Skip to main content

09.05.2024

NL-CS Net: Deep Learning with Non-local Prior for Image Compressive Sensing

verfasst von: Shuai Bian, Shouliang Qi, Chen Li, Yudong Yao, Yueyang Teng

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning has been applied to compressive sensing (CS) of images successfully in recent years. However, existing network-based methods are often trained as the black box, in which the lack of prior knowledge is often the bottleneck for further performance improvement. To overcome this drawback, this paper proposes a novel CS method using non-local prior which combines the interpretability of the traditional optimization methods with the speed of network-based methods, called NL-CS Net. We unroll each phase from iteration of the augmented Lagrangian method solving non-local and sparse regularized optimization problem by a network. NL-CS Net is composed of the up-sampling module and the recovery module. In the up-sampling module, we use learnable up-sampling matrix instead of a predefined one. In the recovery module, patch-wise non-local network is employed to capture long-range feature correspondences. Important parameters involved (e.g. sampling matrix, nonlinear transforms, shrinkage thresholds, step size, etc.) are learned end-to-end, rather than hand-crafted. Furthermore, to facilitate practical implementation, orthogonal and binary constraints on the sampling matrix are simultaneously adopted. Extensive experiments on natural images and magnetic resonance imaging demonstrate that the proposed method outperforms the state-of-the-art methods while maintaining great interpretability and speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A. Adler, D. Boublil, M. Elad, M. Zibulevsky, A deep learning approach to block-based compressed sensing of images. Available: arXiv:1606.01519 (2016) A. Adler, D. Boublil, M. Elad, M. Zibulevsky, A deep learning approach to block-based compressed sensing of images. Available: arXiv:​1606.​01519 (2016)
2.
Zurück zum Zitat A. Adler, D. Boublil, M. Zibulevsky, Block-based compressed sensing of images via deep learning, in IEEE 19th International Workshop on Multimedia Signal Processing, pp. 1–6 (2017) A. Adler, D. Boublil, M. Zibulevsky, Block-based compressed sensing of images via deep learning, in IEEE 19th International Workshop on Multimedia Signal Processing, pp. 1–6 (2017)
3.
Zurück zum Zitat A.M. Ali, B. Benjdira, A. Koubaa, W. El-Shafai, Z. Khan, W. Boulila, Vision transformers in image restoration: a survey. Sensors 23(5), 2385 (2023)CrossRef A.M. Ali, B. Benjdira, A. Koubaa, W. El-Shafai, Z. Khan, W. Boulila, Vision transformers in image restoration: a survey. Sensors 23(5), 2385 (2023)CrossRef
4.
Zurück zum Zitat A. Buades, B. Coll, J. Morel, A non-local algorithm for image denoising, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005) A. Buades, B. Coll, J. Morel, A non-local algorithm for image denoising, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)
5.
Zurück zum Zitat E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)MathSciNetCrossRef E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)MathSciNetCrossRef
6.
Zurück zum Zitat K.Q. Dinh, H.J. Shim, B. Jeon, Measurement coding for compressive imaging using a structural measuremnet matrix, in IEEE International Conference on Image Processing, pp. 10–13 (2014) K.Q. Dinh, H.J. Shim, B. Jeon, Measurement coding for compressive imaging using a structural measuremnet matrix, in IEEE International Conference on Image Processing, pp. 10–13 (2014)
7.
Zurück zum Zitat W. Dong, G. Shi, X. Li, Y. Ma, F. Huang, Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–32 (2014)MathSciNetCrossRef W. Dong, G. Shi, X. Li, Y. Ma, F. Huang, Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–32 (2014)MathSciNetCrossRef
8.
Zurück zum Zitat J. Du, X. Xie, C. Wang, G. Shi, X. Xu, Y. Wang, Fully convolutional measurement network for compressive sensing image reconstruction. Neurocomputing 328, 105–112 (2019)CrossRef J. Du, X. Xie, C. Wang, G. Shi, X. Xu, Y. Wang, Fully convolutional measurement network for compressive sensing image reconstruction. Neurocomputing 328, 105–112 (2019)CrossRef
9.
Zurück zum Zitat M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, Single-pixel imaging via compressive sampling. IEEE Sig. Process. Mag. 25(2), 83–91 (2008)CrossRef M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, Single-pixel imaging via compressive sampling. IEEE Sig. Process. Mag. 25(2), 83–91 (2008)CrossRef
10.
Zurück zum Zitat J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 18(7), 1395–1408 (2009)MathSciNetCrossRef J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 18(7), 1395–1408 (2009)MathSciNetCrossRef
11.
Zurück zum Zitat M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef
12.
Zurück zum Zitat J.H. Ender, On compressive sensing applied to radar. Signal Process. 90(5), 1402–1414 (2010)CrossRef J.H. Ender, On compressive sensing applied to radar. Signal Process. 90(5), 1402–1414 (2010)CrossRef
13.
Zurück zum Zitat A. Esmaeilzehi, M.O. Ahmad, M.N.S. Swamy, MISNet: multi-resolution level feature interpolating ultralight-weight residual image super resolution network, in IEEE International Symposium on Circuits and Systems, pp. 1–5 (2021) A. Esmaeilzehi, M.O. Ahmad, M.N.S. Swamy, MISNet: multi-resolution level feature interpolating ultralight-weight residual image super resolution network, in IEEE International Symposium on Circuits and Systems, pp. 1–5 (2021)
14.
Zurück zum Zitat A. Esmaeilzehi, M.N.S. Swamy, M.O. Ahmad, HighBoostNet: a deep light-weight image super-resolution network using high-boost residual blocks. Vis. Comput. 40, 1111–1119 (2024)CrossRef A. Esmaeilzehi, M.N.S. Swamy, M.O. Ahmad, HighBoostNet: a deep light-weight image super-resolution network using high-boost residual blocks. Vis. Comput. 40, 1111–1119 (2024)CrossRef
15.
Zurück zum Zitat A. Esmaeilzehi, H. Zaredar, D. Hatzinakos, M.O. Ahmad, DPAN: a deep light-weight attention-based image super resolution network using multi-dimensional filter design technique. IEEE Signal Process. Lett. 30, 1637–1641 (2023)CrossRef A. Esmaeilzehi, H. Zaredar, D. Hatzinakos, M.O. Ahmad, DPAN: a deep light-weight attention-based image super resolution network using multi-dimensional filter design technique. IEEE Signal Process. Lett. 30, 1637–1641 (2023)CrossRef
16.
Zurück zum Zitat X. Gao, J. Zhang, W. Che, X. Fan, D. Zhao, Block-based compressive sensing coding of natural images by local structural measurement matrix, in Data Compression Conference, pp. 133–142 (2015) X. Gao, J. Zhang, W. Che, X. Fan, D. Zhao, Block-based compressive sensing coding of natural images by local structural measurement matrix, in Data Compression Conference, pp. 133–142 (2015)
17.
Zurück zum Zitat J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)MathSciNetCrossRef J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)MathSciNetCrossRef
18.
Zurück zum Zitat K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 5862–5875 (2016) K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 5862–5875 (2016)
19.
Zurück zum Zitat C. Hyun, H.P. Kim, S.M. Lee, S. Lee, J.K. Seo, Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)CrossRef C. Hyun, H.P. Kim, S.M. Lee, S. Lee, J.K. Seo, Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)CrossRef
20.
Zurück zum Zitat X. Jie, J. Ma, D. Zhang, Y. Zhang, S. Lin, Improved total variation minimization method for compressive sensing by intra-prediction. Signal Process. 92(11), 2614–2623 (2012)CrossRef X. Jie, J. Ma, D. Zhang, Y. Zhang, S. Lin, Improved total variation minimization method for compressive sensing by intra-prediction. Signal Process. 92(11), 2614–2623 (2012)CrossRef
21.
Zurück zum Zitat Y. Kim, M.S. Nadar, A. Bilgin, Compressed sensing using a Gaussian scale mixtures model in wavelet domain, in IEEE International Conference on Image Processing, pp. 3365–3368 (2010) Y. Kim, M.S. Nadar, A. Bilgin, Compressed sensing using a Gaussian scale mixtures model in wavelet domain, in IEEE International Conference on Image Processing, pp. 3365–3368 (2010)
22.
Zurück zum Zitat K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok, ReconNet: non-iterative reconstruction of images from compressively sensed measurements, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016) K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok, ReconNet: non-iterative reconstruction of images from compressively sensed measurements, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)
23.
Zurück zum Zitat W. Li, F. Liu, L. Jiao, F. Hu, Multi-scale residual reconstruction neural network with non-local constraint. IEEE Access 7, 70910–70918 (2019)CrossRef W. Li, F. Liu, L. Jiao, F. Hu, Multi-scale residual reconstruction neural network with non-local constraint. IEEE Access 7, 70910–70918 (2019)CrossRef
24.
Zurück zum Zitat S. Li, L.D. Xu, X. Wang, Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Ind. Inform. 9(4), 2177–2186 (2013)CrossRef S. Li, L.D. Xu, X. Wang, Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Ind. Inform. 9(4), 2177–2186 (2013)CrossRef
25.
Zurück zum Zitat C. Li, W. Yin, H. Jiang, An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)MathSciNetCrossRef C. Li, W. Yin, H. Jiang, An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)MathSciNetCrossRef
26.
Zurück zum Zitat D. Liu, B. Wen, Y. Fu, C.C. Loy, T.S. Huang, Non-local recurrent network for image restoration, in Conference and Workshop on Neural Information Processing Systems (2018) D. Liu, B. Wen, Y. Fu, C.C. Loy, T.S. Huang, Non-local recurrent network for image restoration, in Conference and Workshop on Neural Information Processing Systems (2018)
27.
Zurück zum Zitat C. Lu, H. Li, Z. Lin, Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151, 45–55 (2018)CrossRef C. Lu, H. Li, Z. Lin, Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151, 45–55 (2018)CrossRef
28.
Zurück zum Zitat M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)CrossRef M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)CrossRef
29.
Zurück zum Zitat D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings Eighth IEEE International Conference on Computer Vision, pp. 416–423 (2001) D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings Eighth IEEE International Conference on Computer Vision, pp. 416–423 (2001)
30.
Zurück zum Zitat C.A. Metzler, A. Maleki, R.G. Baraniuk, From denoising to compressed sensing. IEEE Trans. Inf. Theory 62(9), 5117–5144 (2016)MathSciNetCrossRef C.A. Metzler, A. Maleki, R.G. Baraniuk, From denoising to compressed sensing. IEEE Trans. Inf. Theory 62(9), 5117–5144 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat C. Mou, J. Zhang, X. Fan, H. Liu, R. Wang, COLA-Net: collaborative attention network for image restoration. IEEE Trans. Multimed. 24, 1366–1377 (2022)CrossRef C. Mou, J. Zhang, X. Fan, H. Liu, R. Wang, COLA-Net: collaborative attention network for image restoration. IEEE Trans. Multimed. 24, 1366–1377 (2022)CrossRef
32.
Zurück zum Zitat A. Mousavi, A.B. Patel, R.G. Baraniuk, A deep learning approach to structured signal recovery, in 53rd Annual Allerton Conference on Communication, Control, and Computing, pp. 1336–1343 (2015) A. Mousavi, A.B. Patel, R.G. Baraniuk, A deep learning approach to structured signal recovery, in 53rd Annual Allerton Conference on Communication, Control, and Computing, pp. 1336–1343 (2015)
33.
Zurück zum Zitat X. Qu, Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30(7), 964–977 (2012)CrossRef X. Qu, Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30(7), 964–977 (2012)CrossRef
34.
Zurück zum Zitat W. Shi, J. Caballero, F. Huszar, J. Totz, Z. Wang, Real-Time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016) W. Shi, J. Caballero, F. Huszar, J. Totz, Z. Wang, Real-Time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
35.
Zurück zum Zitat W. Shi, F. Jiang, S. Liu, D. Zhao, Scalable convolutional neural network for image compressed sensing, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12282–12291 (2019) W. Shi, F. Jiang, S. Liu, D. Zhao, Scalable convolutional neural network for image compressed sensing, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12282–12291 (2019)
36.
Zurück zum Zitat W. Shi, F. Jiang, S. Zhang, D. Zhao, Deep networks for compressed image sensing, in IEEE International Conference on Multimedia and Expo, pp. 877–882 (2017) W. Shi, F. Jiang, S. Zhang, D. Zhao, Deep networks for compressed image sensing, in IEEE International Conference on Multimedia and Expo, pp. 877–882 (2017)
37.
Zurück zum Zitat J. Su, B. Xu, H. Yin, A survey of deep learning approaches to image restoration. Neurocomputing 487, 46–65 (2022)CrossRef J. Su, B. Xu, H. Yin, A survey of deep learning approaches to image restoration. Neurocomputing 487, 46–65 (2022)CrossRef
38.
Zurück zum Zitat Y. Sun, J. Chen, Q. Liu, G. Liu, Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recognit. 98(12), 107051 (2019) Y. Sun, J. Chen, Q. Liu, G. Liu, Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recognit. 98(12), 107051 (2019)
39.
Zurück zum Zitat Z. Wang, J. Chen, S. Hoi, Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)CrossRef Z. Wang, J. Chen, S. Hoi, Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)CrossRef
40.
Zurück zum Zitat X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018) X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
41.
Zurück zum Zitat J. Xiang, Y. Dong, Y. Yang, FISTA-Net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging. IEEE Trans. Med. Imag. 40(5), 1329–1339 (2021)CrossRef J. Xiang, Y. Dong, Y. Yang, FISTA-Net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging. IEEE Trans. Med. Imag. 40(5), 1329–1339 (2021)CrossRef
42.
Zurück zum Zitat Y. Yang, J. Sun, H. Li, Z. Xu, Deep ADMM-Net for compressive sensing MRI, in Advances in Neural Information Processing Systems (2016) Y. Yang, J. Sun, H. Li, Z. Xu, Deep ADMM-Net for compressive sensing MRI, in Advances in Neural Information Processing Systems (2016)
43.
Zurück zum Zitat J. Yang, Y. Zhang, W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Topics Sig. Process. 4(2), 288–297 (2010)CrossRef J. Yang, Y. Zhang, W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Topics Sig. Process. 4(2), 288–297 (2010)CrossRef
44.
Zurück zum Zitat H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, DR2-Net: deep residual reconstruction network for image compressive sensing. Neurocomputing 359(24), 483–493 (2017) H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, DR2-Net: deep residual reconstruction network for image compressive sensing. Neurocomputing 359(24), 483–493 (2017)
45.
Zurück zum Zitat D. You, J. Xie, J. Zhang, ISTA-Net++: flexible deep unfolding network for compressive sensing, in IEEE International Conference on Multimedia and Expo, pp. 1–6 (2021) D. You, J. Xie, J. Zhang, ISTA-Net++: flexible deep unfolding network for compressive sensing, in IEEE International Conference on Multimedia and Expo, pp. 1–6 (2021)
46.
Zurück zum Zitat J. Zhang, B. Ghanem, ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing, in IEEE / CVF Computer Vision and Pattern Recognition Conference, pp. 1828–1837 (2018) J. Zhang, B. Ghanem, ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing, in IEEE / CVF Computer Vision and Pattern Recognition Conference, pp. 1828–1837 (2018)
47.
Zurück zum Zitat Z. Zhang, Y. Liu, J. Liu, F. Wen, C. Zhu, AMP-Net: denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 30(7), 1487–1500 (2021)MathSciNetCrossRef Z. Zhang, Y. Liu, J. Liu, F. Wen, C. Zhu, AMP-Net: denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 30(7), 1487–1500 (2021)MathSciNetCrossRef
48.
Zurück zum Zitat J. Zhang, S. Liu, R. Xiong, S. Ma, D. Zhao, Improved total variation based image compressive sensing recovery by nonlocal regularization, in IEEE International Symposium on Circuits and Systems, pp. 2836–2839 (2013) J. Zhang, S. Liu, R. Xiong, S. Ma, D. Zhao, Improved total variation based image compressive sensing recovery by nonlocal regularization, in IEEE International Symposium on Circuits and Systems, pp. 2836–2839 (2013)
49.
Zurück zum Zitat J. Zhang, C. Zhao, W. Gao, Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Topics Sig. Process. 14(4), 765–774 (2020)CrossRef J. Zhang, C. Zhao, W. Gao, Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Topics Sig. Process. 14(4), 765–774 (2020)CrossRef
50.
Zurück zum Zitat J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, W. Gao, Image compressive sensing recovery via collaborative sparsity. IEEE Emerg. Sel. Topics Circuits Syst. 2(3), 380–391 (2012)CrossRef J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, W. Gao, Image compressive sensing recovery via collaborative sparsity. IEEE Emerg. Sel. Topics Circuits Syst. 2(3), 380–391 (2012)CrossRef
51.
Zurück zum Zitat K. Zhang, W. Zuo, S. Gu, L. Zhang, Learning deep CNN denoiser prior for image restoration, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 2808–2817 (2017) K. Zhang, W. Zuo, S. Gu, L. Zhang, Learning deep CNN denoiser prior for image restoration, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 2808–2817 (2017)
Metadaten
Titel
NL-CS Net: Deep Learning with Non-local Prior for Image Compressive Sensing
verfasst von
Shuai Bian
Shouliang Qi
Chen Li
Yudong Yao
Yueyang Teng
Publikationsdatum
09.05.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02699-x