Skip to main content

2024 | OriginalPaper | Buchkapitel

Role of Electrocatalysts for Water Electrolysis

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study of electrocatalysts for oxygen evolution reaction (OER) in water electrolysis is a rapidly advancing field, often utilizing noble metal-based materials. The chapter begins with an introduction to water electrolysis and then a current understanding of the two half-cell reactions, namely the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with a focus on their reaction mechanisms in both alkaline and acidic media. This chapter offers a comprehensive overview of fundamental knowledge related to the use of catalysts for the OER in water electrolysis. The discussion covers various categories of catalysts, including noble metals-based catalysts, transition metals-based catalysts, carbon nanotube-based metal/metal oxides catalysts, carbon nanotube-based metal-free electrocatalysts, and perovskite oxides electrocatalysts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Boyd S, Augustyn V (2018) Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorganic Chem Front 5(5):999–1015CrossRef Boyd S, Augustyn V (2018) Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorganic Chem Front 5(5):999–1015CrossRef
Zurück zum Zitat Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt-iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137(10):3638–3648CrossRef Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt-iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137(10):3638–3648CrossRef
Zurück zum Zitat Chen S, Huang H, Jiang P, Yang K, Diao J, Gong S, Liu S, Huang M, Wang H, Chen Q (2019) Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal 10(2):1152–1160CrossRef Chen S, Huang H, Jiang P, Yang K, Diao J, Gong S, Liu S, Huang M, Wang H, Chen Q (2019) Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal 10(2):1152–1160CrossRef
Zurück zum Zitat Chen Z, Duan X, Wei W, Wang S, Ni BJ (2020) Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78:105270CrossRef Chen Z, Duan X, Wei W, Wang S, Ni BJ (2020) Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78:105270CrossRef
Zurück zum Zitat Cheng Y (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci: Mater Int 25(6):545–553CrossRef Cheng Y (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci: Mater Int 25(6):545–553CrossRef
Zurück zum Zitat Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223CrossRef Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223CrossRef
Zurück zum Zitat Chi J, Yu H (2018) Waterelectrolysisbasedonrenewableenergyfor hydrogen production. Chin J Catal 39:390–394CrossRef Chi J, Yu H (2018) Waterelectrolysisbasedonrenewableenergyfor hydrogen production. Chin J Catal 39:390–394CrossRef
Zurück zum Zitat El-Shafie M (2023) Hydrogen production by water electrolysis technologies: a review. Results Eng 101426 El-Shafie M (2023) Hydrogen production by water electrolysis technologies: a review. Results Eng 101426
Zurück zum Zitat Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4(11):3800–3821CrossRef Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4(11):3800–3821CrossRef
Zurück zum Zitat Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084CrossRef Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084CrossRef
Zurück zum Zitat Garcia AC, Touzalin T, Nieuwland C, Perini N, Koper MT (2019) Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed 58(37):12999–13003CrossRef Garcia AC, Touzalin T, Nieuwland C, Perini N, Koper MT (2019) Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed 58(37):12999–13003CrossRef
Zurück zum Zitat Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers AM, Fu WT, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer KJJ, Koper MTM, Cherevko S (2018) The stability number as a metric for electrocatalyst stability benchmarking. Nat Catal 1(7):508–515CrossRef Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers AM, Fu WT, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer KJJ, Koper MTM, Cherevko S (2018) The stability number as a metric for electrocatalyst stability benchmarking. Nat Catal 1(7):508–515CrossRef
Zurück zum Zitat Gong M, Wang DY, Chen CC, Hwang BJ, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28–46CrossRef Gong M, Wang DY, Chen CC, Hwang BJ, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28–46CrossRef
Zurück zum Zitat Gutiérrez-Martín F, Ochoa-Mendoza A, Rodríguez-Antón LM (2015) Pre-investigation of water electrolysis for flexible energy storage at large scales: the case of the Spanish power system. Int J Hydrogen Energy 40(15):5544–5551CrossRef Gutiérrez-Martín F, Ochoa-Mendoza A, Rodríguez-Antón LM (2015) Pre-investigation of water electrolysis for flexible energy storage at large scales: the case of the Spanish power system. Int J Hydrogen Energy 40(15):5544–5551CrossRef
Zurück zum Zitat Hammes-Schiffer S (2009) Theory of proton-coupled electron transfer in energy conversion processes. Acc Chem Res 42(12):1881–1889CrossRef Hammes-Schiffer S (2009) Theory of proton-coupled electron transfer in energy conversion processes. Acc Chem Res 42(12):1881–1889CrossRef
Zurück zum Zitat Higareda A, Hernández-Arellano DL, Ordoñez LC, Barbosa R, Alonso-Vante N (2023) Advanced electrocatalysts for the oxygen evolution reaction: from single-to multielement materials. Catalysts 13(10):1346CrossRef Higareda A, Hernández-Arellano DL, Ordoñez LC, Barbosa R, Alonso-Vante N (2023) Advanced electrocatalysts for the oxygen evolution reaction: from single-to multielement materials. Catalysts 13(10):1346CrossRef
Zurück zum Zitat Irena I (2020) Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 °C climate goal. International Renewable Energy Agency, Abu Dhabi Irena I (2020) Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 °C climate goal. International Renewable Energy Agency, Abu Dhabi
Zurück zum Zitat Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review. J Power Sources 400:31–68CrossRef Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review. J Power Sources 400:31–68CrossRef
Zurück zum Zitat Joo J, Jin H, Oh A, Kim B, Lee J, Baik H, Joo SH, Lee K (2018) An IrRu alloy nanocactus on Cu2-xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J Mater Chem A 6(33):16130–16138CrossRef Joo J, Jin H, Oh A, Kim B, Lee J, Baik H, Joo SH, Lee K (2018) An IrRu alloy nanocactus on Cu2-xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J Mater Chem A 6(33):16130–16138CrossRef
Zurück zum Zitat Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef
Zurück zum Zitat Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1:483–530CrossRef Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1:483–530CrossRef
Zurück zum Zitat Kjartansdóttir CK, Nielsen LP, Møller P (2013) Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int J Hydrogen Energy 38(20):8221–8231CrossRef Kjartansdóttir CK, Nielsen LP, Møller P (2013) Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int J Hydrogen Energy 38(20):8221–8231CrossRef
Zurück zum Zitat Li Y, Zhou W, Zhao X, Cheng W, Su H, Zhang H, Meihuani L, Liu Q (2019) Donutlike RuCu nanoalloy with ultrahigh mass activity for efficient and robust oxygen evolution in acid solution. ACS Appl Energy Mater 2(10):7483–7489CrossRef Li Y, Zhou W, Zhao X, Cheng W, Su H, Zhang H, Meihuani L, Liu Q (2019) Donutlike RuCu nanoalloy with ultrahigh mass activity for efficient and robust oxygen evolution in acid solution. ACS Appl Energy Mater 2(10):7483–7489CrossRef
Zurück zum Zitat Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12:1–29CrossRef Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12:1–29CrossRef
Zurück zum Zitat Liu D, Zhang X, Sun Z, You T (2013) Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 5(20):9528–9531CrossRef Liu D, Zhang X, Sun Z, You T (2013) Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 5(20):9528–9531CrossRef
Zurück zum Zitat Liu X, Wang X, Yuan X, Dong W, Huang F (2016) Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J Mater Chem A 4(1):167–172CrossRef Liu X, Wang X, Yuan X, Dong W, Huang F (2016) Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J Mater Chem A 4(1):167–172CrossRef
Zurück zum Zitat Luo B, Yan X, Xu S, Xue Q (2013) Synthesis of worm-like PtCo nanotubes for methanol oxidation. Electrochem Commun 30:71–74CrossRef Luo B, Yan X, Xu S, Xue Q (2013) Synthesis of worm-like PtCo nanotubes for methanol oxidation. Electrochem Commun 30:71–74CrossRef
Zurück zum Zitat Makarova MV, Jirkovský J, Klementová M, Jirka I, Macounová K, Krtil P (2008) The electrocatalytic behavior of RuO.8CoO.2O2-x-the effect of particle shape and surface composition. Electrochimica Acta 53(5):2656–2664 Makarova MV, Jirkovský J, Klementová M, Jirka I, Macounová K, Krtil P (2008) The electrocatalytic behavior of RuO.8CoO.2O2-x-the effect of particle shape and surface composition. Electrochimica Acta 53(5):2656–2664
Zurück zum Zitat Miles MH, Thomason MA (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J Electrochem Soc 123(10):1459CrossRef Miles MH, Thomason MA (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J Electrochem Soc 123(10):1459CrossRef
Zurück zum Zitat Miles MH, Klaus EA, Gunn BP, Locker JR, Serafin WE, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim Acta 23(6):521–526CrossRef Miles MH, Klaus EA, Gunn BP, Locker JR, Serafin WE, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim Acta 23(6):521–526CrossRef
Zurück zum Zitat Nath M, Singh H, Saxena A (2022) Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Curr Opin Electrochem 34:100993CrossRef Nath M, Singh H, Saxena A (2022) Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Curr Opin Electrochem 34:100993CrossRef
Zurück zum Zitat Oh J, Lee JM, Yoo Y, Kim J, Hwang SJ, Park S (2017) New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties. Appl Catal B 218:349–358CrossRef Oh J, Lee JM, Yoo Y, Kim J, Hwang SJ, Park S (2017) New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties. Appl Catal B 218:349–358CrossRef
Zurück zum Zitat Öztan H, Çapoğlu İK, Uysal D, Doğan ÖM (2023) A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production. Bioresource Technol Rep 23:101581CrossRef Öztan H, Çapoğlu İK, Uysal D, Doğan ÖM (2023) A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production. Bioresource Technol Rep 23:101581CrossRef
Zurück zum Zitat Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M (2014) Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew Chem Int Ed 53(5):1378–1381CrossRef Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M (2014) Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew Chem Int Ed 53(5):1378–1381CrossRef
Zurück zum Zitat Schweinar K, Gault B, Mouton I, Kasian O (2020) Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J Phys Chem Lett 11(13):5008–5014CrossRef Schweinar K, Gault B, Mouton I, Kasian O (2020) Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J Phys Chem Lett 11(13):5008–5014CrossRef
Zurück zum Zitat Stojić DL, Marčeta MP, Sovilj SP, Miljanić ŠS (2003) Hydrogen generation from water electrolysis-possibilities of energy saving. J Power Sources 118(1–2):315–319CrossRef Stojić DL, Marčeta MP, Sovilj SP, Miljanić ŠS (2003) Hydrogen generation from water electrolysis-possibilities of energy saving. J Power Sources 118(1–2):315–319CrossRef
Zurück zum Zitat Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS (2019) Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9(22):1900624CrossRef Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS (2019) Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9(22):1900624CrossRef
Zurück zum Zitat Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385CrossRef Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385CrossRef
Zurück zum Zitat Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2019) A new sol-gel route alumina for selective oxidation of H2S to sulphur. Can J Chem Eng 97(12):3125–3137CrossRef Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2019) A new sol-gel route alumina for selective oxidation of H2S to sulphur. Can J Chem Eng 97(12):3125–3137CrossRef
Zurück zum Zitat Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134(41):17253–17261CrossRef Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134(41):17253–17261CrossRef
Zurück zum Zitat Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 8:1–23 Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 8:1–23
Zurück zum Zitat Xie Y, Yu X, Li X, Long X, Chang C, Yang Z (2021) Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem Eng J 424:130337CrossRef Xie Y, Yu X, Li X, Long X, Chang C, Yang Z (2021) Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem Eng J 424:130337CrossRef
Zurück zum Zitat Yeo BS, Bell AT (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116(15):8394–8400CrossRef Yeo BS, Bell AT (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116(15):8394–8400CrossRef
Zurück zum Zitat Yörük Ö, Yıldız MG, Uysal D, Doğan ÖM, Uysal BZ (2023) Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: parametric studies using single-chamber cell. Int J Hydrogen Energy 48(11):4173–4181CrossRef Yörük Ö, Yıldız MG, Uysal D, Doğan ÖM, Uysal BZ (2023) Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: parametric studies using single-chamber cell. Int J Hydrogen Energy 48(11):4173–4181CrossRef
Zurück zum Zitat Yu M, Chan CK, Tüysüz H (2018) Coffee-waste templating of metal ion-substituted cobalt oxides for the oxygen evolution reaction. Chemsuschem 11(3):605–611CrossRef Yu M, Chan CK, Tüysüz H (2018) Coffee-waste templating of metal ion-substituted cobalt oxides for the oxygen evolution reaction. Chemsuschem 11(3):605–611CrossRef
Zurück zum Zitat Yu M, Budiyanto E, Tüysüz H (2022) Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew Chem Int Ed 61(1):e202103824CrossRef Yu M, Budiyanto E, Tüysüz H (2022) Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew Chem Int Ed 61(1):e202103824CrossRef
Zurück zum Zitat Zheng T, Shang C, He Z, Wang X, Cao C, Li H, Si R, Pan B, Zhou S, Zeng J (2019) Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew Chem 131(41):14906–14911CrossRef Zheng T, Shang C, He Z, Wang X, Cao C, Li H, Si R, Pan B, Zhou S, Zeng J (2019) Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew Chem 131(41):14906–14911CrossRef
Metadaten
Titel
Role of Electrocatalysts for Water Electrolysis
verfasst von
Özgü Yörük
Aygün Çalı
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54622-8_6