Skip to main content

2024 | OriginalPaper | Buchkapitel

Role of Carbon Nanomaterials in Energy Generation, Storage, and Conversion

verfasst von : Noureen Amir Khan, Gul Rahman

Erschienen in: Carbon-Based Nanomaterials

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the world's rapidly increasing population and technological advancements, energy is needed. The world’s energy supply is anticipated to double by 2050. Nanotechnology has opened up new possibilities in materials science and engineering, specifically in the manufacture of new materials for efficient energy conversion and storage. Carbon nanomaterials (CBNMs) possess distinctive size and surface-dependent features, such as electrical, morphological, mechanical, and optical properties, that are advantageous for improving energy conversion and storage performance compared to traditional materials. Substantial progress has been made in creating high-performance energy conversion and storage devices such as solar cells, fuel cells, batteries, and supercapacitors. This book chapter focuses on the latest developments and improvements made to the effectiveness of electrode materials used in renewable energy storage and conversion systems by utilizing graphene, carbon nanotubes (CNTs), fullerenes, and nanohybrid fillers. These materials are exceptional candidates for solar cells because of their superior capacity for photon absorption, photovoltaic characteristics, producing photocarriers, and separating charge carriers to create heterojunction. The synthetic method, pore size and distribution, and specific surface area of these materials all impact the capacitance of supercapacitor and battery materials. Additionally, these nanomaterials’ high surface area and electronic conductivity enhance the rate of electrode reactions in fuel cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290PubMedCrossRef Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290PubMedCrossRef
2.
Zurück zum Zitat Notarianni M, Liu J, Vernon K, Motta N (2016) Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J Nanotechnol 7(1):149–196PubMedPubMedCentralCrossRef Notarianni M, Liu J, Vernon K, Motta N (2016) Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J Nanotechnol 7(1):149–196PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173CrossRef Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173CrossRef
4.
Zurück zum Zitat Hu C, Qu J, Xiao Y, Zhao S, Chen H, Dai L (2019) Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. ACS Cent Sci 5(3):389–408PubMedPubMedCentralCrossRef Hu C, Qu J, Xiao Y, Zhao S, Chen H, Dai L (2019) Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. ACS Cent Sci 5(3):389–408PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Duan Y, Weng M, Zhang W, Qian Y, Luo Z, Chen L (2021) Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Convers Manage 241:114306CrossRef Duan Y, Weng M, Zhang W, Qian Y, Luo Z, Chen L (2021) Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Convers Manage 241:114306CrossRef
6.
Zurück zum Zitat Rondeau-Gagné S, Morin J-F (2014) Preparation of carbon nanomaterials from molecular precursors. Chem Soc Rev 43(1):85–98PubMedCrossRef Rondeau-Gagné S, Morin J-F (2014) Preparation of carbon nanomaterials from molecular precursors. Chem Soc Rev 43(1):85–98PubMedCrossRef
7.
Zurück zum Zitat Ni J, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6(17):1600278CrossRef Ni J, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6(17):1600278CrossRef
8.
Zurück zum Zitat Li Y, Meng L, Yang Y, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7(1):10214PubMedPubMedCentralCrossRef Li Y, Meng L, Yang Y, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7(1):10214PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28(11):1706777CrossRef Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28(11):1706777CrossRef
10.
Zurück zum Zitat De Nicola F, Salvato M, Cirillo C, Crivellari M, Boscardin M, Scarselli M, Nanni F, Cacciotti I, De Crescenzi M, Castrucci P (2016) Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon 101:226–234CrossRef De Nicola F, Salvato M, Cirillo C, Crivellari M, Boscardin M, Scarselli M, Nanni F, Cacciotti I, De Crescenzi M, Castrucci P (2016) Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon 101:226–234CrossRef
11.
Zurück zum Zitat Fu X, Xu L, Li J, Sun X, Peng H (2018) Flexible solar cells based on carbon nanomaterials. Carbon 139:1063–1073CrossRef Fu X, Xu L, Li J, Sun X, Peng H (2018) Flexible solar cells based on carbon nanomaterials. Carbon 139:1063–1073CrossRef
12.
Zurück zum Zitat Mabena LF, Makgopa K, Tanko-Djoubi AS, Modibane KD, Hato MJ (2021) Nanostructured carbon-based materials for fuel cell applications. In: Carbon related materials: commemoration for Nobel Laureate Professor Suzuki special symposium at IUMRS-ICAM2017. Springer, pp 357–390 Mabena LF, Makgopa K, Tanko-Djoubi AS, Modibane KD, Hato MJ (2021) Nanostructured carbon-based materials for fuel cell applications. In: Carbon related materials: commemoration for Nobel Laureate Professor Suzuki special symposium at IUMRS-ICAM2017. Springer, pp 357–390
13.
Zurück zum Zitat Li Y, Xu G, Cui C, Li Y (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8(7):1701791CrossRef Li Y, Xu G, Cui C, Li Y (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8(7):1701791CrossRef
14.
Zurück zum Zitat Zhao C, Wang J, Jiao J, Huang L, Tang J (2020) Recent advances of polymer acceptors for high-performance organic solar cells. J Mater Chem C 8(1):28–43CrossRef Zhao C, Wang J, Jiao J, Huang L, Tang J (2020) Recent advances of polymer acceptors for high-performance organic solar cells. J Mater Chem C 8(1):28–43CrossRef
15.
Zurück zum Zitat Wang K, Li Y, Li Y (2020) Challenges to the stability of active layer materials in organic solar cells. Macromol Rapid Commun 41(4):1900437CrossRef Wang K, Li Y, Li Y (2020) Challenges to the stability of active layer materials in organic solar cells. Macromol Rapid Commun 41(4):1900437CrossRef
16.
Zurück zum Zitat Abdi-Jalebi M, Ibrahim Dar M, Senanayak SP, Sadhanala A, Andaji-Garmaroudi Z, Pazos-Outón LM, Richter JM, Pearson AJ, Sirringhaus H, Grätzel M (2019) Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci Adv 5(2):eaav2012 Abdi-Jalebi M, Ibrahim Dar M, Senanayak SP, Sadhanala A, Andaji-Garmaroudi Z, Pazos-Outón LM, Richter JM, Pearson AJ, Sirringhaus H, Grätzel M (2019) Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci Adv 5(2):eaav2012
17.
Zurück zum Zitat Lee C, Lee J, Lee S, Lee W, You H, Woo HY, Kim BJ (2020) Importance of device structure and interlayer design in storage stability of naphthalene diimide-based all-polymer solar cells. J Mater Chem A 8(7):3735–3745CrossRef Lee C, Lee J, Lee S, Lee W, You H, Woo HY, Kim BJ (2020) Importance of device structure and interlayer design in storage stability of naphthalene diimide-based all-polymer solar cells. J Mater Chem A 8(7):3735–3745CrossRef
18.
Zurück zum Zitat Ramos JC, Flores JR, Turlakov G, Moggio I, Arias E, Rodríguez G (2020) Self-assembly of a poly (phenyleneethynylene) on multiwall carbon nanotubes: Correlation of structural and optoelectronic properties towards solar cells application. J Mol Struct 1222:128845CrossRef Ramos JC, Flores JR, Turlakov G, Moggio I, Arias E, Rodríguez G (2020) Self-assembly of a poly (phenyleneethynylene) on multiwall carbon nanotubes: Correlation of structural and optoelectronic properties towards solar cells application. J Mol Struct 1222:128845CrossRef
19.
Zurück zum Zitat Subramanyam B, Mahakul PC, Sa K, Raiguru J, Mahanandia P (2020) Investigation of improvement in stability and power conversion efficiency of organic solar cells fabricated by incorporating carbon nanostructures in device architecture. JPhys Mater 3(4):045004CrossRef Subramanyam B, Mahakul PC, Sa K, Raiguru J, Mahanandia P (2020) Investigation of improvement in stability and power conversion efficiency of organic solar cells fabricated by incorporating carbon nanostructures in device architecture. JPhys Mater 3(4):045004CrossRef
20.
Zurück zum Zitat Park J-J, Heo Y-J, Yun J-M, Kim Y, Yoon SC, Lee S-H, Kim D-Y (2020) Orthogonal printable reduced graphene oxide 2D materials as hole transport layers for high-performance inverted polymer solar cells: Sheet size effect on photovoltaic properties. ACS Appl Mater Interfaces 12(38):42811–42820PubMedCrossRef Park J-J, Heo Y-J, Yun J-M, Kim Y, Yoon SC, Lee S-H, Kim D-Y (2020) Orthogonal printable reduced graphene oxide 2D materials as hole transport layers for high-performance inverted polymer solar cells: Sheet size effect on photovoltaic properties. ACS Appl Mater Interfaces 12(38):42811–42820PubMedCrossRef
21.
Zurück zum Zitat Bella F, Lamberti A, Bianco S, Tresso E, Gerbaldi C, Pirri CF (2016) Floating, flexible polymeric dye‐sensitized solar‐cell architecture: the way of near‐future photovoltaics. Adv Mater Technol 1(2) Bella F, Lamberti A, Bianco S, Tresso E, Gerbaldi C, Pirri CF (2016) Floating, flexible polymeric dye‐sensitized solar‐cell architecture: the way of near‐future photovoltaics. Adv Mater Technol 1(2)
22.
Zurück zum Zitat Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162CrossRef Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162CrossRef
23.
Zurück zum Zitat Yu F, Shi Y, Yao W, Han S, Ma J (2019) A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69% power conversion efficiency. J Power Sources 412:366–373CrossRef Yu F, Shi Y, Yao W, Han S, Ma J (2019) A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69% power conversion efficiency. J Power Sources 412:366–373CrossRef
24.
Zurück zum Zitat Wahyuono RA, Jia G, Plentz J, Dellith A, Dellith J, Herrmann-Westendorf F, Seyring M, Presselt M, Andrä G, Rettenmayr M (2019) Self-assembled graphene/MWCNT bilayers as platinum-free counter electrode in dye-sensitized solar cells. ChemPhysChem 20(24):3336–3345PubMedPubMedCentralCrossRef Wahyuono RA, Jia G, Plentz J, Dellith A, Dellith J, Herrmann-Westendorf F, Seyring M, Presselt M, Andrä G, Rettenmayr M (2019) Self-assembled graphene/MWCNT bilayers as platinum-free counter electrode in dye-sensitized solar cells. ChemPhysChem 20(24):3336–3345PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Harnchana V, Chaiyachad S, Pimanpang S, Saiyasombat C, Srepusharawoot P, Amornkitbamrung V (2019) Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci Rep 9(1):1494PubMedPubMedCentralCrossRef Harnchana V, Chaiyachad S, Pimanpang S, Saiyasombat C, Srepusharawoot P, Amornkitbamrung V (2019) Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci Rep 9(1):1494PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Mehmood U, Asghar H, Babar F, Younas M (2020) Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol Energy 196:132–136CrossRef Mehmood U, Asghar H, Babar F, Younas M (2020) Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol Energy 196:132–136CrossRef
27.
Zurück zum Zitat Kilic B (2019) Produce of carbon nanotube/ZnO nanowires hybrid photoelectrode for efficient dye-sensitized solar cells. J Mater Sci Mater Electron 30:3482–3487CrossRef Kilic B (2019) Produce of carbon nanotube/ZnO nanowires hybrid photoelectrode for efficient dye-sensitized solar cells. J Mater Sci Mater Electron 30:3482–3487CrossRef
28.
Zurück zum Zitat Meng F, Gao L, Yan Y, Cao J, Wang N, Wang T, Ma T (2019) Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells. Carbon 145:290–296CrossRef Meng F, Gao L, Yan Y, Cao J, Wang N, Wang T, Ma T (2019) Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells. Carbon 145:290–296CrossRef
29.
Zurück zum Zitat Elumalai NK, Mahmud MA, Wang D, Uddin A (2016) Perovskite solar cells: progress and advancements. Energies 9(11):861CrossRef Elumalai NK, Mahmud MA, Wang D, Uddin A (2016) Perovskite solar cells: progress and advancements. Energies 9(11):861CrossRef
30.
Zurück zum Zitat Wang H, Li H, Cai W, Zhang P, Cao S, Chen Z, Zang Z (2020) Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale 12(27):14369–14404PubMedCrossRef Wang H, Li H, Cai W, Zhang P, Cao S, Chen Z, Zang Z (2020) Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale 12(27):14369–14404PubMedCrossRef
31.
Zurück zum Zitat Ferguson V, Silva SRP, Zhang W (2019) Carbon materials in perovskite solar cells: prospects and future challenges. Energy Environ Mater 2(2):107–118CrossRef Ferguson V, Silva SRP, Zhang W (2019) Carbon materials in perovskite solar cells: prospects and future challenges. Energy Environ Mater 2(2):107–118CrossRef
32.
Zurück zum Zitat Wang S, Jiang P, Shen W, Mei A, Xiong S, Jiang X, Rong Y, Tang Y, Hu Y, Han H (2019) A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chem Commun 55(19):2765–2768CrossRef Wang S, Jiang P, Shen W, Mei A, Xiong S, Jiang X, Rong Y, Tang Y, Hu Y, Han H (2019) A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chem Commun 55(19):2765–2768CrossRef
33.
Zurück zum Zitat Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2018) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923PubMedCrossRef Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2018) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923PubMedCrossRef
34.
Zurück zum Zitat Hu X, Hou P, Liu C, Cheng H (2019) Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci 1(3):156–172CrossRef Hu X, Hou P, Liu C, Cheng H (2019) Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci 1(3):156–172CrossRef
35.
Zurück zum Zitat Chu Q-Q, Ding B, Peng J, Shen H, Li X, Liu Y, Li C-X, Li C-J, Yang G-J, White TP (2019) Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol 35(6):987–993CrossRef Chu Q-Q, Ding B, Peng J, Shen H, Li X, Liu Y, Li C-X, Li C-J, Yang G-J, White TP (2019) Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol 35(6):987–993CrossRef
36.
Zurück zum Zitat Zhou L, Zuo Y, Mallick TK, Sundaram S (2019) Enhanced efficiency of carbon-based mesoscopic perovskite solar cells through a tungsten oxide nanoparticle additive in the carbon electrode. Sci Rep 9(1):1–8 Zhou L, Zuo Y, Mallick TK, Sundaram S (2019) Enhanced efficiency of carbon-based mesoscopic perovskite solar cells through a tungsten oxide nanoparticle additive in the carbon electrode. Sci Rep 9(1):1–8
37.
Zurück zum Zitat Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovolt 29(1):3–15CrossRef Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovolt 29(1):3–15CrossRef
38.
Zurück zum Zitat Liu Y, Lv P, Zhou W, Hong J (2020) Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting. J Phys Chem C 124(18):9696–9702CrossRef Liu Y, Lv P, Zhou W, Hong J (2020) Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting. J Phys Chem C 124(18):9696–9702CrossRef
39.
Zurück zum Zitat Deshmukh MA, Park S-J, Hedau BS, Ha T-J (2021) Recent progress in solar cells based on carbon nanomaterials. Sol Energy 220:953–990CrossRef Deshmukh MA, Park S-J, Hedau BS, Ha T-J (2021) Recent progress in solar cells based on carbon nanomaterials. Sol Energy 220:953–990CrossRef
40.
Zurück zum Zitat Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476PubMedCrossRef Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476PubMedCrossRef
41.
Zurück zum Zitat Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27(42):6549–6574PubMedCrossRef Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27(42):6549–6574PubMedCrossRef
42.
Zurück zum Zitat Ohashi N, Miyadera T, Taima T, Yoshida Y (2019) Evaluation of exciton diffusion length in highly oriented fullerene films of fullerene/p-Si (100) hybrid solar cells. Jpn J Appl Phys 58(12):121004CrossRef Ohashi N, Miyadera T, Taima T, Yoshida Y (2019) Evaluation of exciton diffusion length in highly oriented fullerene films of fullerene/p-Si (100) hybrid solar cells. Jpn J Appl Phys 58(12):121004CrossRef
43.
Zurück zum Zitat Aissa B, Memon NK, Ali A, Khraisheh MK (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Front Mater Sci 2:58 Aissa B, Memon NK, Ali A, Khraisheh MK (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Front Mater Sci 2:58
44.
Zurück zum Zitat Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748PubMedCrossRef Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748PubMedCrossRef
45.
Zurück zum Zitat Dey A, Ghosh P, Bowen J, Braithwaite NSJ, Krishnamurthy S (2020) Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet. PCCP 22(15):7685–7698PubMedCrossRef Dey A, Ghosh P, Bowen J, Braithwaite NSJ, Krishnamurthy S (2020) Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet. PCCP 22(15):7685–7698PubMedCrossRef
46.
Zurück zum Zitat Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett 99(23):233505CrossRef Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett 99(23):233505CrossRef
47.
Zurück zum Zitat Zhong Y, Xiao Y, Chen Q, Zhu H (2018) Heterojunction solar cells based on graphene woven fabrics and silicon. J Materiomics 4(2):135–138CrossRef Zhong Y, Xiao Y, Chen Q, Zhu H (2018) Heterojunction solar cells based on graphene woven fabrics and silicon. J Materiomics 4(2):135–138CrossRef
48.
Zurück zum Zitat Tune DD, Mallik N, Fornasier H, Flavel BS (2020) Breakthrough carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater 10(1):1903261CrossRef Tune DD, Mallik N, Fornasier H, Flavel BS (2020) Breakthrough carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater 10(1):1903261CrossRef
49.
Zurück zum Zitat Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B (2008) Nanotube–silicon heterojunction solar cells. Adv Mater 20(23):4594–4598CrossRef Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B (2008) Nanotube–silicon heterojunction solar cells. Adv Mater 20(23):4594–4598CrossRef
50.
Zurück zum Zitat Chen J, Tune DD, Ge K, Li H, Flavel BS (2020) Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater 30(17):2000484CrossRef Chen J, Tune DD, Ge K, Li H, Flavel BS (2020) Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater 30(17):2000484CrossRef
51.
Zurück zum Zitat Li H, Shi W, Huang W, Yao E-P, Han J, Chen Z, Liu S, Shen Y, Wang M, Yang Y (2017) Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett 17(4):2328–2335PubMedCrossRef Li H, Shi W, Huang W, Yao E-P, Han J, Chen Z, Liu S, Shen Y, Wang M, Yang Y (2017) Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett 17(4):2328–2335PubMedCrossRef
52.
Zurück zum Zitat Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L (2014) Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A 2(47):20105–20111CrossRef Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L (2014) Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A 2(47):20105–20111CrossRef
53.
Zurück zum Zitat Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3(48):24226–24231CrossRef Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3(48):24226–24231CrossRef
54.
Zurück zum Zitat Cheng N, Liu P, Qi F, Xiao Y, Yu W, Yu Z, Liu W, Guo S-S, Zhao X-Z (2016) Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J Power Sour 332:24–29CrossRef Cheng N, Liu P, Qi F, Xiao Y, Yu W, Yu Z, Liu W, Guo S-S, Zhao X-Z (2016) Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J Power Sour 332:24–29CrossRef
55.
Zurück zum Zitat Yang MK, Lee J-K (2020) CNT/AgNW multilayer electrodes on flexible organic solar cells. Electron Mater Lett 16:573–578CrossRef Yang MK, Lee J-K (2020) CNT/AgNW multilayer electrodes on flexible organic solar cells. Electron Mater Lett 16:573–578CrossRef
56.
Zurück zum Zitat Ali A, Kazici M, Bozar S, Keskin B, Kaleli M, Shah SM, Gunes S (2018) Laminated carbon nanotubes for the facile fabrication of cost-effective polymer solar cells. ACS Appl Energy Mater 1(3):1226–1232CrossRef Ali A, Kazici M, Bozar S, Keskin B, Kaleli M, Shah SM, Gunes S (2018) Laminated carbon nanotubes for the facile fabrication of cost-effective polymer solar cells. ACS Appl Energy Mater 1(3):1226–1232CrossRef
57.
Zurück zum Zitat Zhang Y, He X, Babu D, Li W, Gu X, Shan C, Kyaw AKK, Choy WC (2021) Efficient semi-transparent organic solar cells with high color rendering index enabled by self-assembled and knitted AgNPs/MWCNTs transparent top electrode via solution process. Adv Opt Mater 9(8):2002108CrossRef Zhang Y, He X, Babu D, Li W, Gu X, Shan C, Kyaw AKK, Choy WC (2021) Efficient semi-transparent organic solar cells with high color rendering index enabled by self-assembled and knitted AgNPs/MWCNTs transparent top electrode via solution process. Adv Opt Mater 9(8):2002108CrossRef
58.
Zurück zum Zitat Hashemi D, Ma X, Ansari R, Kim J, Kieffer J (2019) Design principles for the energy level tuning in donor/acceptor conjugated polymers. PCCP 21(2):789–799PubMedCrossRef Hashemi D, Ma X, Ansari R, Kim J, Kieffer J (2019) Design principles for the energy level tuning in donor/acceptor conjugated polymers. PCCP 21(2):789–799PubMedCrossRef
59.
Zurück zum Zitat Wang N, Zheng R, Chi T, Jiang T, Ding Z, Li X, Liu S, Zhang L, San H (2022) Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos B Eng 239:109952CrossRef Wang N, Zheng R, Chi T, Jiang T, Ding Z, Li X, Liu S, Zhang L, San H (2022) Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos B Eng 239:109952CrossRef
60.
Zurück zum Zitat Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Reduced graphene oxide–TaON composite as a high-performance counter electrode for Co (bpy) 33+/2+-mediated dye-sensitized solar cells. ACS Appl Mater Interfaces 5(16):8217–8224PubMedCrossRef Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Reduced graphene oxide–TaON composite as a high-performance counter electrode for Co (bpy) 33+/2+-mediated dye-sensitized solar cells. ACS Appl Mater Interfaces 5(16):8217–8224PubMedCrossRef
61.
Zurück zum Zitat Dou Y, Li G, Song J, Gao X (2012) Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. PCCP 14(4):1339–1342PubMedCrossRef Dou Y, Li G, Song J, Gao X (2012) Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. PCCP 14(4):1339–1342PubMedCrossRef
62.
Zurück zum Zitat Hsu C-H, Lai C-C, Chen L-C, Chan P-S (2014) Enhanced performance of dye-sensitized solar cells with graphene/ZnO nanoparticles bilayer structure. J Nanomater 2014:4–4CrossRef Hsu C-H, Lai C-C, Chen L-C, Chan P-S (2014) Enhanced performance of dye-sensitized solar cells with graphene/ZnO nanoparticles bilayer structure. J Nanomater 2014:4–4CrossRef
63.
Zurück zum Zitat Yang B, Zuo X, Chen P, Zhou L, Yang X, Zhang H, Li G, Wu M, Ma Y, Jin S (2015) Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7(1):137–143PubMedCrossRef Yang B, Zuo X, Chen P, Zhou L, Yang X, Zhang H, Li G, Wu M, Ma Y, Jin S (2015) Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7(1):137–143PubMedCrossRef
64.
Zurück zum Zitat Xie R, Sugime H, Noda S (2021) High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. Carbon 175:519–524CrossRef Xie R, Sugime H, Noda S (2021) High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. Carbon 175:519–524CrossRef
65.
Zurück zum Zitat Kadam KD, Rehman MA, Kim H, Rehman S, Khan MA, Patil H, Aziz J, Park S, Abdul Basit M, Khan K (2022) Enhanced and passivated Co-doping effect of organic molecule and bromine on graphene/HfO2/Silicon Metal–Insulator–Semiconductor (MIS) Schottky junction solar cells. ACS Appl Energy Mater 5(9):10509–10517CrossRef Kadam KD, Rehman MA, Kim H, Rehman S, Khan MA, Patil H, Aziz J, Park S, Abdul Basit M, Khan K (2022) Enhanced and passivated Co-doping effect of organic molecule and bromine on graphene/HfO2/Silicon Metal–Insulator–Semiconductor (MIS) Schottky junction solar cells. ACS Appl Energy Mater 5(9):10509–10517CrossRef
66.
Zurück zum Zitat Yan J, Zhang C, Li H, Yang X, Wan L, Li F, Qiu K, Guo J, Duan W, Lambertz A (2021) Stable organic passivated carbon nanotube-silicon solar cells with an efficiency of 22%. Adv Sci 8(20):2102027CrossRef Yan J, Zhang C, Li H, Yang X, Wan L, Li F, Qiu K, Guo J, Duan W, Lambertz A (2021) Stable organic passivated carbon nanotube-silicon solar cells with an efficiency of 22%. Adv Sci 8(20):2102027CrossRef
67.
Zurück zum Zitat Gao Q, Yan J, Wan L, Zhang C, Wen Z, Zhou X, Li H, Li F, Chen J, Guo J (2022) High-efficiency graphene-oxide/silicon solar cells with an organic-passivated interface. Adv Mater Interfaces 9(24):2201221CrossRef Gao Q, Yan J, Wan L, Zhang C, Wen Z, Zhou X, Li H, Li F, Chen J, Guo J (2022) High-efficiency graphene-oxide/silicon solar cells with an organic-passivated interface. Adv Mater Interfaces 9(24):2201221CrossRef
68.
Zurück zum Zitat Li H, Zhang Y, Wan Q, Li Y, Yang N (2018) Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 131:111–119CrossRef Li H, Zhang Y, Wan Q, Li Y, Yang N (2018) Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 131:111–119CrossRef
69.
Zurück zum Zitat Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi A-G (2016) Advances in stationary and portable fuel cell applications. Int J Hydrogen Energy 41(37):16509–16522CrossRef Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi A-G (2016) Advances in stationary and portable fuel cell applications. Int J Hydrogen Energy 41(37):16509–16522CrossRef
70.
Zurück zum Zitat Bahru R, Shaari N, Mohamed MA (2020) Allotrope carbon materials in thermal interface materials and fuel cell applications: a review. Int J Energy Res 44(4):2471–2498CrossRef Bahru R, Shaari N, Mohamed MA (2020) Allotrope carbon materials in thermal interface materials and fuel cell applications: a review. Int J Energy Res 44(4):2471–2498CrossRef
71.
Zurück zum Zitat Seselj N, Engelbrekt C, Zhang J (2015) Graphene-supported platinum catalysts for fuel cells. Sci Bull 60(9):864–876CrossRef Seselj N, Engelbrekt C, Zhang J (2015) Graphene-supported platinum catalysts for fuel cells. Sci Bull 60(9):864–876CrossRef
72.
Zurück zum Zitat Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25CrossRef Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25CrossRef
73.
Zurück zum Zitat Lázaro M, Calvillo L, Celorrio V, Pardo J, Perathoner S, Moliner R (2011) Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells. Carbon black Prod Prop Uses 41 Lázaro M, Calvillo L, Celorrio V, Pardo J, Perathoner S, Moliner R (2011) Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells. Carbon black Prod Prop Uses 41
74.
Zurück zum Zitat Wan K, Li Y, Wang Y, Wei G (2021) Recent advance in the fabrication of 2D and 3D metal carbides-based nanomaterials for energy and environmental applications. Nanomaterials 11(1):246PubMedPubMedCentralCrossRef Wan K, Li Y, Wang Y, Wei G (2021) Recent advance in the fabrication of 2D and 3D metal carbides-based nanomaterials for energy and environmental applications. Nanomaterials 11(1):246PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhang H, Tan Y, Luo XD, Sun CY, Chen N (2019) Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 6(12):3175–3188CrossRef Zhang H, Tan Y, Luo XD, Sun CY, Chen N (2019) Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 6(12):3175–3188CrossRef
76.
Zurück zum Zitat Yuan F, Ryu H (2004) The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15(10):S596CrossRef Yuan F, Ryu H (2004) The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15(10):S596CrossRef
77.
Zurück zum Zitat Wang X-Z, Fu R, Zheng J-S, Ma J-X (2011b) Platinum nanoparticles supported on carbon nanofibers as anode electrocatalysts for proton exchange membrane fuel cells. Acta Phys Chim Sinica 27(8):1875–1880 Wang X-Z, Fu R, Zheng J-S, Ma J-X (2011b) Platinum nanoparticles supported on carbon nanofibers as anode electrocatalysts for proton exchange membrane fuel cells. Acta Phys Chim Sinica 27(8):1875–1880
78.
Zurück zum Zitat Li W, Waje M, Chen Z, Larsen P, Yan Y (2010) Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon 48(4):995–1003CrossRef Li W, Waje M, Chen Z, Larsen P, Yan Y (2010) Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon 48(4):995–1003CrossRef
79.
Zurück zum Zitat Soundararajan D, Park J, Kim K, Ko J (2012) Pt–Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr Appl Phys 12(3):854–859CrossRef Soundararajan D, Park J, Kim K, Ko J (2012) Pt–Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr Appl Phys 12(3):854–859CrossRef
80.
Zurück zum Zitat Page A, Ding F, Irle S, Morokuma K (2015) Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Rep Prog Phys 78(3):036501PubMedCrossRef Page A, Ding F, Irle S, Morokuma K (2015) Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Rep Prog Phys 78(3):036501PubMedCrossRef
81.
Zurück zum Zitat Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y, Zhou J, Xu J (2016) Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J Hazard Mater 310:235–245PubMedCrossRef Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y, Zhou J, Xu J (2016) Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J Hazard Mater 310:235–245PubMedCrossRef
82.
Zurück zum Zitat Bhuvanendran N, Ravichandran S, Zhang W, Ma Q, Xu Q, Khotseng L, Su H (2020) Highly efficient methanol oxidation on durable PtxIr/MWCNT catalysts for direct methanol fuel cell applications. Int J Hydrogen Energy 45(11):6447–6460CrossRef Bhuvanendran N, Ravichandran S, Zhang W, Ma Q, Xu Q, Khotseng L, Su H (2020) Highly efficient methanol oxidation on durable PtxIr/MWCNT catalysts for direct methanol fuel cell applications. Int J Hydrogen Energy 45(11):6447–6460CrossRef
83.
Zurück zum Zitat Sun Y, Liu D, Liu W, Liu H, Zhao J, Chen P, Wang Q, Wang X, Zou Y (2021) Fabrication of porous polyaniline/MWCNTs coated Co9S8 composite for electrochemical hydrogen storage application. J Phys Chem Solids 157:110235CrossRef Sun Y, Liu D, Liu W, Liu H, Zhao J, Chen P, Wang Q, Wang X, Zou Y (2021) Fabrication of porous polyaniline/MWCNTs coated Co9S8 composite for electrochemical hydrogen storage application. J Phys Chem Solids 157:110235CrossRef
84.
Zurück zum Zitat Doğan M, Selek A, Turhan O, Kızılduman BK, Bicil Z (2021) Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Fuel 303:121335CrossRef Doğan M, Selek A, Turhan O, Kızılduman BK, Bicil Z (2021) Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Fuel 303:121335CrossRef
85.
Zurück zum Zitat Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31(13):1804799CrossRef Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31(13):1804799CrossRef
86.
Zurück zum Zitat Shao Y, Jiang Z, Zhang Q, Guan J (2019) Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction. Chemsuschem 12(10):2133–2146PubMedCrossRef Shao Y, Jiang Z, Zhang Q, Guan J (2019) Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction. Chemsuschem 12(10):2133–2146PubMedCrossRef
87.
Zurück zum Zitat Perez-Page M, Sahoo M, Holmes SM (2019) Single layer 2D crystals for electrochemical applications of ion exchange membranes and hydrogen evolution catalysts. Adv Mater Interfaces 6(7):1801838CrossRef Perez-Page M, Sahoo M, Holmes SM (2019) Single layer 2D crystals for electrochemical applications of ion exchange membranes and hydrogen evolution catalysts. Adv Mater Interfaces 6(7):1801838CrossRef
88.
Zurück zum Zitat Singh RS, Gautam A, Rai V (2019) Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front Mater Sci 13:217–241CrossRef Singh RS, Gautam A, Rai V (2019) Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front Mater Sci 13:217–241CrossRef
89.
Zurück zum Zitat Farooqui UR, Ahmad AL, Hamid N (2018) Graphene oxide: A promising membrane material for fuel cells. Renew Sustain Energy Rev 82:714–733CrossRef Farooqui UR, Ahmad AL, Hamid N (2018) Graphene oxide: A promising membrane material for fuel cells. Renew Sustain Energy Rev 82:714–733CrossRef
90.
Zurück zum Zitat Arukula R, Vinothkannan M, Kim AR, Yoo DJ (2019) Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: An efficient anode catalyst for direct methanol fuel cells. J Alloys Compd 771:477–488CrossRef Arukula R, Vinothkannan M, Kim AR, Yoo DJ (2019) Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: An efficient anode catalyst for direct methanol fuel cells. J Alloys Compd 771:477–488CrossRef
91.
Zurück zum Zitat Qiu X, Yan X, Cen K, Sun D, Xu L, Tang Y (2018) Achieving highly electrocatalytic performance by constructing holey reduced graphene oxide hollow nanospheres sandwiched by interior and exterior platinum nanoparticles. ACS Appl Energy Mater 1(5):2341–2349CrossRef Qiu X, Yan X, Cen K, Sun D, Xu L, Tang Y (2018) Achieving highly electrocatalytic performance by constructing holey reduced graphene oxide hollow nanospheres sandwiched by interior and exterior platinum nanoparticles. ACS Appl Energy Mater 1(5):2341–2349CrossRef
92.
Zurück zum Zitat Yang H, Li S, Feng F, Ou S, Li F, Yang M, Qian K, Jin J, Ma J (2019) Palladium nanoparticles with surface enrichment of palladium oxide species immobilized on the aniline-functionalized graphene as an advanced electrocatalyst of ethanol oxidation. ACS Sustain Chem Eng 7(17):14621–14628CrossRef Yang H, Li S, Feng F, Ou S, Li F, Yang M, Qian K, Jin J, Ma J (2019) Palladium nanoparticles with surface enrichment of palladium oxide species immobilized on the aniline-functionalized graphene as an advanced electrocatalyst of ethanol oxidation. ACS Sustain Chem Eng 7(17):14621–14628CrossRef
93.
Zurück zum Zitat Samad S, Loh KS, Wong WY, Lee TK, Sunarso J, Chong ST, Daud WRW (2018) Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrogen Energy 43(16):7823–7854CrossRef Samad S, Loh KS, Wong WY, Lee TK, Sunarso J, Chong ST, Daud WRW (2018) Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrogen Energy 43(16):7823–7854CrossRef
94.
Zurück zum Zitat Prithi J, Rajalakshmi N, Rao GR (2018) Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int J Hydrogen Energy 43(9):4716–4725CrossRef Prithi J, Rajalakshmi N, Rao GR (2018) Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int J Hydrogen Energy 43(9):4716–4725CrossRef
95.
Zurück zum Zitat Zhuang S, Nunna BB, Mandal D, Lee ES (2018) A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct Nano-Objects 15:140–152CrossRef Zhuang S, Nunna BB, Mandal D, Lee ES (2018) A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct Nano-Objects 15:140–152CrossRef
96.
Zurück zum Zitat Promanan T, Sarakonsri T (2017) Synthesis and characterization of palladium-based nano-catalyst on n-doped graphene for direct ethanol fuel cellS. Rev Adv Mater Sci 52 Promanan T, Sarakonsri T (2017) Synthesis and characterization of palladium-based nano-catalyst on n-doped graphene for direct ethanol fuel cellS. Rev Adv Mater Sci 52
97.
Zurück zum Zitat Chiang Y-C, Hsieh M-K, Hsu H-H (2014) The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells. Thin Solid Films 570:221–229CrossRef Chiang Y-C, Hsieh M-K, Hsu H-H (2014) The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells. Thin Solid Films 570:221–229CrossRef
98.
Zurück zum Zitat Kim O-H, Cho Y-H, Chung DY, Kim MJ, Yoo JM, Park JE, Choe H, Sung Y-E (2015) Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci Rep 5(1):1–8 Kim O-H, Cho Y-H, Chung DY, Kim MJ, Yoo JM, Park JE, Choe H, Sung Y-E (2015) Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci Rep 5(1):1–8
99.
Zurück zum Zitat To JW, Ng JWD, Siahrostami S, Koh AL, Lee Y, Chen Z, Fong KD, Chen S, He J, Bae W-G (2017) High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Res 10:1163–1177CrossRef To JW, Ng JWD, Siahrostami S, Koh AL, Lee Y, Chen Z, Fong KD, Chen S, He J, Bae W-G (2017) High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Res 10:1163–1177CrossRef
100.
Zurück zum Zitat Klingele M, Pham C, Vuyyuru KR, Britton B, Holdcroft S, Fischer A, Thiele S (2017) Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem Commun 77:71–75CrossRef Klingele M, Pham C, Vuyyuru KR, Britton B, Holdcroft S, Fischer A, Thiele S (2017) Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem Commun 77:71–75CrossRef
101.
Zurück zum Zitat Bruno MM, Viva FA, Petruccelli MA, Corti HR (2015) Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells. J Power Sour 278:458–463CrossRef Bruno MM, Viva FA, Petruccelli MA, Corti HR (2015) Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells. J Power Sour 278:458–463CrossRef
102.
Zurück zum Zitat Deng H, Zhang Y, Zheng X, Li Y, Zhang X, Liu X (2015) A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82:236–241CrossRef Deng H, Zhang Y, Zheng X, Li Y, Zhang X, Liu X (2015) A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82:236–241CrossRef
103.
Zurück zum Zitat Kanninen P, Borghei M, Sorsa O, Pohjalainen E, Kauppinen EI, Ruiz V, Kallio T (2014) Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Appl Catal B 156:341–349CrossRef Kanninen P, Borghei M, Sorsa O, Pohjalainen E, Kauppinen EI, Ruiz V, Kallio T (2014) Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Appl Catal B 156:341–349CrossRef
104.
Zurück zum Zitat Askari MB, Salarizadeh P, Seifi M, Rozati SM (2019) Ni/NiO coated on multi-walled carbon nanotubes as a promising electrode for methanol electro-oxidation reaction in direct methanol fuel cell. Solid State Sci 97:106012CrossRef Askari MB, Salarizadeh P, Seifi M, Rozati SM (2019) Ni/NiO coated on multi-walled carbon nanotubes as a promising electrode for methanol electro-oxidation reaction in direct methanol fuel cell. Solid State Sci 97:106012CrossRef
105.
Zurück zum Zitat Higgins DC, Chen Z (2010) Nitrogen doped carbon nanotube thin films as efficient oxygen reduction catalyst for alkaline anion exchange membrane fuel cell. ECS Trans 28(23):63CrossRef Higgins DC, Chen Z (2010) Nitrogen doped carbon nanotube thin films as efficient oxygen reduction catalyst for alkaline anion exchange membrane fuel cell. ECS Trans 28(23):63CrossRef
106.
Zurück zum Zitat Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, Han X, Xu P, Song B (2017) S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces 9(1):398–405PubMedCrossRef Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, Han X, Xu P, Song B (2017) S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces 9(1):398–405PubMedCrossRef
107.
Zurück zum Zitat Sa YJ, Park C, Jeong HY, Park SH, Lee Z, Kim KT, Park GG, Joo SH (2014) Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew Chem 126(16):4186–4190CrossRef Sa YJ, Park C, Jeong HY, Park SH, Lee Z, Kim KT, Park GG, Joo SH (2014) Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew Chem 126(16):4186–4190CrossRef
108.
Zurück zum Zitat Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531PubMedCrossRef Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531PubMedCrossRef
109.
Zurück zum Zitat Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654PubMedCrossRef Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654PubMedCrossRef
110.
Zurück zum Zitat Zhao X, Chen H, Kong F, Zhang Y, Wang S, Liu S, Lucia LA, Fatehi P, Pang H (2019) Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem Eng J 364:226–243CrossRef Zhao X, Chen H, Kong F, Zhang Y, Wang S, Liu S, Lucia LA, Fatehi P, Pang H (2019) Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem Eng J 364:226–243CrossRef
111.
Zurück zum Zitat Wang G, Oswald S, Löffler M, Müllen K, Feng X (2019) Beyond activated carbon: graphite-cathode-derived li-ion pseudocapacitors with high energy and high power densities. Adv Mater 31(14):1807712CrossRef Wang G, Oswald S, Löffler M, Müllen K, Feng X (2019) Beyond activated carbon: graphite-cathode-derived li-ion pseudocapacitors with high energy and high power densities. Adv Mater 31(14):1807712CrossRef
112.
Zurück zum Zitat Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2(1):30–37CrossRef Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2(1):30–37CrossRef
113.
Zurück zum Zitat Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: Materials and devices. J Energy Storage 21:801–825CrossRef Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: Materials and devices. J Energy Storage 21:801–825CrossRef
114.
Zurück zum Zitat Abbas Q, Raza R, Shabbir I, Olabi A (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J Sci Adv Mater Dev 4(3):341–352 Abbas Q, Raza R, Shabbir I, Olabi A (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J Sci Adv Mater Dev 4(3):341–352
115.
Zurück zum Zitat Wen F, Hao C, Xiang J, Wang L, Hou H, Su Z, Hu W, Liu Z (2014) Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 75:236–243CrossRef Wen F, Hao C, Xiang J, Wang L, Hou H, Su Z, Hu W, Liu Z (2014) Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 75:236–243CrossRef
116.
Zurück zum Zitat Xie P, Yuan W, Liu X, Peng Y, Yin Y, Li Y, Wu Z (2021) Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Stor Mater 36:56–76 Xie P, Yuan W, Liu X, Peng Y, Yin Y, Li Y, Wu Z (2021) Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Stor Mater 36:56–76
117.
Zurück zum Zitat Wu Q, Yang L, Wang X, Hu Z (2017) From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc Chem Res 50(2):435–444PubMedCrossRef Wu Q, Yang L, Wang X, Hu Z (2017) From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc Chem Res 50(2):435–444PubMedCrossRef
118.
Zurück zum Zitat Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Chem Rev 118:9233–9280 Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Chem Rev 118:9233–9280
119.
Zurück zum Zitat Fleming E, Du F, Ou E, Dai L, Shi L (2019) Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon 145:195–200CrossRef Fleming E, Du F, Ou E, Dai L, Shi L (2019) Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon 145:195–200CrossRef
120.
Zurück zum Zitat Liu P, Ru Q, Zheng P, Shi Z, Liu Y, Su C, Hou X, Su S, Ling FC-C (2019) One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes. Chem Eng J 374:29–38CrossRef Liu P, Ru Q, Zheng P, Shi Z, Liu Y, Su C, Hou X, Su S, Ling FC-C (2019) One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes. Chem Eng J 374:29–38CrossRef
121.
Zurück zum Zitat Cherusseri J, Kar KK (2016) Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A 4(25):9910–9922CrossRef Cherusseri J, Kar KK (2016) Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A 4(25):9910–9922CrossRef
122.
Zurück zum Zitat Wu P, Cheng S, Yang L, Lin Z, Gui X, Ou X, Zhou J, Yao M, Wang M, Zhu Y (2016) Synthesis and characterization of self-standing and highly flexible δ-MnO2@ CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl Mater Interfaces 8(36):23721–23728PubMedCrossRef Wu P, Cheng S, Yang L, Lin Z, Gui X, Ou X, Zhou J, Yao M, Wang M, Zhu Y (2016) Synthesis and characterization of self-standing and highly flexible δ-MnO2@ CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl Mater Interfaces 8(36):23721–23728PubMedCrossRef
123.
Zurück zum Zitat Xu C, Dong L (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. In: Electrochemical society meeting abstracts 230, vol 7. The Electrochemical Society, Inc., pp 1017–1017 Xu C, Dong L (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. In: Electrochemical society meeting abstracts 230, vol 7. The Electrochemical Society, Inc., pp 1017–1017
124.
Zurück zum Zitat Wang K, Zhao P, Zhou X, Wu H, Wei Z (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21(41):16373–16378CrossRef Wang K, Zhao P, Zhou X, Wu H, Wei Z (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21(41):16373–16378CrossRef
125.
Zurück zum Zitat Qureshi SS, Nimauddin S, Mazari SA, Saeed S, Mubarak N, Khan SU, Saleh TA (2021) Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. J Mater Sci Mater Electron 32(12):16203–16214CrossRef Qureshi SS, Nimauddin S, Mazari SA, Saeed S, Mubarak N, Khan SU, Saleh TA (2021) Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. J Mater Sci Mater Electron 32(12):16203–16214CrossRef
126.
Zurück zum Zitat Yue L, Zhang S, Zhao H, Wang M, Mi J, Feng Y, Wang D (2018) Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials. J Alloys Compd 765:1263–1266CrossRef Yue L, Zhang S, Zhao H, Wang M, Mi J, Feng Y, Wang D (2018) Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials. J Alloys Compd 765:1263–1266CrossRef
127.
Zurück zum Zitat Paul R, Etacheri V, Pol VG, Hu J, Fisher TS (2016) Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery. RSC Adv 6(83):79734–79744CrossRef Paul R, Etacheri V, Pol VG, Hu J, Fisher TS (2016) Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery. RSC Adv 6(83):79734–79744CrossRef
128.
Zurück zum Zitat Niu Z, Zhou W, Chen X, Chen J, Xie S (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27(39):6002–6008PubMedCrossRef Niu Z, Zhou W, Chen X, Chen J, Xie S (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27(39):6002–6008PubMedCrossRef
129.
Zurück zum Zitat Dang A, Sun Y, Fang C, Li T, Liu X, Xia Y, Ye F, Zada A, Khan M (2022) Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl Surf Sci 581:152432CrossRef Dang A, Sun Y, Fang C, Li T, Liu X, Xia Y, Ye F, Zada A, Khan M (2022) Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl Surf Sci 581:152432CrossRef
130.
Zurück zum Zitat Li K, Teng H, Sun Q, Li Y, Wu X, Dai X, Wang Y, Wang S, Zhang Y, Yao K (2022) Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J Energy Storage 53:105094CrossRef Li K, Teng H, Sun Q, Li Y, Wu X, Dai X, Wang Y, Wang S, Zhang Y, Yao K (2022) Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J Energy Storage 53:105094CrossRef
131.
Zurück zum Zitat Olatomiwa AL, Adam T, Gopinath SC, Kolawole SY, Olayinka OH, Hashim U (2022) Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. J Semicond 43(6):061101CrossRef Olatomiwa AL, Adam T, Gopinath SC, Kolawole SY, Olayinka OH, Hashim U (2022) Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. J Semicond 43(6):061101CrossRef
132.
Zurück zum Zitat Lemine AS, Zagho MM, Altahtamouni T, Bensalah N (2018) Graphene a promising electrode material for supercapacitors—A review. Int J Energy Res 42(14):4284–4300CrossRef Lemine AS, Zagho MM, Altahtamouni T, Bensalah N (2018) Graphene a promising electrode material for supercapacitors—A review. Int J Energy Res 42(14):4284–4300CrossRef
133.
Zurück zum Zitat Abeykoon A, De Silva R, Nayanajith L, Kottegoda I (2022) A review on appropriate graphene synthesis methods for diverse applications. Sri Lankan J Phys 23(2) Abeykoon A, De Silva R, Nayanajith L, Kottegoda I (2022) A review on appropriate graphene synthesis methods for diverse applications. Sri Lankan J Phys 23(2)
134.
Zurück zum Zitat Yang W, Ni M, Ren X, Tian Y, Li N, Su Y, Zhang X (2015) Graphene in supercapacitor applications. Curr Opin Colloid Interface Sci 20(5–6):416–428CrossRef Yang W, Ni M, Ren X, Tian Y, Li N, Su Y, Zhang X (2015) Graphene in supercapacitor applications. Curr Opin Colloid Interface Sci 20(5–6):416–428CrossRef
135.
Zurück zum Zitat Ares P, Novoselov KS (2022) Recent advances in graphene and other 2D materials. Nano Mater Sci 4(1):3–9CrossRef Ares P, Novoselov KS (2022) Recent advances in graphene and other 2D materials. Nano Mater Sci 4(1):3–9CrossRef
136.
Zurück zum Zitat Xiong C, Li B, Duan C, Dai L, Nie S, Qin C, Xu Y, Ni Y (2021) Carbonized wood cell chamber-reduced graphene oxide@ PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem Eng J 418:129518CrossRef Xiong C, Li B, Duan C, Dai L, Nie S, Qin C, Xu Y, Ni Y (2021) Carbonized wood cell chamber-reduced graphene oxide@ PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem Eng J 418:129518CrossRef
137.
Zurück zum Zitat Kumar R, Sahoo S, Tan WK, Kawamura G, Matsuda A, Kar KK (2021) Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. J Energy Storage 40:102724CrossRef Kumar R, Sahoo S, Tan WK, Kawamura G, Matsuda A, Kar KK (2021) Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. J Energy Storage 40:102724CrossRef
138.
Zurück zum Zitat Xu M, Wang A, Xiang Y, Niu J (2021) Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. J Clean Prod 315:128110CrossRef Xu M, Wang A, Xiang Y, Niu J (2021) Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. J Clean Prod 315:128110CrossRef
139.
Zurück zum Zitat Hashemi SA, Mousavi SM, Naderi HR, Bahrani S, Arjmand M, Hagfeldt A, Chiang W-H, Ramakrishna S (2021) Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chem Eng J 418:129396CrossRef Hashemi SA, Mousavi SM, Naderi HR, Bahrani S, Arjmand M, Hagfeldt A, Chiang W-H, Ramakrishna S (2021) Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chem Eng J 418:129396CrossRef
140.
141.
Zurück zum Zitat Jiang X, Gao R, Liu G, Luo H, Zhao X, Jiang L (2022) Construction of graphene-based “In-Paper” 3D interdigital microelectrodes for high performance metal-free flexible supercapacitors. Small Methods 6(5):2101454CrossRef Jiang X, Gao R, Liu G, Luo H, Zhao X, Jiang L (2022) Construction of graphene-based “In-Paper” 3D interdigital microelectrodes for high performance metal-free flexible supercapacitors. Small Methods 6(5):2101454CrossRef
142.
Zurück zum Zitat Cheng C, Zou Y, Xu F, Xiang C, Sui Q, Zhang J, Sun L, Chen Z (2022) Ultrathin graphene@ NiCo2S4@ Ni-Mo layered double hydroxide with a 3D hierarchical flowers structure as a high performance positive electrode for hybrid supercapacitor. J Energy Storage 52:105049CrossRef Cheng C, Zou Y, Xu F, Xiang C, Sui Q, Zhang J, Sun L, Chen Z (2022) Ultrathin graphene@ NiCo2S4@ Ni-Mo layered double hydroxide with a 3D hierarchical flowers structure as a high performance positive electrode for hybrid supercapacitor. J Energy Storage 52:105049CrossRef
143.
Zurück zum Zitat Baskar AV, Ruban AM, Davidraj JM, Singh G, AaH A-M, Lee JM, Yi J, Vinu A (2021) Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull Chem Soc Jpn 94(1):133–140CrossRef Baskar AV, Ruban AM, Davidraj JM, Singh G, AaH A-M, Lee JM, Yi J, Vinu A (2021) Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull Chem Soc Jpn 94(1):133–140CrossRef
144.
Zurück zum Zitat Jiang B, Zhang G, Tang Q, Meng F, Zhou D, Zhao W, Jiang W, Ji Q (2022) Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Adv Mater 3(3):1539–1546CrossRef Jiang B, Zhang G, Tang Q, Meng F, Zhou D, Zhao W, Jiang W, Ji Q (2022) Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Adv Mater 3(3):1539–1546CrossRef
145.
Zurück zum Zitat Li Y, Kang Z, Yan X, Cao S, Li M, Guo Y, Huan Y, Wen X, Zhang Y (2018) A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 10(19):9360–9368PubMedCrossRef Li Y, Kang Z, Yan X, Cao S, Li M, Guo Y, Huan Y, Wen X, Zhang Y (2018) A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 10(19):9360–9368PubMedCrossRef
146.
Zurück zum Zitat Ye Z, Zhang T, He W, Jin H, Liu C, Yang Z, Ren J (2018) Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces 10(15):12341–12350PubMedCrossRef Ye Z, Zhang T, He W, Jin H, Liu C, Yang Z, Ren J (2018) Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces 10(15):12341–12350PubMedCrossRef
147.
Zurück zum Zitat Feng X, Chen W, Yan L (2015) Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. Nanoscale 7(8):3712–3718PubMedCrossRef Feng X, Chen W, Yan L (2015) Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. Nanoscale 7(8):3712–3718PubMedCrossRef
148.
Zurück zum Zitat Lv H, Yuan Y, Xu Q, Liu H, Wang Y-G, Xia Y (2018) Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J Power Sources 398:167–174CrossRef Lv H, Yuan Y, Xu Q, Liu H, Wang Y-G, Xia Y (2018) Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J Power Sources 398:167–174CrossRef
149.
Zurück zum Zitat Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027PubMedCrossRef Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027PubMedCrossRef
150.
Zurück zum Zitat Zheng Y, Tian Y, Sarwar S, Luo J, Zhang X (2020) Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J Power Sour 452:227793CrossRef Zheng Y, Tian Y, Sarwar S, Luo J, Zhang X (2020) Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J Power Sour 452:227793CrossRef
151.
Zurück zum Zitat Tao H-C, Zhu S-C, Yang X-L, Zhang L-L, Ni S-B (2016) Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors. Electrochim Acta 190:168–177CrossRef Tao H-C, Zhu S-C, Yang X-L, Zhang L-L, Ni S-B (2016) Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors. Electrochim Acta 190:168–177CrossRef
152.
Zurück zum Zitat Zhou S, Zeng S, Zhang S, Qiao J, Di J, Chen M, Liu N, Li Q (2017) Hierarchical carbon nanotube hybrid films for high-performance all-solid-state supercapacitors. RSC Adv 7(82):52010–52016CrossRef Zhou S, Zeng S, Zhang S, Qiao J, Di J, Chen M, Liu N, Li Q (2017) Hierarchical carbon nanotube hybrid films for high-performance all-solid-state supercapacitors. RSC Adv 7(82):52010–52016CrossRef
153.
Zurück zum Zitat Pourreza K, Adeh NB, Mohammadi N (2020) In-situ grown of polyaniline on defective mesoporous carbon as a high performance supercapacitor electrode material. J Energy Storage 30:101429CrossRef Pourreza K, Adeh NB, Mohammadi N (2020) In-situ grown of polyaniline on defective mesoporous carbon as a high performance supercapacitor electrode material. J Energy Storage 30:101429CrossRef
154.
Zurück zum Zitat Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. J Mater Chem A 2(20):7484–7490CrossRef Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. J Mater Chem A 2(20):7484–7490CrossRef
155.
Zurück zum Zitat Yang J, Guo J, Guo X, Chen L (2019) In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors. Mater Lett 236:739–742CrossRef Yang J, Guo J, Guo X, Chen L (2019) In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors. Mater Lett 236:739–742CrossRef
156.
Zurück zum Zitat Zhu F, Liu W, Liu Y, Shi W (2020) Construction of porous interface on CNTs@ NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem Eng J 383:123150CrossRef Zhu F, Liu W, Liu Y, Shi W (2020) Construction of porous interface on CNTs@ NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem Eng J 383:123150CrossRef
157.
Zurück zum Zitat Wan L, Du C, Yang S (2017) Synthesis of graphene oxide/polybenzoxazine-based nitrogen-containing porous carbon nanocomposite for enhanced supercapacitor properties. Electrochim Acta 251:12–24CrossRef Wan L, Du C, Yang S (2017) Synthesis of graphene oxide/polybenzoxazine-based nitrogen-containing porous carbon nanocomposite for enhanced supercapacitor properties. Electrochim Acta 251:12–24CrossRef
158.
Zurück zum Zitat Tseng L-H, Hsiao C-H, Nguyen DD, Hsieh P-Y, Lee C-Y, Tai N-H (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292CrossRef Tseng L-H, Hsiao C-H, Nguyen DD, Hsieh P-Y, Lee C-Y, Tai N-H (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292CrossRef
159.
Zurück zum Zitat Schmidt O, Hawkes A, Gambhir A, Staffell I (2017) The future cost of electrical energy storage based on experience rates. Nat Energy 2(8):1–8CrossRef Schmidt O, Hawkes A, Gambhir A, Staffell I (2017) The future cost of electrical energy storage based on experience rates. Nat Energy 2(8):1–8CrossRef
160.
Zurück zum Zitat Liu Z, Huang Y, Huang Y, Yang Q, Li X, Huang Z, Zhi C (2020) Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 49(1):180–232PubMedCrossRef Liu Z, Huang Y, Huang Y, Yang Q, Li X, Huang Z, Zhi C (2020) Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 49(1):180–232PubMedCrossRef
161.
Zurück zum Zitat Liang Y, Dong H, Aurbach D, Yao Y (2020) Current status and future directions of multivalent metal-ion batteries. Nat Energy 5(9):646–656CrossRef Liang Y, Dong H, Aurbach D, Yao Y (2020) Current status and future directions of multivalent metal-ion batteries. Nat Energy 5(9):646–656CrossRef
162.
Zurück zum Zitat Gu X, Lai C (2018) Recent development of metal compound applications in lithium–sulphur batteries. J Mater Res 33(1):16–31CrossRef Gu X, Lai C (2018) Recent development of metal compound applications in lithium–sulphur batteries. J Mater Res 33(1):16–31CrossRef
163.
Zurück zum Zitat Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101CrossRef Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101CrossRef
164.
Zurück zum Zitat Yang S, Cheng Y, Xiao X, Pang H (2020) Development and application of carbon fiber in batteries. Chem Eng J 384:123294CrossRef Yang S, Cheng Y, Xiao X, Pang H (2020) Development and application of carbon fiber in batteries. Chem Eng J 384:123294CrossRef
165.
Zurück zum Zitat Chen S, Kuang Q, Fan HJ (2020) Dual-Carbon batteries: materials and mechanism. Small 16(40):2002803CrossRef Chen S, Kuang Q, Fan HJ (2020) Dual-Carbon batteries: materials and mechanism. Small 16(40):2002803CrossRef
166.
Zurück zum Zitat Han J, Wei W, Zhang C, Tao Y, Lv W, Ling G, Kang F, Yang Q-H (2018) Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem Energy Rev 1:139–168CrossRef Han J, Wei W, Zhang C, Tao Y, Lv W, Ling G, Kang F, Yang Q-H (2018) Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem Energy Rev 1:139–168CrossRef
167.
Zurück zum Zitat Hou R, Liu B, Sun Y, Liu L, Meng J, Levi MD, Ji H, Yan X (2020) Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72:104728CrossRef Hou R, Liu B, Sun Y, Liu L, Meng J, Levi MD, Ji H, Yan X (2020) Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72:104728CrossRef
168.
Zurück zum Zitat Thompson M, Xia Q, Hu Z, Zhao XS (2021) A review on biomass-derived hard carbon materials for sodium-ion batteries. Adv Mater 2(18):5881–5905CrossRef Thompson M, Xia Q, Hu Z, Zhao XS (2021) A review on biomass-derived hard carbon materials for sodium-ion batteries. Adv Mater 2(18):5881–5905CrossRef
169.
Zurück zum Zitat Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRef Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRef
170.
Zurück zum Zitat McCullough F, Levine C, Snelgrove R (1989) Secondary battery. McCullough F, Levine C, Snelgrove R (1989) Secondary battery.
171.
Zurück zum Zitat Zhu C-y, Ye Y-w, Guo X, Cheng F (2022) Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater 37(1):59–92CrossRef Zhu C-y, Ye Y-w, Guo X, Cheng F (2022) Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater 37(1):59–92CrossRef
172.
Zurück zum Zitat Wu Q, Yang L, Wang X, Hu Z (2020) Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv Mater 32(27):1904177CrossRef Wu Q, Yang L, Wang X, Hu Z (2020) Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv Mater 32(27):1904177CrossRef
173.
Zurück zum Zitat Zhang Y, Yan D, Liu Z, Ye Y, Cheng F, Li H, Lu A-H (2021) A SnO x quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity. ACS Nano 15(4):7021–7031PubMedCrossRef Zhang Y, Yan D, Liu Z, Ye Y, Cheng F, Li H, Lu A-H (2021) A SnO x quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity. ACS Nano 15(4):7021–7031PubMedCrossRef
174.
Zurück zum Zitat Cao B, Liu Z, Xu C, Huang J, Fang H, Chen Y (2019) High-rate-induced capacity evolution of mesoporous C@ SnO2@ C hollow nanospheres for ultra-long cycle lithium-ion batteries. J Power Sour 414:233–241CrossRef Cao B, Liu Z, Xu C, Huang J, Fang H, Chen Y (2019) High-rate-induced capacity evolution of mesoporous C@ SnO2@ C hollow nanospheres for ultra-long cycle lithium-ion batteries. J Power Sour 414:233–241CrossRef
175.
Zurück zum Zitat Chae S, Choi SH, Kim N, Sung J, Cho J (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed 59(1):110–135CrossRef Chae S, Choi SH, Kim N, Sung J, Cho J (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed 59(1):110–135CrossRef
176.
Zurück zum Zitat Mi H, Yang X, Li Y, Zhang P, Sun L (2018) A self-sacrifice template strategy to fabricate yolk-shell structured silicon@ void@ carbon composites for high-performance lithium-ion batteries. Chem Eng J 351:103–109CrossRef Mi H, Yang X, Li Y, Zhang P, Sun L (2018) A self-sacrifice template strategy to fabricate yolk-shell structured silicon@ void@ carbon composites for high-performance lithium-ion batteries. Chem Eng J 351:103–109CrossRef
177.
Zurück zum Zitat Zhao F, Li X, He J, Wang K, Huang C (2021) Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem Eng J 413:127486CrossRef Zhao F, Li X, He J, Wang K, Huang C (2021) Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem Eng J 413:127486CrossRef
178.
Zurück zum Zitat Zhai T, Yao J (2012) One-dimensional nanostructures: principles and applications. Wiley & SonsCrossRef Zhai T, Yao J (2012) One-dimensional nanostructures: principles and applications. Wiley & SonsCrossRef
179.
Zurück zum Zitat Deng M, Qi J, Li X, Xiao Y, Yang L, Yu X, Wang H, Yuan B, Gao Q (2018) MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochim Acta 277:205–210CrossRef Deng M, Qi J, Li X, Xiao Y, Yang L, Yu X, Wang H, Yuan B, Gao Q (2018) MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochim Acta 277:205–210CrossRef
180.
Zurück zum Zitat Liu D-S, Liu D-H, Hou B-H, Wang Y-Y, Guo J-Z, Ning Q-L, Wu X-L (2018) 1D porous MnO@ N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRef Liu D-S, Liu D-H, Hou B-H, Wang Y-Y, Guo J-Z, Ning Q-L, Wu X-L (2018) 1D porous MnO@ N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRef
181.
Zurück zum Zitat Chen H, Liu R, Wu Y, Cao J, Chen J, Hou Y, Guo Y, Khatoon R, Chen L, Zhang Q (2021) Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chem Eng J 407:126973CrossRef Chen H, Liu R, Wu Y, Cao J, Chen J, Hou Y, Guo Y, Khatoon R, Chen L, Zhang Q (2021) Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chem Eng J 407:126973CrossRef
182.
Zurück zum Zitat Mu T, Zuo P, Lou S, Pan Q, Li Q, Du C, Gao Y, Cheng X, Ma Y, Yin G (2018) A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J 341:37–46CrossRef Mu T, Zuo P, Lou S, Pan Q, Li Q, Du C, Gao Y, Cheng X, Ma Y, Yin G (2018) A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J 341:37–46CrossRef
183.
Zurück zum Zitat Sun P, Wang K, Zhu H (2016) Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv Mater 28(12):2287–2310PubMedCrossRef Sun P, Wang K, Zhu H (2016) Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv Mater 28(12):2287–2310PubMedCrossRef
184.
Zurück zum Zitat Ma G, Huang K, Ma J-S, Ju Z, Xing Z, Zhuang Q-c (2017) Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 5(17):7854–7861CrossRef Ma G, Huang K, Ma J-S, Ju Z, Xing Z, Zhuang Q-c (2017) Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 5(17):7854–7861CrossRef
185.
Zurück zum Zitat Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486CrossRef Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486CrossRef
186.
Zurück zum Zitat Zheng J, Wu Y, Sun Y, Rong J, Li H, Niu L (2021) Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett 13:1–37CrossRef Zheng J, Wu Y, Sun Y, Rong J, Li H, Niu L (2021) Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett 13:1–37CrossRef
187.
Zurück zum Zitat Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Wang G, Yan J, Cao D (2020) Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci 561:203–210PubMedCrossRef Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Wang G, Yan J, Cao D (2020) Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci 561:203–210PubMedCrossRef
188.
Zurück zum Zitat Cheng F, Wang S, Lu A-H, Li W-C (2013) Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J Power Sour 229:249–257CrossRef Cheng F, Wang S, Lu A-H, Li W-C (2013) Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J Power Sour 229:249–257CrossRef
189.
Zurück zum Zitat Ke G, Chen H, He J, Wu X, Gao Y, Li Y, Mi H, Zhang Q, He C, Ren X (2021) Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chem Eng J 403:126251CrossRef Ke G, Chen H, He J, Wu X, Gao Y, Li Y, Mi H, Zhang Q, He C, Ren X (2021) Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chem Eng J 403:126251CrossRef
190.
Zurück zum Zitat Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C-P, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@ carbon core@ shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305CrossRef Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C-P, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@ carbon core@ shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305CrossRef
191.
Zurück zum Zitat Wang X, Tang Y, Shi P, Fan J, Xu Q, Min Y (2018) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J 334:1642–1649CrossRef Wang X, Tang Y, Shi P, Fan J, Xu Q, Min Y (2018) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J 334:1642–1649CrossRef
192.
Zurück zum Zitat Mondal AK, Kretschmer K, Zhao Y, Liu H, Wang C, Sun B, Wang G (2017) Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chem Eur J 23(15):3683–3690PubMedCrossRef Mondal AK, Kretschmer K, Zhao Y, Liu H, Wang C, Sun B, Wang G (2017) Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chem Eur J 23(15):3683–3690PubMedCrossRef
193.
Zurück zum Zitat Hu X, Li Y, Zeng G, Jia J, Zhan H, Wen Z (2018) Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12(2):1592–1602PubMedCrossRef Hu X, Li Y, Zeng G, Jia J, Zhan H, Wen Z (2018) Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12(2):1592–1602PubMedCrossRef
194.
Zurück zum Zitat Yao S, Cui J, Huang J, Huang JQ, Chong WG, Qin L, Mai YW, Kim JK (2018) Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater 8(7):1702267CrossRef Yao S, Cui J, Huang J, Huang JQ, Chong WG, Qin L, Mai YW, Kim JK (2018) Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater 8(7):1702267CrossRef
195.
Zurück zum Zitat Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):1604108CrossRef Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):1604108CrossRef
196.
Zurück zum Zitat Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29(8):1603414CrossRef Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29(8):1603414CrossRef
197.
Zurück zum Zitat Zhao X, Kim M, Liu Y, Ahn H-J, Kim K-W, Cho K-K, Ahn J-H (2018) Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon 128:138–146CrossRef Zhao X, Kim M, Liu Y, Ahn H-J, Kim K-W, Cho K-K, Ahn J-H (2018) Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon 128:138–146CrossRef
198.
Zurück zum Zitat Hao R, Lan H, Kuang C, Wang H, Guo L (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128:224–230CrossRef Hao R, Lan H, Kuang C, Wang H, Guo L (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128:224–230CrossRef
199.
Zurück zum Zitat Park S-K, Park J-S, Kang YC (2018) Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. J Mater Chem A 6(3):1028–1036CrossRef Park S-K, Park J-S, Kang YC (2018) Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. J Mater Chem A 6(3):1028–1036CrossRef
200.
Zurück zum Zitat Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A Conductive molecular framework derived Li2S/N, P-Codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7(14):1602876CrossRef Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A Conductive molecular framework derived Li2S/N, P-Codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7(14):1602876CrossRef
201.
Zurück zum Zitat Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv Energy Mater 8(1):1701110CrossRef Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv Energy Mater 8(1):1701110CrossRef
202.
Zurück zum Zitat Li W, Fang R, Xia Y, Zhang W, Wang X, Xia X, Tu J (2019) Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries. Batter Supercaps 2(1):9–36CrossRef Li W, Fang R, Xia Y, Zhang W, Wang X, Xia X, Tu J (2019) Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries. Batter Supercaps 2(1):9–36CrossRef
203.
Zurück zum Zitat Shinde SS, Lee C-H, Sami A, Kim D-H, Lee S-U, Lee J-H (2017) Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1):347–357PubMedCrossRef Shinde SS, Lee C-H, Sami A, Kim D-H, Lee S-U, Lee J-H (2017) Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1):347–357PubMedCrossRef
204.
Zurück zum Zitat Miron C, Mele P, Kaneko S, Endo T. Carbon-related materials Miron C, Mele P, Kaneko S, Endo T. Carbon-related materials
Metadaten
Titel
Role of Carbon Nanomaterials in Energy Generation, Storage, and Conversion
verfasst von
Noureen Amir Khan
Gul Rahman
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0240-4_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.