Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Reaction Types and Mechanisms

verfasst von : Robert B. Jordan

Erschienen in: Principles of Inorganic Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reaction types discussed in this chapter are proton transfer, substitution, oxidation–reduction, oxidative-addition, and isomerization. The development of a theoretical rate law and the effects of temperature and pressure on the rate constant are outlined. For proton transfer reactions, typical rate constants and the Grotthuss mechanism are described. For substitution reactions, the nucleophilic and electrophilic classification is discussed, along with the D, Id, Ia, and I classification system. For oxidation–reduction reactions, topics such as electron versus atom transfer, inner sphere and outer sphere electron transfer, and Marcus theory are covered. Possible oxidative-addition mechanisms are described, with examples involving the metals in Groups 8, 9, and 10. Dissociative and intramolecular mechanisms are described for linkage isomerization, geometrical isomerization, and racemization. The coverage of these topics includes references published through to mid-2021.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 2nd ed.; J. Wiley & Sons, New York, 1967; Wilkins, R. G. Kinetics and Mechanisms of Reactions of Transition Metal Complexes, 2nd ed.; VCH, New York, 1991; Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms, 2nd ed.; Wiley–VCH, Weinheim, 1997; Tobe, M. L.; Burgess, J. Inorganic Reaction Mechanisms; Longman, Harlow, 1999; Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd ed; Oxford University Press: New York, 2007.
 
2
Moore, J. W.; Pearson, R. G. Kinetics and Mechanism, 3rd ed.; Wiley-Interscience: New York, 1980; Espenson, J. E. Chemical Kinetics and Mechanism, McGraw-Hill: New York, 1981; Pilling, M. J.; Seakins, P. W. Reaction Kinetics, Oxford University Press: Oxford, 1995.
 
3
Krise, K. M.; Hwang, A. A.; Milosavljevic, B. H. Phys. Chem. Chem. Phys. 2010, 12, 7695, and references therein.
 
4
Agmon, N. Chem. Phys. Lett. 1995, 244, 456; Cukierman, S. Biochim. Biophys. Acta 2006, 1757, 876.
 
5
Hassanali, A.; Prakash, M. K.; Eshet, H.; Parrinello, M. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 20,410; Cuny, J.; Hassanali, A. A. J. Phys. Chem B 2014, 118, 13903; Fischer, S. A.; Gunlycke, D. J. Phys. Chem. B 2019, 123, 5336; Zeng, Y.; Li, A.; Yan, T. Ibid, 2020, 124, 1817.
 
6
Bernasconi, C. F. Adv. Phys. Org. Chem. 2010, 44, 223, and references therein.
 
7
Walker, H. W.; Pearson, R. G.; Ford, P. C. J. Am. Chem. Soc. 1983, 105, 1179; Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3945; Weberg, R. T.; Norton, J. R. J. Am. Chem. Soc. 1990, 112, 1105; Hu, Y.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 5938.
 
8
Langford, C. H.; Gray, H. B. Ligand Substitution Processes; W. A. Benjamin, Inc., New York, 1965.
 
9
Richens, D. T. Chem. Rev. 2005, 105, 1961.
 
10
Corriu, R. J. P. J. Organomet. Chem. 1990, 400, 81; Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371.
 
11
Bassindale, A. R.; Lau, J. C.-Y.; Taylor, P. G. J. Organomet. Chem. 1995, 499, 137.
 
12
Bassindale, A. R.; Parker, D. J.; Taylor, P. G.; Turtle, R. Z. Anorg. Allg. Chem. 2009, 635, 1288, and references therein.
 
13
Corriu, R. J. P.; Leclercq, D. Angew. Chem., Int. Ed. 1996, 35, 1420, and references therein.
 
14
Delak, K. M.; Sahai, N. J. Phys. Chem. B 2006, 110, 17819.
 
15
Westheimer, F. H. Science 1987, 235, 1173; Kamerlin, S. C. L.; Sharma, P. K.; Prasad, R. B.; Warshel, A. Quart. Rev. Biophys. 2013, 46, 1; Mikkola, S.; Lönnberg, T.; Lönnberg, H. Beilstein J. Org. Chem. 2018, 14, 803.
 
16
Bunton, C. A. J. Chem. Educ. 1968, 45, 21; Ibid, Acc. Chem. Res. 1970, 3, 257; Cleland, W. W.; Hengge, A. C. Chem. Rev. 2006, 106, 3252.
 
17
Wolfenden, R.; Ridgway, C.; Young, G. J. Am. Chem. Soc. 1998, 120, 833.
 
18
Bunton, C. A.; Mhala, M. M.; Oldham, K. G.; Vernon, C. A. J. Chem. Soc. 1960, 3293.
 
19
Westheimer, F. H. Chem. Rev. 1981, 81, 313.
 
20
Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70, and references therein.
 
21
Berry, R. S. J. Chem. Phys. 1960, 32, 933.
 
22
Schmutzler, R. Angew. Chem., Int. Ed. 1965, 4, 496; Cavell, R. G.; Gibson, J. A.; The, K. I. J. Am. Chem. Soc. 1977, 99, 7841.
 
23
Lönnberg, H., in Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, V. A.; Markiewicz, W. T.; Barcisewski, J., Eds.; Springer-Verlag: Berlin, 2014; p 41.
 
24
Lassila, J. K.; Zalatan, J. G.; Herschlag, D. Ann. Rev. Biochem. 2011, 80, 669; Kolodiazhnyi, O. I.; Kolodiazhna, A. Tetrahedron: Asymmetry 2017, 28, 1651.
 
25
Yamabe, S.; Zeng, G.; Guan, W.; Sakaki, S, J. Compt. Chem. 2014, 35, 2195; Kirby, A. J.; Nome, F. Acc. Chem. Res. 2015, 48, 1806; Petrovic, D.; Szeler, K.; Kamerlin, S. C. L. Chem. Commun. 2018, 54, 3077, and references therein.
 
26
Taube, H.; Myers, H.; Rich, R. L. J. Am. Chem. Soc. 1953, 75, 4118; Taube, H.; Myers, H. Ibid 1954, 76, 2103.
 
27
Haim, A. Acc. Chem. Res. 1975, 8, 264.
 
28
Balahura, R. J.; Johnson, M.; Black, T. Inorg. Chem. 1989, 28, 3933.
 
29
Nordmeyer, F.; Taube, H. J. Am. Chem. Soc. 1968, 90, 1162.
 
30
Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155; Ibid. J. Chem. Phys. 1965, 43, 679.
 
31
Reynolds, W. L.; Lumry, R. W. Mechanisms of Electron Transfer, Ronald Press: New York, 1966; Cannon, R. D. Electron Transfer Reactions; Butterworths: London, 1980; Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd ed.; Oxford University Press: New York, 2007.
 
32
Newton, T. W. J. Chem. Educ. 1968, 45, 571; Brunschwig, B. S.; Sutin, N. Coord. Chem. Rev. 1999, 187, 233; Newton, M. D. Ibid. 2003, 238, 167; Piechota, E. J.; Meyer, G. J. J. Chem. Educ. 2019, 96, 2450.
 
33
Formosinho, S. J.; Arnaut, L. G.; Fausto, R. Prog. React. Kinet. 1998, 23, 1.
 
34
Ratner, M. A.; Levine, R. D. J. Am. Chem. Soc. 1980, 102, 4898.
 
35
Bernhard, P.; Sargeson, A. M. Inorg. Chem. 1987, 26, 4122, and references therein.
 
36
Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1969, 91, 582.
 
37
Huber, T. A.; Macartney, D. H.; Baird, M. C. Organometallics, 1995, 14, 592, and references therein; Zhu, D.; Korobkov, I.; Budzelaar, P. H. M. Ibid., 2012, 31, 3958, and references therein.
 
38
Labinger, J. A. Organometallics 2015, 34, 4784.
 
39
Jutand, A. Chem. Rev. 2008, 108, 2300, and references therein.
 
40
Casado, A. L.; Espiney, P. Organometallics 1998, 17, 954; Guilera, G.; Newton, M. A.; Polli, C.; Pascarelli, S.; Guinó, M.; Hii, K. K. Chem. Commun. 2006, 4306.
 
41
Besora, M.; Maseras, F. Dalton Trans. 2019, 48, 16242.
 
42
Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141.
 
43
Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366; Shaughnessy, K. H. Isr. J. Chem. 2020, 60, 180.
 
44
Kurbangalieva, A.; Carmichael, D.; Hii, K. K.; Jutand, A.; Brown, J. M Chem. Eur. J. 2014, 20, 1116.
 
45
Balahura, R. J.; Lewis, N. A. Coord. Chem. Rev. 1976, 20, 109; Burmeister, J. L. Ibid., 1990, 105, 77; Toma, H. E.; Rocha, R. C. Croat. Chim. Acta 2001, 74, 499.
 
46
Buckingham. D. A.; Creaser, I. I.; Sargeson, A. M. Inorg. Chem. 1970, 9, 655.
 
47
Buckingham, D. A. Coord. Chem. Rev. 1994, 135, 587.
 
48
Schmidtke, H.-H. Z. Physik. Chem. (Frankfurt) 1965, 45, 305; Ibid. Inorg. Chem. 1966, 10, 1682.
 
49
Pearson, R. G.; Henry, P. M.; Bergman, J. G.; Basolo, F. J. Am. Chem. Soc. 1954, 76, 5920.
 
50
Hitchman, M. A.; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.
 
51
Warren, M. R.; Easun, T. L.; Brayshaw, S. K.; Deeth, R. J.; George, M. W.; Johnson, A. L.; Schiffers, S.; Teat, S. J.; Warren, A. J.; Warren, J. E.; Wilson, C. C.; Woodall, C. H.; Raithby, P. R. Chem. Eur. J. 2014, 20, 5468.
 
52
Kishi, S.; Kato, M. Inorg. Chem. 2003, 42, 8728.
 
53
Shea, C. J.; Haim, A. Inorg. Chem. 1973, 12, 3013.
 
54
Birk, J. P.; Espenson, J. H. J. Am. Chem. Soc. 1968, 90, 1153.
 
55
De Castelló, R. A.; Mac-Coll, C. P.; Egen, N. B.; Haim, A. Inorg. Chem. 1969, 8, 699; De Castelló, R. A.; Mac-Coll, C. P.; Haim, A. Ibid., 1971, 10, 203.
 
56
Wang, B.-C.; Schaefer, W. P.; Marsh, R. E. Inorg. Chem. 1971, 10, 1492; Fronczek, F. R.; Schaefer, W. P. Ibid., 1974, 13, 727.
 
57
Yeh, A.; Scott, N.; Taube, H. Inorg. Chem. 1982, 21, 2542; Tomita, A.; Sano, M. Ibid. 1994, 33, 5825.
 
58
Harman, W. D.; Fairlie, D. P.; Taube, H. J. Am. Chem. Soc. 1986, 108, 8223.
 
59
Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 2439.
 
60
Powell, D. W.; Lay, P. A. Inorg. Chem. 1992, 31, 3542.
 
61
Jackson, W. G.; Lawrence, G. A.; Lay, P. A.; Sargeson, A. M. J. Chem. Soc., Chem. Commun. 1982, 70.
 
62
Hatcher, L. E.; Raithby, P. R. Coord. Chem. Rev. 2014, 277–278, 69; Hatcher, L. E.; Skelton, J. M.; Warren, M. R.; Raithby, P. R. Acc. Chem. Res. 2019, 52, 1079.
 
63
Coppens, P.; Novozhilova, I.; Kovalevsky, A. Chem. Rev. 2002, 102, 861; Bitterwolf, T. E. Coord. Chem. Rev. 2006, 250, 1196.
 
64
Rack, J. J. Coord. Chem. Rev. 2009, 253, 78; King, A. W.; Wang, L.; Rack, J. J. Acc. Chem. Res. 2015, 48, 1115.
 
65
Carducci, M. D.; Pressprich, M. R.; Coppens, P. J. Am. Chem. Soc. 1997, 119, 2669; Schaniel, D.; Woike, Th.; Schefer, J.; Petricek, V. Phys. Rev. B 2005, 71, #174112; Schaniel, D.; Woike, Th.; Schefer, J.; Petricek, V.; Krämer, K. W.; Güdel, H. U. Ibid. 2006, 73, #174108; Gallé, G.; Nicoul, M.; Woike, Th.; Schaniel, D.; Freysz, E. Chem. Phys. Lett. 2012, 552, 64.
 
66
Mikhailov, A. A.; Wenger, E.; Kostin, G. A.; Schaniel, D. Chem. Eur. J. 2019, 25, 7569.
 
67
Lynch, M. S.; Cheng, M.; Van Kuiken, B. E.; Khalil, M. J. Am. Chem. Soc. 2011, 133, 5255.
 
68
Dixon, D. A.; Arduengo, A. J., III J. Am. Chem. Soc. 1987, 109, 338, and references therein; Xu, L. T.; Takeshita, T. Y.; Dunning, T. H., Jr. Theor. Chem. Acc. 2014, 133, 1493.
 
69
Varga, Z.; Verma, P.; Truhlar, D. G. J. Phys. Chem. A 2019, 123, 301.
 
70
Rerao, A.; Alcaraz, A. G. New J. Chem. 2020, 44, 8763.
 
71
Rzepa, H. S.; Cass, M. E. Inorg. Chem. 2007, 46, 8024; Amati, M.; Lelj, F. Theor. Chem Acc. 2008, 120, 447.
 
72
Sargeson, A. M. Aust. J. Chem. 1964, 17, 385; Jordan, R. B.; Sargeson, A. M. Inorg. Chem. 1965, 4, 433; Nordmeyer, F. R. Inorg. Chem. 1969, 8, 2780; Baraclough, C. G.; Boschen, R. W.; Fee, W. W.; Jackson, W. G.; McTigue, P. T. Inorg. Chem. 1971, 10, 1994; Kane-Maguire, L. A. P. Inorg. Chem. 1972, 11, 2281; Vanquickenborne, L. G.; Pierloot, K. Inorg. Chem. 1984, 23, 1471.
 
73
Riblet, F.; Novitchi, G.; Scopelliti, R.; Helm. L.; Gulea, A.; Merbach, A. E. Inorg. Chem. 2010, 49, 4194.
 
74
Gellene, G. I. J. Chem. Educ. 1995, 72, 196.
 
Metadaten
Titel
Reaction Types and Mechanisms
verfasst von
Robert B. Jordan
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-22926-8_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.