3):1749–1760CrossRef
Zurück zum Zitat Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74(3):682–692CrossRef Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74(3):682–692CrossRef
Zurück zum Zitat Azoddein AAM (2013) Mercury removal from petroleum based industries wastewater by Pseudomonas Putida ATCC 49128 in membrane bioreactor. Doctoral dissertation, UMP Azoddein AAM (2013) Mercury removal from petroleum based industries wastewater by Pseudomonas Putida ATCC 49128 in membrane bioreactor. Doctoral dissertation, UMP
Zurück zum Zitat Balan BM, Shini S, Krishnan KP, Mohan M (2018) Mercury tolerance and biosorption in bacteria isolated from Ny-Ålesund, Svalbard. Arctic J Basic Microbiol 58(4):286–295CrossRef Balan BM, Shini S, Krishnan KP, Mohan M (2018) Mercury tolerance and biosorption in bacteria isolated from Ny-Ålesund, Svalbard. Arctic J Basic Microbiol 58(4):286–295CrossRef
Zurück zum Zitat Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384CrossRef Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384CrossRef
Zurück zum Zitat Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DC, Ok YS, Rinklebe J (2019) Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environ Int 127:276–290CrossRef Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DC, Ok YS, Rinklebe J (2019) Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environ Int 127:276–290CrossRef
Zurück zum Zitat Bouffard A, Amyot M (2009) Importance of elemental mercury in lake sediments. Chemosphere 74(8):1098–1103CrossRef Bouffard A, Amyot M (2009) Importance of elemental mercury in lake sediments. Chemosphere 74(8):1098–1103CrossRef
Zurück zum Zitat Bravo G, Vega-Celedón P, Gentina JC, Seeger M (2020a) Effects of mercury II on Cupriavidus metallidurans strain MSR33 during mercury bioremediation under aerobic and anaerobic conditions. Process 8(8):893 Bravo G, Vega-Celedón P, Gentina JC, Seeger M (2020a) Effects of mercury II on Cupriavidus metallidurans strain MSR33 during mercury bioremediation under aerobic and anaerobic conditions. Process 8(8):893
Zurück zum Zitat Bravo G, Vega-Celedón P, Gentina JC, Seeger M (2020b) Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms 8(12):1952 Bravo G, Vega-Celedón P, Gentina JC, Seeger M (2020b) Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms 8(12):1952
Zurück zum Zitat Cardona GI, Escobar MC, Acosta-González A, Marín P, Marqués S (2022) Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Appl Microbiol Biotechnol 106:2775–2793CrossRef Cardona GI, Escobar MC, Acosta-González A, Marín P, Marqués S (2022) Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Appl Microbiol Biotechnol 106:2775–2793CrossRef
Zurück zum Zitat Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73(13):3807–3818CrossRef Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73(13):3807–3818CrossRef
Zurück zum Zitat Chang J, Yang Q, Dong J, Ji B, Si G, He F, Li B, Chen J (2019) Reduction in Hg phytoavailability in soil using Hg-volatilizing bacteria and biochar and the response of the native bacterial community. Microbiol Biotechnol 12(5):1014–1023CrossRef Chang J, Yang Q, Dong J, Ji B, Si G, He F, Li B, Chen J (2019) Reduction in Hg phytoavailability in soil using Hg-volatilizing bacteria and biochar and the response of the native bacterial community. Microbiol Biotechnol 12(5):1014–1023CrossRef
Zurück zum Zitat Chang J, Shi Y, Si G, Yang Q, Dong J, Chen J (2020) The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. J Hazard Mater 396:122638 Chang J, Shi Y, Si G, Yang Q, Dong J, Chen J (2020) The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. J Hazard Mater 396:122638
Zurück zum Zitat Chen SC, Lin WH, Chien CC, Tsang DC, Kao CM (2018) Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere 200:266–273CrossRef Chen SC, Lin WH, Chien CC, Tsang DC, Kao CM (2018) Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere 200:266–273CrossRef
Zurück zum Zitat Choudhury PR, Bhattacharya P, Ghosh S, Majumdar S, Saha S, Sahoo GC (2017) Removal of Cr (VI) by synthesized titania embedded dead yeast nanocomposite: optimization and modeling by response surface methodology. J Environ Chem Eng 5(1):214–221CrossRef Choudhury PR, Bhattacharya P, Ghosh S, Majumdar S, Saha S, Sahoo GC (2017) Removal of Cr (VI) by synthesized titania embedded dead yeast nanocomposite: optimization and modeling by response surface methodology. J Environ Chem Eng 5(1):214–221CrossRef
Zurück zum Zitat Christakis CA, Barkay T, Boyd ES (2021) Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic Archaea. Front Microbiol 12:1–20CrossRef Christakis CA, Barkay T, Boyd ES (2021) Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic Archaea. Front Microbiol 12:1–20CrossRef
Zurück zum Zitat Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2014) Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chem Geol 363:334–340CrossRef Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2014) Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chem Geol 363:334–340CrossRef
Zurück zum Zitat Deckwer WD, Becker FU, Ledakowicz S, Wagner-Döbler I (2004) Microbial removal of ionic mercury in a three-phase fluidized bed reactor. Environ Sci Technol 38(6):1858–1865CrossRef Deckwer WD, Becker FU, Ledakowicz S, Wagner-Döbler I (2004) Microbial removal of ionic mercury in a three-phase fluidized bed reactor. Environ Sci Technol 38(6):1858–1865CrossRef
Zurück zum Zitat Dekker L, Arsène-Ploetze F, Santini JM (2016) Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 167(3):234–239CrossRef Dekker L, Arsène-Ploetze F, Santini JM (2016) Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 167(3):234–239CrossRef
Zurück zum Zitat Deng X, Jia P (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour Technol 102:3083–3088CrossRef Deng X, Jia P (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour Technol 102:3083–3088CrossRef
Zurück zum Zitat Eltarahony M, Zaki S, Abd-El-Haleem D (2020) Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci Rep 10(1):4029CrossRef Eltarahony M, Zaki S, Abd-El-Haleem D (2020) Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci Rep 10(1):4029CrossRef
Zurück zum Zitat Eltarahony M, Kamal A, Zaki S, Abd-El-Haleem D (2021) Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola. J Chem Technol Biotechnol 96(11):3152–3165CrossRef Eltarahony M, Kamal A, Zaki S, Abd-El-Haleem D (2021) Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola. J Chem Technol Biotechnol 96(11):3152–3165CrossRef
Zurück zum Zitat EPA (2003) EPA protocol for the review of existing national primary drinking water regulations, united states environmental protection agency office of water office of groundwater and drinking water standards and risk management division targeting and Analysis branch1200 pennsylvania avenue, NW (4607M) Washington, DC 20460 EPA (2003) EPA protocol for the review of existing national primary drinking water regulations, united states environmental protection agency office of water office of groundwater and drinking water standards and risk management division targeting and Analysis branch1200 pennsylvania avenue, NW (4607M) Washington, DC 20460
Zurück zum Zitat Essa AM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:4CrossRef Essa AM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:4CrossRef
Zurück zum Zitat Farraji H, Zaman NQ, Tajuddin R, Faraji H (2016) Advantages and disadvantages of phytoremediation: a concise review. Int J Env Tech Sci. 2:69–75 Farraji H, Zaman NQ, Tajuddin R, Faraji H (2016) Advantages and disadvantages of phytoremediation: a concise review. Int J Env Tech Sci. 2:69–75
Zurück zum Zitat Feng S, Ai Z, Zheng S, Gu B, Li Y (2014) Effects of dryout and inflow water quality on mercury methylation in a constructed wetland. Wat Air Soil Poll 225:1–1CrossRef Feng S, Ai Z, Zheng S, Gu B, Li Y (2014) Effects of dryout and inflow water quality on mercury methylation in a constructed wetland. Wat Air Soil Poll 225:1–1CrossRef
Zurück zum Zitat Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464CrossRef Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464CrossRef
Zurück zum Zitat Franco MW, Mendes LA, Windmöller CC, Moura KA, Oliveira LA, Barbosa FA (2018) Mercury methylation capacity and removal of Hg species from aqueous medium by cyanobacteria. Wat Air Soil Poll 229:1–2CrossRef Franco MW, Mendes LA, Windmöller CC, Moura KA, Oliveira LA, Barbosa FA (2018) Mercury methylation capacity and removal of Hg species from aqueous medium by cyanobacteria. Wat Air Soil Poll 229:1–2CrossRef
Zurück zum Zitat François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Vandervennet M, Garcia D, Molinier AL, Pignol D, Peduzzi J (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78(4):1097–1106CrossRef François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Vandervennet M, Garcia D, Molinier AL, Pignol D, Peduzzi J (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78(4):1097–1106CrossRef
Zurück zum Zitat Frey B, Rast BM, Qi W, Stierli B, Brunner I (2022) Long-term mercury contamination does not affect the microbial gene potential for C and N cycling in soils but enhances detoxification gene abundance. Front Microbiol 13:1–18CrossRef Frey B, Rast BM, Qi W, Stierli B, Brunner I (2022) Long-term mercury contamination does not affect the microbial gene potential for C and N cycling in soils but enhances detoxification gene abundance. Front Microbiol 13:1–18CrossRef
Zurück zum Zitat Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA (2018) Robust mercury methylation across diverse methanogenic archaea. Mbio 9(2):e02403-e2417CrossRef Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA (2018) Robust mercury methylation across diverse methanogenic archaea. Mbio 9(2):e02403-e2417CrossRef
Zurück zum Zitat Gionfriddo CM, Soren AB, Wymore AM, Hartnett DS, Podar M, Parks JM, Elias DA, Gilmour CC (2023) Transcriptional control of hgcAB by an ArsR-like regulator in Pseudodesulfovibrio mercurii ND132. Appl Environ Microbiol 89:1–23CrossRef Gionfriddo CM, Soren AB, Wymore AM, Hartnett DS, Podar M, Parks JM, Elias DA, Gilmour CC (2023) Transcriptional control of hgcAB by an ArsR-like regulator in Pseudodesulfovibrio mercurii ND132. Appl Environ Microbiol 89:1–23CrossRef
Zurück zum Zitat Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus Fontes B, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. Hazmats 382:121024 Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus Fontes B, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. Hazmats 382:121024
Zurück zum Zitat Goci MC, Leudjo, Taka A, Martin L, Klink MJ (2023) Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymer J15(3):482 Goci MC, Leudjo, Taka A, Martin L, Klink MJ (2023) Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymer J15(3):482
Zurück zum Zitat Gong Y, Zhao D, Wang Q (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460CrossRef Gong Y, Zhao D, Wang Q (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460CrossRef
Zurück zum Zitat Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S, Tribedi P (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6(5):223–231 Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S, Tribedi P (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6(5):223–231
Zurück zum Zitat Grégoire DS, Poulain AJ (2014) A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6(3):396–407CrossRef Grégoire DS, Poulain AJ (2014) A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6(3):396–407CrossRef
Zurück zum Zitat Grégoire DS, Poulain AJ (2016) A physiological role for HgII during phototrophic growth. Nat Geosci 9(2):121–125CrossRef Grégoire DS, Poulain AJ (2016) A physiological role for HgII during phototrophic growth. Nat Geosci 9(2):121–125CrossRef
Zurück zum Zitat Grégoire DS, Lavoie NC, Poulain AJ (2018) Heliobacteria reveal fermentation as a key pathway for mercury reduction in anoxic environments. Environ Sci Technol 52(7):4145–4153CrossRef Grégoire DS, Lavoie NC, Poulain AJ (2018) Heliobacteria reveal fermentation as a key pathway for mercury reduction in anoxic environments. Environ Sci Technol 52(7):4145–4153CrossRef
Zurück zum Zitat Groudev S, Georgiev P, Spasova I, Nicolova M (2014) Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation. J Geochem Explor 144:374–379CrossRef Groudev S, Georgiev P, Spasova I, Nicolova M (2014) Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation. J Geochem Explor 144:374–379CrossRef
Zurück zum Zitat Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microbol Biochem Technol 8(4):364–372 Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microbol Biochem Technol 8(4):364–372
Zurück zum Zitat Håkansson T, Suer P, Mattiasson B, Allard B (2008) Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation. Int J Environ Sci Technol 5:267–274CrossRef Håkansson T, Suer P, Mattiasson B, Allard B (2008) Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation. Int J Environ Sci Technol 5:267–274CrossRef
Zurück zum Zitat He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Poll Res 22:8124–8147CrossRef He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Poll Res 22:8124–8147CrossRef
Zurück zum Zitat Herath BM, Madushan KW, Lakmali JP, Yapa PN (2021) Arbuscular mycorrhizal fungi as a potential tool for bioremediation of heavy metals in contaminated soil. World J Adv Res Rev 10(3):217–228 Herath BM, Madushan KW, Lakmali JP, Yapa PN (2021) Arbuscular mycorrhizal fungi as a potential tool for bioremediation of heavy metals in contaminated soil. World J Adv Res Rev 10(3):217–228
Zurück zum Zitat Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag Res 25(4):345–352CrossRef Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag Res 25(4):345–352CrossRef
Zurück zum Zitat Huang Q, Chen W, Xu L (2005) Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22(5):227–236CrossRef Huang Q, Chen W, Xu L (2005) Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22(5):227–236CrossRef
Zurück zum Zitat Hyma M, Dupont RR (2001) Groundwater and soil remediation: process design and cost estimating of proven technologies. American Society of Civil Engineers, ChicagoCrossRef Hyma M, Dupont RR (2001) Groundwater and soil remediation: process design and cost estimating of proven technologies. American Society of Civil Engineers, ChicagoCrossRef
Zurück zum Zitat Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil Wat Air Soil Poll 43(1):118–126 Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil Wat Air Soil Poll 43(1):118–126
Zurück zum Zitat Jain AN, Udayashankara TH, Lokesh KS (2012) Review on bioremediation of heavy metals with microbial isolates and amendments on soil residue. Int J Sci Res 6:2319–7064 Jain AN, Udayashankara TH, Lokesh KS (2012) Review on bioremediation of heavy metals with microbial isolates and amendments on soil residue. Int J Sci Res 6:2319–7064
Zurück zum Zitat Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 19:11 Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 19:11
Zurück zum Zitat Jaiswal G, Singh R, Porwal S (2019) Bioremediation of mercury through encapsulation of the clone carrying meroperon. J Pure Appl Microbiol 13(1):553–561CrossRef Jaiswal G, Singh R, Porwal S (2019) Bioremediation of mercury through encapsulation of the clone carrying meroperon. J Pure Appl Microbiol 13(1):553–561CrossRef
Zurück zum Zitat Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28(4) Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28(4)
Zurück zum Zitat Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8(8):1336CrossRef Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8(8):1336CrossRef
Zurück zum Zitat Kim YM, Chung JY, An HS, Park SY, Kim BG, Bae JW, Han M, Cho YJ, Hong YS (2015) Biomonitoring of lead, cadmium, total mercury, and methylmercury levels in maternal blood and in umbilical cord blood at birth in South Korea. Int J Environ Res Public Health 12(10):13482–13493CrossRef Kim YM, Chung JY, An HS, Park SY, Kim BG, Bae JW, Han M, Cho YJ, Hong YS (2015) Biomonitoring of lead, cadmium, total mercury, and methylmercury levels in maternal blood and in umbilical cord blood at birth in South Korea. Int J Environ Res Public Health 12(10):13482–13493CrossRef
Zurück zum Zitat Kim Y, Abdilla B, Yuan K, De Andrade V, Sturchio NC, Lee SS, Fenter P (2021) Replacement of calcium carbonate polymorphs by cerussite. ACS Earth Space Chem 5(9):2433–2441CrossRef Kim Y, Abdilla B, Yuan K, De Andrade V, Sturchio NC, Lee SS, Fenter P (2021) Replacement of calcium carbonate polymorphs by cerussite. ACS Earth Space Chem 5(9):2433–2441CrossRef
Zurück zum Zitat Kritee K, Motta LC, Blum JD, Tsui MT, Reinfelder JR (2017) Photomicrobial visible light-induced magnetic mass independent fractionation of mercury in a marine microalga. ACS Earth Space Chem 2(5):432–440CrossRef Kritee K, Motta LC, Blum JD, Tsui MT, Reinfelder JR (2017) Photomicrobial visible light-induced magnetic mass independent fractionation of mercury in a marine microalga. ACS Earth Space Chem 2(5):432–440CrossRef
Zurück zum Zitat Krout IN, Scrimale T, Vorojeikina D, Boyd ES, Rand MD (2022) Organomercurial lyase (merB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (merA). Appl Environ Microbiol 88:1–14CrossRef Krout IN, Scrimale T, Vorojeikina D, Boyd ES, Rand MD (2022) Organomercurial lyase (merB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (merA). Appl Environ Microbiol 88:1–14CrossRef
Zurück zum Zitat Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8(7):44–50CrossRef Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8(7):44–50CrossRef
Zurück zum Zitat Li Y, Li D, Song B, Li Y (2022a) The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Res 215:118266CrossRef Li Y, Li D, Song B, Li Y (2022a) The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Res 215:118266CrossRef
Zurück zum Zitat Li X, Yang Z, Zhang G, Si S, Wu X, Cai L (2022b) Plasmid genomes reveal the distribution, abundance, and organization of mercury-related genes and their co-distribution with antibiotic resistant genes in gamma proteobacteria. Genes 13:1–13CrossRef Li X, Yang Z, Zhang G, Si S, Wu X, Cai L (2022b) Plasmid genomes reveal the distribution, abundance, and organization of mercury-related genes and their co-distribution with antibiotic resistant genes in gamma proteobacteria. Genes 13:1–13CrossRef
Zurück zum Zitat Li XC, Yang ZZ, Zhang C, Wei JJ, Zhang HQ, Li ZH, Ma C, Wang MS, Chen JQ, Hu JW (2019) Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. J Chem Eng 373:307–317 Li XC, Yang ZZ, Zhang C, Wei JJ, Zhang HQ, Li ZH, Ma C, Wang MS, Chen JQ, Hu JW (2019) Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. J Chem Eng 373:307–317
Zurück zum Zitat Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y (2023) Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): from enriched isotope tracing perspective. Ecotoxicol Environ Saf 255:114776 Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y (2023) Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): from enriched isotope tracing perspective. Ecotoxicol Environ Saf 255:114776
Zurück zum Zitat Lin H, Hurt RA Jr, Johs A, Parks JM, Morrell-Falvey JL, Liang L, Elias DA, Gu B (2014) Unexpected effects of gene deletion on interactions of mercury with the methylation-deficient mutant Δ hgcAB. Environ Sci Technol Lett 1(5):271–276CrossRef Lin H, Hurt RA Jr, Johs A, Parks JM, Morrell-Falvey JL, Liang L, Elias DA, Gu B (2014) Unexpected effects of gene deletion on interactions of mercury with the methylation-deficient mutant Δ hgcAB. Environ Sci Technol Lett 1(5):271–276CrossRef
Zurück zum Zitat Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW (2021) Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J 15:1810–1825CrossRef Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW (2021) Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J 15:1810–1825CrossRef
Zurück zum Zitat Lin H, Moody ER, Williams TA, Moreau JW (2023) On the origin and evolution of microbial mercury methylation. Genome Biol Evol 15:1–12CrossRef Lin H, Moody ER, Williams TA, Moreau JW (2023) On the origin and evolution of microbial mercury methylation. Genome Biol Evol 15:1–12CrossRef
Zurück zum Zitat Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H (2022) Immobilization of biomass materials for removal of refractory organic pollutants from wastewater. Int J Environ Res Public Health 19(21):13830CrossRef Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H (2022) Immobilization of biomass materials for removal of refractory organic pollutants from wastewater. Int J Environ Res Public Health 19(21):13830CrossRef
Zurück zum Zitat Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T (2016) Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ Sci Technol 50(8):4366–4373CrossRef Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T (2016) Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ Sci Technol 50(8):4366–4373CrossRef
Zurück zum Zitat Luo H, Cheng Q, He D, Sun J, Li J, Pan X (2023) Recent advances in microbial mercury methylation: a review on methylation habitat, methylator, mechanism, and influencing factor. Process Safe Environ Prot 170:286–296CrossRef Luo H, Cheng Q, He D, Sun J, Li J, Pan X (2023) Recent advances in microbial mercury methylation: a review on methylation habitat, methylator, mechanism, and influencing factor. Process Safe Environ Prot 170:286–296CrossRef
Zurück zum Zitat Ma F, Peng C, Hou D, Wu B, Zhang Q, Li F, Gu Q (2015) Citric acid facilitated thermal treatment: an innovative method for the remediation of mercury contaminated soil. Hazmats 300:546–552 Ma F, Peng C, Hou D, Wu B, Zhang Q, Li F, Gu Q (2015) Citric acid facilitated thermal treatment: an innovative method for the remediation of mercury contaminated soil. Hazmats 300:546–552
Zurück zum Zitat Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017a) Mercury toxicity to terrestrial biota. Ecol Indic 74:451–462 Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017a) Mercury toxicity to terrestrial biota. Ecol Indic 74:451–462
Zurück zum Zitat Mahbub KR, Subashchandrabose SR, Krishnan K, Naidu R, Megharaj M (2017b) Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Appl Microbiol Biotechnol 101:2163–2175 Mahbub KR, Subashchandrabose SR, Krishnan K, Naidu R, Megharaj M (2017b) Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Appl Microbiol Biotechnol 101:2163–2175
Zurück zum Zitat Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M (2017c) Bioremediation of mercury: not properly exploited in contaminated soils. Appl Microbiol Biotechnol 101:963–976 Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M (2017c) Bioremediation of mercury: not properly exploited in contaminated soils. Appl Microbiol Biotechnol 101:963–976
Zurück zum Zitat Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 4:9 Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 4:9
Zurück zum Zitat Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24CrossRef Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24CrossRef
Zurück zum Zitat Marques CR (2018) Extremophilic microfactories: applications in metal and radionuclide bioremediation. Front Microbiol 9:1191CrossRef Marques CR (2018) Extremophilic microfactories: applications in metal and radionuclide bioremediation. Front Microbiol 9:1191CrossRef
Zurück zum Zitat McCarthy D, Edwards GC, Gustin MS, Care A, Miller MB, Sunna A (2017) An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere 184:694–699CrossRef McCarthy D, Edwards GC, Gustin MS, Care A, Miller MB, Sunna A (2017) An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere 184:694–699CrossRef
Zurück zum Zitat Millacura FA, Janssen PJ, Monsieurs P, Janssen A, Provoost A, Van Houdt R, Rojas LA (2018) Unintentional genomic changes endow Cupriavidus metallidurans with an augmented heavy-metal resistance. Genes 9(11):551CrossRef Millacura FA, Janssen PJ, Monsieurs P, Janssen A, Provoost A, Van Houdt R, Rojas LA (2018) Unintentional genomic changes endow Cupriavidus metallidurans with an augmented heavy-metal resistance. Genes 9(11):551CrossRef
Zurück zum Zitat Mokone JG, Tutu H, Chimuka L, Cukrowska EM (2018) Optimization and characterization of Cladophora sp. alga immobilized in alginate beads and silica gel for the biosorption of mercury from aqueous solutions. Wat Air Soil Poll 229:1–14CrossRef Mokone JG, Tutu H, Chimuka L, Cukrowska EM (2018) Optimization and characterization of Cladophora sp. alga immobilized in alginate beads and silica gel for the biosorption of mercury from aqueous solutions. Wat Air Soil Poll 229:1–14CrossRef
Zurück zum Zitat Mukherjee A, Wheaton GH, Blum PH, Kelly RM (2012) Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Proc Natl Acad Sci 109(41):16702–16707CrossRef Mukherjee A, Wheaton GH, Blum PH, Kelly RM (2012) Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Proc Natl Acad Sci 109(41):16702–16707CrossRef
Zurück zum Zitat Nakamura K, Hagimine M, Sakai M, Furukawa K (1999) Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10:443–447CrossRef Nakamura K, Hagimine M, Sakai M, Furukawa K (1999) Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10:443–447CrossRef
Zurück zum Zitat Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E (2020) Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J Ecol Eng 21(6) Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E (2020) Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J Ecol Eng 21(6)
Zurück zum Zitat O’Connor D, Peng T, Li G, Wang S, Duan L, Mulder J, Cornelissen G, Cheng Z, Yang S, Hou D (2018) Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Sci Total Environ 621:819–826CrossRef O’Connor D, Peng T, Li G, Wang S, Duan L, Mulder J, Cornelissen G, Cheng Z, Yang S, Hou D (2018) Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Sci Total Environ 621:819–826CrossRef
Zurück zum Zitat Okoh MP, Olobayetan IW, Machunga-Mambula SS (2018) Bioleaching, a technology for metal extraction and remediation: mitigating health consequences for metal exposure. Int J Develop Sustain 7:2103–2118 Okoh MP, Olobayetan IW, Machunga-Mambula SS (2018) Bioleaching, a technology for metal extraction and remediation: mitigating health consequences for metal exposure. Int J Develop Sustain 7:2103–2118
Zurück zum Zitat O'rear DJ, Cooper RE, Sheu FR, Belue JT (2014) Inventors; Chevron USA Inc, assignee. Process, method, and system for removing mercury from fluids. United States patent US 8,790,427 O'rear DJ, Cooper RE, Sheu FR, Belue JT (2014) Inventors; Chevron USA Inc, assignee. Process, method, and system for removing mercury from fluids. United States patent US 8,790,427
Zurück zum Zitat Ozdemir S, Kilinc E, Celik KS, Okumus V, Soylak M (2017) Simultaneous preconcentrations of CO2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem 215:447–453CrossRef Ozdemir S, Kilinc E, Celik KS, Okumus V, Soylak M (2017) Simultaneous preconcentrations of CO2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem 215:447–453CrossRef
Zurück zum Zitat Panda J, Sarkar P (2012) Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ Sci Poll Res 19:1809–1817CrossRef Panda J, Sarkar P (2012) Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ Sci Poll Res 19:1809–1817CrossRef
Zurück zum Zitat Pan-Hou HS, Imura N (1981) Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2. Arch Microbiol 129:49–52CrossRef Pan-Hou HS, Imura N (1981) Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2. Arch Microbiol 129:49–52CrossRef
Zurück zum Zitat Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. JHM Lett 177(1–3):676–682 Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. JHM Lett 177(1–3):676–682
Zurück zum Zitat Pepi M, Focardi S, Tarabelli A, Volterrani M, Focardi SE (2013) Bacterial strains resistant to inorganic and organic forms of mercury isolated from polluted sediments of the Orbetello Lagoon, Italy, and their possible use in bioremediation processes. In: E3S web of conferences.1, 31002. EDP Sciences Pepi M, Focardi S, Tarabelli A, Volterrani M, Focardi SE (2013) Bacterial strains resistant to inorganic and organic forms of mercury isolated from polluted sediments of the Orbetello Lagoon, Italy, and their possible use in bioremediation processes. In: E3S web of conferences.1, 31002. EDP Sciences
Zurück zum Zitat Poulin BA, Aiken GR, Nagy KL, Manceau A, Krabbenhoft DP, Ryan JN (2016) Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim Cosmochim Acta 176:118–138CrossRef Poulin BA, Aiken GR, Nagy KL, Manceau A, Krabbenhoft DP, Ryan JN (2016) Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim Cosmochim Acta 176:118–138CrossRef
Zurück zum Zitat Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S (2022) Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JHM Lett 423:1–20 Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S (2022) Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JHM Lett 423:1–20
Zurück zum Zitat Rafique A, Amin A, Latif Z (2015) Screening and characterization of mercury-resistant nitrogen fixing bacteria and their use as biofertilizers and for mercury bioremediation. Pak J Zool 47(5):1271–1277 Rafique A, Amin A, Latif Z (2015) Screening and characterization of mercury-resistant nitrogen fixing bacteria and their use as biofertilizers and for mercury bioremediation. Pak J Zool 47(5):1271–1277
Zurück zum Zitat Ravikumar S, Williams GP, Shanthy S, Gracelin NAA, Babu S, Parimala PS (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28(1):109–114 Ravikumar S, Williams GP, Shanthy S, Gracelin NAA, Babu S, Parimala PS (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28(1):109–114
Zurück zum Zitat Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 10(11):222CrossRef Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 10(11):222CrossRef
Zurück zum Zitat Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK (2022) Bioremediation of heavy metals by Rhizobacteria. Appl Biochem Biotechnol 1–23 Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK (2022) Bioremediation of heavy metals by Rhizobacteria. Appl Biochem Biotechnol 1–23
Zurück zum Zitat Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6(3):17555CrossRef Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6(3):17555CrossRef
Zurück zum Zitat Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nat Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nat
Zurück zum Zitat Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:1–8CrossRef Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:1–8CrossRef
Zurück zum Zitat Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Bio Med Res Int Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Bio Med Res Int
Zurück zum Zitat Sarao LK, Kaur S (2021) Chapter-3 microbial bioremediation. New Vistas Microbial Sci 47 Sarao LK, Kaur S (2021) Chapter-3 microbial bioremediation. New Vistas Microbial Sci 47
Zurück zum Zitat Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47CrossRef Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47CrossRef
Zurück zum Zitat Schaefer JK, Kronberg RM, Morel FMM, Skyllberg U (2014) Detection of a key Hg methylation gene hgcA, in wetland soils. Environ Microbiol Rep 6:441–447CrossRef Schaefer JK, Kronberg RM, Morel FMM, Skyllberg U (2014) Detection of a key Hg methylation gene hgcA, in wetland soils. Environ Microbiol Rep 6:441–447CrossRef
Zurück zum Zitat Schelert J, Rudrappa D, Johnson T, Blum P (2013) Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus. Microbiol 159:1198CrossRef Schelert J, Rudrappa D, Johnson T, Blum P (2013) Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus. Microbiol 159:1198CrossRef
Zurück zum Zitat Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68:145–152CrossRef Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68:145–152CrossRef
Zurück zum Zitat Sharma KR, Naruka A, Raja M, Sharma RK (2022) White rot fungus mediated removal of mercury from wastewater. Water Environ Res 94(7):10769CrossRef Sharma KR, Naruka A, Raja M, Sharma RK (2022) White rot fungus mediated removal of mercury from wastewater. Water Environ Res 94(7):10769CrossRef
Zurück zum Zitat Singh A, Singh AK (2017) Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 39:1793–1800CrossRef Singh A, Singh AK (2017) Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 39:1793–1800CrossRef
Zurück zum Zitat Singh A, Kumari R, Yadav AN (2021) Fungal secondary metabolites for bioremediation of hazardous heavy metals. Recent Trends Mycol Res Environ Ind Perspect 2:65–98CrossRef Singh A, Kumari R, Yadav AN (2021) Fungal secondary metabolites for bioremediation of hazardous heavy metals. Recent Trends Mycol Res Environ Ind Perspect 2:65–98CrossRef
Zurück zum Zitat Singh M, Jayant K, Bhutani S, Mehra A, Kaur T, Kour D, Suyal DC, Singh S, Rai AK, Yadav AN (2022) Bioremediation—sustainable tool for diverse contaminants management: current scenario and future aspects. J Appl Biol Biotechnol 10(2):48–63CrossRef Singh M, Jayant K, Bhutani S, Mehra A, Kaur T, Kour D, Suyal DC, Singh S, Rai AK, Yadav AN (2022) Bioremediation—sustainable tool for diverse contaminants management: current scenario and future aspects. J Appl Biol Biotechnol 10(2):48–63CrossRef
Zurück zum Zitat Sinha A, Khare SK (2012) Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation 23:25–34CrossRef Sinha A, Khare SK (2012) Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation 23:25–34CrossRef
Zurück zum Zitat Sorkhoh NA, Ali N, Al-Awadhi H, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010) Phytoremediation of mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercury removal. Ecotoxicol Environ Saf 73(8):1998–2003CrossRef Sorkhoh NA, Ali N, Al-Awadhi H, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010) Phytoremediation of mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercury removal. Ecotoxicol Environ Saf 73(8):1998–2003CrossRef
Zurück zum Zitat Tada Y, Marumoto K, Iwamoto Y, Takeda K, Sakugawa H (2023) Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. Mar Pollut Bull 186:1–13CrossRef Tada Y, Marumoto K, Iwamoto Y, Takeda K, Sakugawa H (2023) Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. Mar Pollut Bull 186:1–13CrossRef
Zurück zum Zitat Taha A et al (2023) Bioremediation of heavy metals in wastewaters: a concise review. Egypt J Aquat Biol Fish 27(1):143–166 Taha A et al (2023) Bioremediation of heavy metals in wastewaters: a concise review. Egypt J Aquat Biol Fish 27(1):143–166
Zurück zum Zitat Takeuchi F, Iwahori K, Kamimura K, Negishi A, Maeda T, Sugio T (2001) Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2–2. Biosci Biotechnol Biochem 65(9):1981–1986CrossRef Takeuchi F, Iwahori K, Kamimura K, Negishi A, Maeda T, Sugio T (2001) Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2–2. Biosci Biotechnol Biochem 65(9):1981–1986CrossRef
Zurück zum Zitat Tarangini K (2009) Biosorption of heavy metals using individual and mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. Doctoral dissertation Tarangini K (2009) Biosorption of heavy metals using individual and mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. Doctoral dissertation
Zurück zum Zitat Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1):1783174CrossRef Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1):1783174CrossRef
Zurück zum Zitat Tarfeen N, Nisa KU, Hamid B, Bashir Z, Yatoo AM, Dar MA, Mohiddin FA, Amin Z, Ahmad RA, Sayyed RZ (2022) Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: a review. Process 10(7):1358CrossRef Tarfeen N, Nisa KU, Hamid B, Bashir Z, Yatoo AM, Dar MA, Mohiddin FA, Amin Z, Ahmad RA, Sayyed RZ (2022) Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: a review. Process 10(7):1358CrossRef
Zurück zum Zitat Tay PK, Nguyen PQ, Joshi NS (2017) A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth Biol 6(10):1841–1850CrossRef Tay PK, Nguyen PQ, Joshi NS (2017) A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth Biol 6(10):1841–1850CrossRef
Zurück zum Zitat Tazaki K, Asada R (2007) Transmission electron microscopic observation of mercury-bearing bacterial clay minerals in a small-scale gold mine in Tanzania. Geomicrobiol J 24(6):477–489CrossRef Tazaki K, Asada R (2007) Transmission electron microscopic observation of mercury-bearing bacterial clay minerals in a small-scale gold mine in Tanzania. Geomicrobiol J 24(6):477–489CrossRef
Zurück zum Zitat Tiodar ED, Văcar CL, Podar D (2021) Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 18:1–37CrossRef Tiodar ED, Văcar CL, Podar D (2021) Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 18:1–37CrossRef
Zurück zum Zitat Tripathi SM, Ram S (2018) Bioremediation of groundwater: an overview. Int J Appl Eng Res 13(24):16825–16832 Tripathi SM, Ram S (2018) Bioremediation of groundwater: an overview. Int J Appl Eng Res 13(24):16825–16832
Zurück zum Zitat Văcar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D (2021) Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J Fungus 7(5):386CrossRef Văcar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D (2021) Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J Fungus 7(5):386CrossRef
Zurück zum Zitat Vela-García N, Guamán-Burneo MC, González-Romero NP (2019) Efficient bioremediation of metallurgical effluents through the use of microalgae isolated from the amazonic and highlands of ecuador. Rev Int Contam Ambient 4:917–929 Vela-García N, Guamán-Burneo MC, González-Romero NP (2019) Efficient bioremediation of metallurgical effluents through the use of microalgae isolated from the amazonic and highlands of ecuador. Rev Int Contam Ambient 4:917–929
Zurück zum Zitat Velkova Z, Kirova G, Stoytcheva M, Kostadinova S, Todorova K, Gochev V (2018) Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci 18(12):871–881CrossRef Velkova Z, Kirova G, Stoytcheva M, Kostadinova S, Todorova K, Gochev V (2018) Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci 18(12):871–881CrossRef
Zurück zum Zitat Verma A (2021) Bioremediation techniques for soil pollution: an introduction. IntechOpen, London, UK Verma A (2021) Bioremediation techniques for soil pollution: an introduction. IntechOpen, London, UK
Zurück zum Zitat Verma A (2022) Bioremediation techniques for soil pollution: an introduction. Biodegrad Technol Organ Inorgan Poll Verma A (2022) Bioremediation techniques for soil pollution: an introduction. Biodegrad Technol Organ Inorgan Poll
Zurück zum Zitat Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172CrossRef Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172CrossRef
Zurück zum Zitat Vitor G, Palma TC, Vieira B, Lourenço JP, Barros RJ, Costa MC (2015) Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Miner Eng 89:18–85CrossRef Vitor G, Palma TC, Vieira B, Lourenço JP, Barros RJ, Costa MC (2015) Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Miner Eng 89:18–85CrossRef
Zurück zum Zitat Volarić A, Svirčev Z, Tamindžija D, Radnović D (2021) Microbial bioremediation of heavy metals. Hem Ind 75(2):103–115CrossRef Volarić A, Svirčev Z, Tamindžija D, Radnović D (2021) Microbial bioremediation of heavy metals. Hem Ind 75(2):103–115CrossRef
Zurück zum Zitat Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133CrossRef Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133CrossRef
Zurück zum Zitat Wang L, Hou D, Cao Y, Ok YS, Tack FM, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281CrossRef Wang L, Hou D, Cao Y, Ok YS, Tack FM, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281CrossRef
Zurück zum Zitat Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX, Hu W (2023) Immobilizing lead and copper in aqueous solution using microbial-and enzyme-induced carbonate precipitation. Front Bioeng Biotechnol 11:1146858CrossRef Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX, Hu W (2023) Immobilizing lead and copper in aqueous solution using microbial-and enzyme-induced carbonate precipitation. Front Bioeng Biotechnol 11:1146858CrossRef
Zurück zum Zitat Winardi W, Haryono E, Sudrajat S, Soetarto ES (2020) In situ bioremediation strategies for the recovery of mercury-contaminated land in abandoned traditional gold mines in Indonesia. Biosaintifika: J Biol Educ 12(3):469–477 Winardi W, Haryono E, Sudrajat S, Soetarto ES (2020) In situ bioremediation strategies for the recovery of mercury-contaminated land in abandoned traditional gold mines in Indonesia. Biosaintifika: J Biol Educ 12(3):469–477
Zurück zum Zitat Wu C, Tang D, Dai J, Tang X, Bao Y, Ning J, Zhen Q, Song H, St. Leger RJ, Fang W (2022) Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc Natl Acad Sci 119(47):e2214513119 Wu C, Tang D, Dai J, Tang X, Bao Y, Ning J, Zhen Q, Song H, St. Leger RJ, Fang W (2022) Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc Natl Acad Sci 119(47):e2214513119
Zurück zum Zitat Xie F, Dong K, Wang W, Asselin E (2020) Leaching of mercury from contaminated solid waste: a mini-review. Miner Process Extr Metall Rev 41(3):187–197CrossRef Xie F, Dong K, Wang W, Asselin E (2020) Leaching of mercury from contaminated solid waste: a mini-review. Miner Process Extr Metall Rev 41(3):187–197CrossRef
Zurück zum Zitat Xue Y, Du P, Shendi AA, Yu B (2022a) Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit. J Clean Prod 337:130524CrossRef Xue Y, Du P, Shendi AA, Yu B (2022a) Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit. J Clean Prod 337:130524CrossRef
Zurück zum Zitat Xue Y, Qiu T, Sun Z, Liu F, Yu B (2022b) Mercury bioremediation by engineered Pseudomonas putida KT2440 with adaptationally optimized biosecurity circuit. Environ Microbiol 7:3022–3036CrossRef Xue Y, Qiu T, Sun Z, Liu F, Yu B (2022b) Mercury bioremediation by engineered Pseudomonas putida KT2440 with adaptationally optimized biosecurity circuit. Environ Microbiol 7:3022–3036CrossRef
Zurück zum Zitat Yadav V, Manjhi A, Vadakedath N (2023) Mercury remediation potential of mercury-resistant strain Rheinheimera metallidurans sp. nov. isolated from a municipal waste dumping site. Ecotoxicol Environ Saf 257:1–12CrossRef Yadav V, Manjhi A, Vadakedath N (2023) Mercury remediation potential of mercury-resistant strain Rheinheimera metallidurans sp. nov. isolated from a municipal waste dumping site. Ecotoxicol Environ Saf 257:1–12CrossRef
Zurück zum Zitat Yan J, Ye W, Jian Z, Xie J, Zhong K, Wang S, Hu H, Chen Z, Wen H, Zhang H (2018) Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresour Technol 266:447–453CrossRef Yan J, Ye W, Jian Z, Xie J, Zhong K, Wang S, Hu H, Chen Z, Wen H, Zhang H (2018) Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresour Technol 266:447–453CrossRef
Zurück zum Zitat Yan C, Qu Z, Wang J, Cao L, Han Q (2022) Microalgal bioremediation of heavy metal pollution in water: recent advances, challenges, and prospects. Chemosphere 286:131870CrossRef Yan C, Qu Z, Wang J, Cao L, Han Q (2022) Microalgal bioremediation of heavy metal pollution in water: recent advances, challenges, and prospects. Chemosphere 286:131870CrossRef
Zurück zum Zitat Yao H, Wang H, Ji J, Tan A, Song Y, Chen Z (2023) Isolation and identification of mercury-tolerant bacteria LBA119 from molybdenum-lead mining soils and their removal of Hg2+. Toxics 11(3):261CrossRef Yao H, Wang H, Ji J, Tan A, Song Y, Chen Z (2023) Isolation and identification of mercury-tolerant bacteria LBA119 from molybdenum-lead mining soils and their removal of Hg2+. Toxics 11(3):261CrossRef
Zurück zum Zitat Yu RQ, Barkay T (2022) Microbial mercury transformations: molecules, functions and organisms. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology. Elsevier, Amsterdam, Netherlands, pp 31–90 Yu RQ, Barkay T (2022) Microbial mercury transformations: molecules, functions and organisms. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology. Elsevier, Amsterdam, Netherlands, pp 31–90
Zurück zum Zitat Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99CrossRef Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99CrossRef
Zurück zum Zitat Zhang M, Wang H (2016) Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner Eng 92:63–71CrossRef Zhang M, Wang H (2016) Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner Eng 92:63–71CrossRef
Zurück zum Zitat Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbial Biotechnol 93:1305–1314CrossRef Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbial Biotechnol 93:1305–1314CrossRef
Zurück zum Zitat Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H (2016) Metabolic diversity and adaptive mechanisms of iron-and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. Environ Microbiol Rep 8(5):738–751CrossRef Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H (2016) Metabolic diversity and adaptive mechanisms of iron-and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. Environ Microbiol Rep 8(5):738–751CrossRef
Zurück zum Zitat Zhang J, Zeng Y, Liu B, Deng X (2020) MerP/MerT-mediated mechanism: a different approach to mercury resistance and bioaccumulation by marine bacteria. JHM Lett 388:1–10 Zhang J, Zeng Y, Liu B, Deng X (2020) MerP/MerT-mediated mechanism: a different approach to mercury resistance and bioaccumulation by marine bacteria. JHM Lett 388:1–10
Zurück zum Zitat Zheng R, Wu S, Ma N, Sun C (2018) Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. Front Microbiol 9:1–14CrossRef Zheng R, Wu S, Ma N, Sun C (2018) Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. Front Microbiol 9:1–14CrossRef
Metadaten
Titel
Microbial Remediation of Mercury: An Overview
verfasst von
Marwa Eltarahony
Eman Ibrahim
Ghada Hegazy
Amira Sabry
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-7719-2_8