Skip to main content

2024 | OriginalPaper | Buchkapitel

NTPhish: A CNN-RNN Hybrid Deep Learning Model to Detect Phishing Websites

verfasst von : Chetanya Kunndra, Arjun Choudhary, Jaspreet Kaur, Aryan Jogia, Prashant Mathur, Varun Shukla

Erschienen in: Cryptology and Network Security with Machine Learning

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is certainly peculiar that even after securing one's infrastructure with state of the art technologies, companies still get compromised. The question thus arises ‘How is an attacker able to circumvent such sophisticated defenses?’. The answer to this is relatively simple. Attackers exploit the most vulnerable component in the chain, also known as humans. They do so by targeting people with fake emails and websites. Attackers often spoof legitimate services and modify them to perform nefarious activities. This act of portraying a malicious resource as a legitimate resource is known as phishing. The main motive behind phishing is to trick the victim into revealing personal information or more often phishing acts as a precursor to malware infections. Advancement in technology has made it easier for attackers to spoof a legitimate resource with almost zero flaws. It makes it extremely difficult for the victims to evade such attacks. However with the aid of artificial intelligence detecting such websites becomes extremely easy and accurate. In this research we propose a hybrid deep learning model to detect phishing websites. The hybrid model is a combination of CNN and RNN algorithms and gives a high degree of accuracy in phishing website detection. For training and validation the datasets have been used. The results of our experiments show that the proposed model performs better than traditional deep learning models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khonji M, Iraqi Y, Jones A (2013) Phishing detection: a literature survey. IEEE Commun Surv Tutor 15(4):2091–2121CrossRef Khonji M, Iraqi Y, Jones A (2013) Phishing detection: a literature survey. IEEE Commun Surv Tutor 15(4):2091–2121CrossRef
2.
Zurück zum Zitat Choudhary A, Choudhary G, Pareek K, Kunndra C, Luthra J, Dragoni N (2022) Emerging cyber security challenges after COVID pandemic: a survey. J Internet Serv Inf Secur 12(2):21–50 Choudhary A, Choudhary G, Pareek K, Kunndra C, Luthra J, Dragoni N (2022) Emerging cyber security challenges after COVID pandemic: a survey. J Internet Serv Inf Secur 12(2):21–50
3.
Zurück zum Zitat Al-Qahtani AF, Cresci S (2022) The COVID-19 scamdemic: a survey of phishing attacks and their countermeasures during COVID-19. IET Inf Secur 16(5):324–345CrossRef Al-Qahtani AF, Cresci S (2022) The COVID-19 scamdemic: a survey of phishing attacks and their countermeasures during COVID-19. IET Inf Secur 16(5):324–345CrossRef
4.
Zurück zum Zitat Pranggono B, Arabo A (2021) COVID-19 pandemic cybersecurity issues. Internet Technol Lett 4(2):e247CrossRef Pranggono B, Arabo A (2021) COVID-19 pandemic cybersecurity issues. Internet Technol Lett 4(2):e247CrossRef
7.
Zurück zum Zitat Kathrine GJW, Praise PM, Rose AA, Kalaivani EC (2019) Variants of phishing attacks and their detection techniques. In: 2019 3rd international conference on trends in electronics and informatics (ICOEI). IEEE, pp 255–259 Kathrine GJW, Praise PM, Rose AA, Kalaivani EC (2019) Variants of phishing attacks and their detection techniques. In: 2019 3rd international conference on trends in electronics and informatics (ICOEI). IEEE, pp 255–259
10.
Zurück zum Zitat Odeh A, Keshta I, Abdelfattah E (2021) Machine learning techniques for detection of website phishing: a review for promises and challenges. In: 2021 IEEE 11th annual computing and communication workshop and conference (CCWC). IEEE, pp 0813–0818 Odeh A, Keshta I, Abdelfattah E (2021) Machine learning techniques for detection of website phishing: a review for promises and challenges. In: 2021 IEEE 11th annual computing and communication workshop and conference (CCWC). IEEE, pp 0813–0818
11.
Zurück zum Zitat Almomani A, Gupta BB, Atawneh S, Meulenberg A, Almomani E (2013) A survey of phishing email filtering techniques. IEEE Commun Surv Tutor 15(4):2070–2090CrossRef Almomani A, Gupta BB, Atawneh S, Meulenberg A, Almomani E (2013) A survey of phishing email filtering techniques. IEEE Commun Surv Tutor 15(4):2070–2090CrossRef
12.
Zurück zum Zitat Yeboah-Boateng EO, Amanor PM (2014) Phishing, SMiShing & vishing: an assessment of threats against mobile devices. J Emerg Trends Comput Inf Sci 5(4):297–307 Yeboah-Boateng EO, Amanor PM (2014) Phishing, SMiShing & vishing: an assessment of threats against mobile devices. J Emerg Trends Comput Inf Sci 5(4):297–307
13.
Zurück zum Zitat Mishra S, Soni D (2020) Smishing detector: a security model to detect smishing through SMS content analysis and URL behavior analysis. Futur Gener Comput Syst 108:803–815CrossRef Mishra S, Soni D (2020) Smishing detector: a security model to detect smishing through SMS content analysis and URL behavior analysis. Futur Gener Comput Syst 108:803–815CrossRef
14.
Zurück zum Zitat Balim C, Gunal ES (2019) Automatic detection of smishing attacks by machine learning methods. In: 2019 1st international informatics and software engineering conference (UBMYK). IEEE, pp 1–3 Balim C, Gunal ES (2019) Automatic detection of smishing attacks by machine learning methods. In: 2019 1st international informatics and software engineering conference (UBMYK). IEEE, pp 1–3
15.
Zurück zum Zitat Parker HJ, Flowerday SV (2020) Contributing factors to increased susceptibility to social media phishing attacks. South Afr J Inf Manage 22(1):1–10 Parker HJ, Flowerday SV (2020) Contributing factors to increased susceptibility to social media phishing attacks. South Afr J Inf Manage 22(1):1–10
16.
Zurück zum Zitat Butler R (2007) A framework of anti-phishing measures aimed at protecting the online consumer’s identity. Electron Libr 25(5):517–533CrossRef Butler R (2007) A framework of anti-phishing measures aimed at protecting the online consumer’s identity. Electron Libr 25(5):517–533CrossRef
17.
Zurück zum Zitat Mohammad RM, Thabtah F, McCluskey L (2014) Predicting phishing websites based on self-structuring neural network. Neural Comput Appl 25:443–458CrossRef Mohammad RM, Thabtah F, McCluskey L (2014) Predicting phishing websites based on self-structuring neural network. Neural Comput Appl 25:443–458CrossRef
20.
Zurück zum Zitat Brewer R (2014) Advanced persistent threats: minimising the damage. Netw Secur 2014(4):5–9CrossRef Brewer R (2014) Advanced persistent threats: minimising the damage. Netw Secur 2014(4):5–9CrossRef
21.
22.
Zurück zum Zitat Wang S, Khan S, Xu C, Nazir S, Hafeez A (2020) Deep learning-based efficient model development for phishing detection using random forest and BLSTM classifiers. Complexity 2020:1–7 Wang S, Khan S, Xu C, Nazir S, Hafeez A (2020) Deep learning-based efficient model development for phishing detection using random forest and BLSTM classifiers. Complexity 2020:1–7
23.
Zurück zum Zitat Adebowale MA, Lwin KT, Hossain MA (2023) Intelligent phishing detection scheme using deep learning algorithms. J Enterp Inf Manag 36(3):747–766CrossRef Adebowale MA, Lwin KT, Hossain MA (2023) Intelligent phishing detection scheme using deep learning algorithms. J Enterp Inf Manag 36(3):747–766CrossRef
24.
Zurück zum Zitat Gandotra E, Gupta D (2021) An efficient approach for phishing detection using machine learning. Multimedia security: algorithm development, analysis and applications, pp 239–253 Gandotra E, Gupta D (2021) An efficient approach for phishing detection using machine learning. Multimedia security: algorithm development, analysis and applications, pp 239–253
25.
Zurück zum Zitat Wei B, Hamad RA, Yang L, He X, Wang H, Gao B, Woo WL (2019) A deep-learning-driven light-weight phishing detection sensor. Sensors 19(19):4258CrossRef Wei B, Hamad RA, Yang L, He X, Wang H, Gao B, Woo WL (2019) A deep-learning-driven light-weight phishing detection sensor. Sensors 19(19):4258CrossRef
26.
Zurück zum Zitat Lakshmi L, Reddy MP, Santhaiah C, Reddy UJ (2021) Smart phishing detection in web pages using supervised deep learning classification and optimization technique adam. Wireless Pers Commun 118(4):3549–3564CrossRef Lakshmi L, Reddy MP, Santhaiah C, Reddy UJ (2021) Smart phishing detection in web pages using supervised deep learning classification and optimization technique adam. Wireless Pers Commun 118(4):3549–3564CrossRef
28.
Zurück zum Zitat Vrbančič G, Fister I Jr, Podgorelec V (2020) Datasets for phishing websites detection. Data Brief 33:106438CrossRef Vrbančič G, Fister I Jr, Podgorelec V (2020) Datasets for phishing websites detection. Data Brief 33:106438CrossRef
29.
Zurück zum Zitat Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H (2021) CNN variants for computer vision: history, architecture, application, challenges and future scope. Electronics 10(20):2470CrossRef Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H (2021) CNN variants for computer vision: history, architecture, application, challenges and future scope. Electronics 10(20):2470CrossRef
30.
Zurück zum Zitat Kim J, Sangjun O, Kim Y, Lee M (2016) Convolutional neural network with biologically inspired retinal structure. Procedia Comput Sci 88:145–154CrossRef Kim J, Sangjun O, Kim Y, Lee M (2016) Convolutional neural network with biologically inspired retinal structure. Procedia Comput Sci 88:145–154CrossRef
31.
Zurück zum Zitat Sharma A, Vans E, Shigemizu D, Boroevich KA, Tsunoda T (2019) DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci Rep 9(1):11399CrossRef Sharma A, Vans E, Shigemizu D, Boroevich KA, Tsunoda T (2019) DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci Rep 9(1):11399CrossRef
32.
Zurück zum Zitat Zhang J, Man KF (1998) Time series prediction using RNN in multi-dimension embedding phase space. In: SMC'98 conference proceedings. 1998 IEEE international conference on systems, man, and cybernetics (cat. no. 98CH36218), vol 2. IEEE, pp 1868–1873 Zhang J, Man KF (1998) Time series prediction using RNN in multi-dimension embedding phase space. In: SMC'98 conference proceedings. 1998 IEEE international conference on systems, man, and cybernetics (cat. no. 98CH36218), vol 2. IEEE, pp 1868–1873
33.
Zurück zum Zitat Manaswi NK, Manaswi NK (2018) RNN and LSTM. Deep learning with applications using python: chatbots and face, object, and speech recognition with TensorFlow and Keras, pp 115–126 Manaswi NK, Manaswi NK (2018) RNN and LSTM. Deep learning with applications using python: chatbots and face, object, and speech recognition with TensorFlow and Keras, pp 115–126
34.
Zurück zum Zitat Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowl-Based Syst 6(02):107–116CrossRef Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowl-Based Syst 6(02):107–116CrossRef
35.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
36.
Zurück zum Zitat Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 1597–1600 Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 1597–1600
Metadaten
Titel
NTPhish: A CNN-RNN Hybrid Deep Learning Model to Detect Phishing Websites
verfasst von
Chetanya Kunndra
Arjun Choudhary
Jaspreet Kaur
Aryan Jogia
Prashant Mathur
Varun Shukla
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0641-9_40

Neuer Inhalt