Skip to main content

2024 | OriginalPaper | Buchkapitel

16. Role of Microbial Enzymes and Their Modification for Plastic Biodegradation

verfasst von : Anand Vaishnav, Jham Lal, N. Sureshchandra Singh, Bikash Kumar Pati, Naresh Kumar Mehta, M. Bhargavi Priyadarshini

Erschienen in: Advanced Strategies for Biodegradation of Plastic Polymers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastic waste production is a significant global environmental issue that poses a threat to the health and survival of living organisms. The responsible management of these plastics is a significant challenge in the twenty-first century. Various plastic polymers have been developed over the past 150 years, replacing traditional materials like metal, glass, and wood in different applications. However, the nonreactive and nondegradable nature of plastic has resulted in a massive increase in plastic waste generation, causing serious environmental problems. Plastic waste accumulates in landfills, contaminates the soil, and contributes to increased greenhouse gas emissions. These are some of the harmful effects observed. It is essential to address this ecological problem due to the negative impact of plastic pollution on terrestrial ecosystems. Conventional methods of plastic waste disposal, such as incineration, landfilling, and recycling, have environmental drawbacks. Some synthetic plastics, such as polyethylene terephthalate, polyurethane, polystyrene, polypropylene, and polyvinyl chloride, have chemical structures, molecular weights, and degrees of crystallinity that make them highly resistant to natural biodegradation processes. Enzymes produced by microbes have long been considered a potential biological agent for the biodegradation of plastics; these enzymes can facilitate the hydrolysis or oxidation of polymer bonds, resulting in the formation of less complex and less harmful chemicals. Numerous microorganisms, particularly fungi and bacteria, have been isolated and characterized for their ability to degrade plastics under laboratory conditions. Some of the enzymes involved in plastic biodegradation have been identified and cloned, and their mechanisms of action have been elucidated. Furthermore, genetic engineering and protein engineering techniques have been employed to modify and enhance the activity, specificity, and stability of these enzymes. This chapter provides an overview of the current knowledge on the role of microbial enzymes and their modifications for plastic biodegradation and discusses the challenges and opportunities for the role of microbial enzymes and their modifications for plastic biodegradation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amin, M., Bhatti, H. N., & Bilal, M. (2022). Microbial lipases for polyester degradation. In Enzymes for pollutant degradation (pp. 71–92). Springer.CrossRef Amin, M., Bhatti, H. N., & Bilal, M. (2022). Microbial lipases for polyester degradation. In Enzymes for pollutant degradation (pp. 71–92). Springer.CrossRef
Zurück zum Zitat Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: A review. Environmental Chemistry Letters, 21, 1–24.CrossRef Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: A review. Environmental Chemistry Letters, 21, 1–24.CrossRef
Zurück zum Zitat Andler, R., Tiso, T., Blank, L., Andreeßen, C., Zampolli, J., D’Afonseca, V., Guajardo, C., & Díaz-Barrera, A. (2022). Current progress on the biodegradation of synthetic plastics: From fundamentals to biotechnological applications. Reviews in Environmental Science and Bio/Technology, 21(4), 829–850.CrossRef Andler, R., Tiso, T., Blank, L., Andreeßen, C., Zampolli, J., D’Afonseca, V., Guajardo, C., & Díaz-Barrera, A. (2022). Current progress on the biodegradation of synthetic plastics: From fundamentals to biotechnological applications. Reviews in Environmental Science and Bio/Technology, 21(4), 829–850.CrossRef
Zurück zum Zitat Anjana, K., Hinduja, M., Sujitha, K., & Dharani, G. (2020). Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150, 110733.CrossRef Anjana, K., Hinduja, M., Sujitha, K., & Dharani, G. (2020). Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150, 110733.CrossRef
Zurück zum Zitat Asaduzzaman, F., & Salmon, S. (2022). Enzyme immobilization: Polymer–solvent–enzyme compatibility. Molecular Systems Design & Engineering, 7(11), 1385–1414.CrossRef Asaduzzaman, F., & Salmon, S. (2022). Enzyme immobilization: Polymer–solvent–enzyme compatibility. Molecular Systems Design & Engineering, 7(11), 1385–1414.CrossRef
Zurück zum Zitat Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552–1559. Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552–1559.
Zurück zum Zitat Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21.CrossRef Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21.CrossRef
Zurück zum Zitat Benavides Fernández, C. D., Guzmán Castillo, M. P., Quijano Pérez, S. A., & Carvajal Rodríguez, L. V. (2022). Microbial degradation of polyethylene terephthalate: A systematic review. SN Applied Sciences, 4(10), 263.CrossRef Benavides Fernández, C. D., Guzmán Castillo, M. P., Quijano Pérez, S. A., & Carvajal Rodríguez, L. V. (2022). Microbial degradation of polyethylene terephthalate: A systematic review. SN Applied Sciences, 4(10), 263.CrossRef
Zurück zum Zitat Bhardwaj, H., Gupta, R., & Tiwari, A. (2013). Communities of microbial enzymes associated with biodegradation of plastics. Journal of Polymers and the Environment, 21, 575–579.CrossRef Bhardwaj, H., Gupta, R., & Tiwari, A. (2013). Communities of microbial enzymes associated with biodegradation of plastics. Journal of Polymers and the Environment, 21, 575–579.CrossRef
Zurück zum Zitat Bollinger, A., Thies, S., Knieps-Grünhagen, E., Gertzen, C., Kobus, S., Höppner, A., Ferrer, M., Gohlke, H., Smits, S. H., & Jaeger, K. E. (2020). A novel polyester hydrolase from the marine bacterium pseudomonas aestusnigri–structural and functional insights. Frontiers in Microbiology, 11, 114.CrossRef Bollinger, A., Thies, S., Knieps-Grünhagen, E., Gertzen, C., Kobus, S., Höppner, A., Ferrer, M., Gohlke, H., Smits, S. H., & Jaeger, K. E. (2020). A novel polyester hydrolase from the marine bacterium pseudomonas aestusnigri–structural and functional insights. Frontiers in Microbiology, 11, 114.CrossRef
Zurück zum Zitat Cacciari, I., Quatrini, P., Zirletta, G., Mincione, E., Vinciguerra, V., Lupattelli, P., & Giovannozzi Sermanni, G. (1993). Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Applied and Environmental Microbiology, 59(11), 3695–3700. Cacciari, I., Quatrini, P., Zirletta, G., Mincione, E., Vinciguerra, V., Lupattelli, P., & Giovannozzi Sermanni, G. (1993). Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Applied and Environmental Microbiology, 59(11), 3695–3700.
Zurück zum Zitat Chen, S., Su, L., Chen, J., & Wu, J. (2013). Cutinase: characteristics, preparation, and application. Biotechnology Advances, 31(8), 1754–1767. Chen, S., Su, L., Chen, J., & Wu, J. (2013). Cutinase: characteristics, preparation, and application. Biotechnology Advances, 31(8), 1754–1767.
Zurück zum Zitat Chomchoei, A., Pathom-Aree, W., Yokota, A., Kanongnuch, C., & Lumyong, S. (2011). Amycolatopsis thailandensis sp. nov., a poly(L-lactic acid)-degrading actinomycete, isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 61(4), 839–843.CrossRef Chomchoei, A., Pathom-Aree, W., Yokota, A., Kanongnuch, C., & Lumyong, S. (2011). Amycolatopsis thailandensis sp. nov., a poly(L-lactic acid)-degrading actinomycete, isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 61(4), 839–843.CrossRef
Zurück zum Zitat Chua, T., Tseng, M., & Yang, M. (2013). Degradation of poly (ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2. AMB Express, 3, 8–14.CrossRef Chua, T., Tseng, M., & Yang, M. (2013). Degradation of poly (ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2. AMB Express, 3, 8–14.CrossRef
Zurück zum Zitat De Jesus, R., & Alkendi, R. (2023). A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Frontiers in Microbiology, 13, 1066133.CrossRef De Jesus, R., & Alkendi, R. (2023). A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Frontiers in Microbiology, 13, 1066133.CrossRef
Zurück zum Zitat Elegbede, J. A., & Lateef, A. (2021). Microbial enzymes in nanotechnology and fabrication of nanozymes: A perspective. In Microbial nanobiotechnology: Principles and applications (pp. 185–232). Springer.CrossRef Elegbede, J. A., & Lateef, A. (2021). Microbial enzymes in nanotechnology and fabrication of nanozymes: A perspective. In Microbial nanobiotechnology: Principles and applications (pp. 185–232). Springer.CrossRef
Zurück zum Zitat Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech, 6, 1–6.CrossRef Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech, 6, 1–6.CrossRef
Zurück zum Zitat Gaur, V. K., Gupta, S., Sharma, P., Gupta, P., Varjani, S., Srivastava, J. K., Chang, J. S., & Bui, X. T. (2022). Metabolic cascade for remediation of plastic waste: A case study on microplastic degradation. Current Pollution Reports, 8(1), 30–50.CrossRef Gaur, V. K., Gupta, S., Sharma, P., Gupta, P., Varjani, S., Srivastava, J. K., Chang, J. S., & Bui, X. T. (2022). Metabolic cascade for remediation of plastic waste: A case study on microplastic degradation. Current Pollution Reports, 8(1), 30–50.CrossRef
Zurück zum Zitat Gaytán, I., Sánchez-Reyes, A., Burelo, M., Vargas-Suárez, M., Liachko, I., Press, M., Sullivan, S., Cruz-Gómez, M. J., & Loza-Tavera, H. (2020). Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Frontiers in Microbiology, 10, 2986.CrossRef Gaytán, I., Sánchez-Reyes, A., Burelo, M., Vargas-Suárez, M., Liachko, I., Press, M., Sullivan, S., Cruz-Gómez, M. J., & Loza-Tavera, H. (2020). Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Frontiers in Microbiology, 10, 2986.CrossRef
Zurück zum Zitat Gilan, I., & Sivan, A. (2013). Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiology Letters, 342(1), 18–23.CrossRef Gilan, I., & Sivan, A. (2013). Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiology Letters, 342(1), 18–23.CrossRef
Zurück zum Zitat Glaser, J. A. (2019). Biological degradation of polymers in the environment (Vol. 1, p. 13). IntechOpen. Glaser, J. A. (2019). Biological degradation of polymers in the environment (Vol. 1, p. 13). IntechOpen.
Zurück zum Zitat Gohain, A., Manpoong, C., Saikia, R., & De Mandal, S. (2020). Actinobacteria: Diversity and biotechnological applications. In Recent advancements in microbial diversity (pp. 217–231). Academic Press.CrossRef Gohain, A., Manpoong, C., Saikia, R., & De Mandal, S. (2020). Actinobacteria: Diversity and biotechnological applications. In Recent advancements in microbial diversity (pp. 217–231). Academic Press.CrossRef
Zurück zum Zitat Gu, J. D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91.CrossRef Gu, J. D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91.CrossRef
Zurück zum Zitat Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A. M., & Song, J. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science, 5(5), 171792.CrossRef Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A. M., & Song, J. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science, 5(5), 171792.CrossRef
Zurück zum Zitat Ho, B. T., Roberts, T. K., & Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: The microbial approach. Critical Reviews in Biotechnology, 38(2), 308–320.CrossRef Ho, B. T., Roberts, T. K., & Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: The microbial approach. Critical Reviews in Biotechnology, 38(2), 308–320.CrossRef
Zurück zum Zitat Hsu, K. J., Tseng, M., Don, T. M., & Yang, M. K. (2012). Biodegradation of poly (β-hydroxybutyrate) by a novel isolate of Streptomyces bangladeshensis 77T-4. Botanical Studies, 53(3), 307–313. Hsu, K. J., Tseng, M., Don, T. M., & Yang, M. K. (2012). Biodegradation of poly (β-hydroxybutyrate) by a novel isolate of Streptomyces bangladeshensis 77T-4. Botanical Studies, 53(3), 307–313.
Zurück zum Zitat Hung, C. S., Zingarelli, S., Nadeau, L. J., Biffinger, J. C., Drake, C. A., Crouch, A. L., Barlow, D. E., Russell, J. N., Jr., & Crookes-Goodson, W. J. (2016). Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and Environmental Microbiology, 82(20), 6080–6090.CrossRef Hung, C. S., Zingarelli, S., Nadeau, L. J., Biffinger, J. C., Drake, C. A., Crouch, A. L., Barlow, D. E., Russell, J. N., Jr., & Crookes-Goodson, W. J. (2016). Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and Environmental Microbiology, 82(20), 6080–6090.CrossRef
Zurück zum Zitat Iiyoshi, Y., Tsutsumi, Y., & Nishida, T. (1998). Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. Journal of Wood Science, 44, 222–229.CrossRef Iiyoshi, Y., Tsutsumi, Y., & Nishida, T. (1998). Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. Journal of Wood Science, 44, 222–229.CrossRef
Zurück zum Zitat Jabloune, R., Khalil, M., Moussa, I. E. B., Simao-Beaunoir, A. M., Lerat, S., Brzezinski, R., & Beaulieu, C. (2020). Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes and Environments, 35(1), ME19086. Jabloune, R., Khalil, M., Moussa, I. E. B., Simao-Beaunoir, A. M., Lerat, S., Brzezinski, R., & Beaulieu, C. (2020). Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes and Environments, 35(1), ME19086.
Zurück zum Zitat Jarerat, A., Tokiwa, Y., & Tanaka, H. (2003). Poly (L-lactide) degradation by Kibdelosporangium aridum. Biotechnology Letters, 25, 2035–2038.CrossRef Jarerat, A., Tokiwa, Y., & Tanaka, H. (2003). Poly (L-lactide) degradation by Kibdelosporangium aridum. Biotechnology Letters, 25, 2035–2038.CrossRef
Zurück zum Zitat Jenkins, S., Quer, A. M. I., Fonseca, C., & Varrone, C. (2019). Microbial degradation of plastics: New plastic degraders, mixed cultures and engineering strategies. In Soil microenvironment for bioremediation and polymer production (pp. 213–238). Wiley.CrossRef Jenkins, S., Quer, A. M. I., Fonseca, C., & Varrone, C. (2019). Microbial degradation of plastics: New plastic degraders, mixed cultures and engineering strategies. In Soil microenvironment for bioremediation and polymer production (pp. 213–238). Wiley.CrossRef
Zurück zum Zitat Jeon, H. J., & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation, 103, 141–146.CrossRef Jeon, H. J., & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation, 103, 141–146.CrossRef
Zurück zum Zitat Jung, H. W., Yang, M. K., & Su, R. C. (2018). Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polymer Degradation and Stability, 154, 186–194.CrossRef Jung, H. W., Yang, M. K., & Su, R. C. (2018). Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polymer Degradation and Stability, 154, 186–194.CrossRef
Zurück zum Zitat Kasuya, K. I., Takagi, K. I., Ishiwatari, S. I., Yoshida, Y., & Doi, Y. (1998). Biodegradabilities of various aliphatic polyesters in natural waters. Polymer Degradation and Stability, 59(1–3), 327–332.CrossRef Kasuya, K. I., Takagi, K. I., Ishiwatari, S. I., Yoshida, Y., & Doi, Y. (1998). Biodegradabilities of various aliphatic polyesters in natural waters. Polymer Degradation and Stability, 59(1–3), 327–332.CrossRef
Zurück zum Zitat Kathiresan, K. (2003). Polythene and plastics-degrading microbes from the mangrove soil. Revista de Biologia Tropical, 51(3–4), 629–633. Kathiresan, K. (2003). Polythene and plastics-degrading microbes from the mangrove soil. Revista de Biologia Tropical, 51(3–4), 629–633.
Zurück zum Zitat Kaushal, J., Khatri, M., & Arya, S. K. (2021). Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Cleaner Engineering and Technology, 2, 100083.CrossRef Kaushal, J., Khatri, M., & Arya, S. K. (2021). Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Cleaner Engineering and Technology, 2, 100083.CrossRef
Zurück zum Zitat Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., et al. (2014). A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK 190. Microbiology and Biotechnology, 98, 10053–10064. https://doi.org/10.1007/s00253-014-5860-yCrossRef Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., et al. (2014). A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK 190. Microbiology and Biotechnology, 98, 10053–10064. https://​doi.​org/​10.​1007/​s00253-014-5860-yCrossRef
Zurück zum Zitat Kim, D. W., Ahn, J. H., & Cha, C. J. (2022). Biodegradation of plastics: Mining of plastic-degrading microorganisms and enzymes using metagenomics approaches. Journal of Microbiology, 60(10), 969–976.CrossRef Kim, D. W., Ahn, J. H., & Cha, C. J. (2022). Biodegradation of plastics: Mining of plastic-degrading microorganisms and enzymes using metagenomics approaches. Journal of Microbiology, 60(10), 969–976.CrossRef
Zurück zum Zitat Koutny, M., Amato, P., Muchova, M., Ruzicka, J., & Delort, A. M. (2009). Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives. International Biodeterioration & Biodegradation, 63(3), 354–357.CrossRef Koutny, M., Amato, P., Muchova, M., Ruzicka, J., & Delort, A. M. (2009). Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives. International Biodeterioration & Biodegradation, 63(3), 354–357.CrossRef
Zurück zum Zitat Krakor, E., Gessner, I., Wilhelm, M., Brune, V., Hohnsen, J., Frenzen, L., & Mathur, S. (2021). Selective degradation of synthetic polymers through enzymes immobilized on nanocarriers. MRS Communications, 11(3), 363–371.CrossRef Krakor, E., Gessner, I., Wilhelm, M., Brune, V., Hohnsen, J., Frenzen, L., & Mathur, S. (2021). Selective degradation of synthetic polymers through enzymes immobilized on nanocarriers. MRS Communications, 11(3), 363–371.CrossRef
Zurück zum Zitat Li, X., Chen, L., Ji, Y., Li, M., Dong, B., Qian, G., ... & Dai, X. (2020). Effects of chemical pretreatments on microplastic extraction in sewage sludge and their physicochemical characteristics. Water Research, 171, 115379. Li, X., Chen, L., Ji, Y., Li, M., Dong, B., Qian, G., ... & Dai, X. (2020). Effects of chemical pretreatments on microplastic extraction in sewage sludge and their physicochemical characteristics. Water Research, 171, 115379.
Zurück zum Zitat Lwanga, E. H., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.CrossRef Lwanga, E. H., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.CrossRef
Zurück zum Zitat Maraveas, C., Kotzabasaki, M. I., & Bartzanas, T. (2023). Intelligent technologies, enzyme-embedded and microbial degradation of agricultural plastics. AgriEngineering, 5(1), 85–111.CrossRef Maraveas, C., Kotzabasaki, M. I., & Bartzanas, T. (2023). Intelligent technologies, enzyme-embedded and microbial degradation of agricultural plastics. AgriEngineering, 5(1), 85–111.CrossRef
Zurück zum Zitat Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., & Mori, N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752, 141959.CrossRef Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., & Mori, N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752, 141959.CrossRef
Zurück zum Zitat Mogil’nitskii, G. M., Sagatelyan, R. T., Kutishcheva, T. N., Zhukova, S. V., Kerimov, S. I., & Parfenova, T. B. (1987). Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms. Protection of Metals, 23(1), 173–175. Mogil’nitskii, G. M., Sagatelyan, R. T., Kutishcheva, T. N., Zhukova, S. V., Kerimov, S. I., & Parfenova, T. B. (1987). Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms. Protection of Metals, 23(1), 173–175.
Zurück zum Zitat Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709.CrossRef Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709.CrossRef
Zurück zum Zitat Mohanan, N., Wong, C.H., Budisa, N., & Levin, D.B. (2022). Characterization of polymer degrading lipases, LIP1 and LIP2 from Pseudomonas chlororaphis PA23. Frontiers in Bioengineering and Biotechnology, 10, 854298. Mohanan, N., Wong, C.H., Budisa, N., & Levin, D.B. (2022). Characterization of polymer degrading lipases, LIP1 and LIP2 from Pseudomonas chlororaphis PA23. Frontiers in Bioengineering and Biotechnology, 10, 854298.
Zurück zum Zitat Morris, P. J. T. (1986). Polymer pioneers: A popular history of the science and technology of large molecules (Vol. 5). Center for History of Chemistry. Morris, P. J. T. (1986). Polymer pioneers: A popular history of the science and technology of large molecules (Vol. 5). Center for History of Chemistry.
Zurück zum Zitat Narancic, T., & O’Connor, K. E. (2019). Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology, 165, 129–137.CrossRef Narancic, T., & O’Connor, K. E. (2019). Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology, 165, 129–137.CrossRef
Zurück zum Zitat Neklesa, T. K., Winkler, J. D., & Crews, C. M. (2017). Targeted protein degradation by PROTACs. Pharmacology & Therapeutics, 174, 138–144.CrossRef Neklesa, T. K., Winkler, J. D., & Crews, C. M. (2017). Targeted protein degradation by PROTACs. Pharmacology & Therapeutics, 174, 138–144.CrossRef
Zurück zum Zitat Oda, Y., Asari, H., Urakami, T., & Tonomura, K. (1995). Microbial degradation of poly (3-hydroxybutyrate) and polycaprolactone by filamentous fungi. Journal of Fermentation and Bioengineering, 80(3), 265–269.CrossRef Oda, Y., Asari, H., Urakami, T., & Tonomura, K. (1995). Microbial degradation of poly (3-hydroxybutyrate) and polycaprolactone by filamentous fungi. Journal of Fermentation and Bioengineering, 80(3), 265–269.CrossRef
Zurück zum Zitat Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.CrossRef Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.CrossRef
Zurück zum Zitat Pathak, V. M. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 1–31.CrossRef Pathak, V. M. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 1–31.CrossRef
Zurück zum Zitat Pramila, R., & Ramesh, K. V. (2015). Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. African Journal of Bacteriology Research, 7(3), 24–28. Pramila, R., & Ramesh, K. V. (2015). Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. African Journal of Bacteriology Research, 7(3), 24–28.
Zurück zum Zitat Puglisi, E., Romaniello, F., Galletti, S., Boccaleri, E., Frache, A., & Cocconcelli, P. S. (2019). Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Scientific Reports, 9, 1–13.CrossRef Puglisi, E., Romaniello, F., Galletti, S., Boccaleri, E., Frache, A., & Cocconcelli, P. S. (2019). Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Scientific Reports, 9, 1–13.CrossRef
Zurück zum Zitat Quarantin, A., Hadeler, B., Kröger, C., Schäfer, W., Favaron, F., Sella, L., & Martínez-Rocha, A. L. (2019). Different hydrophobins of Fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration, and plant infection. Frontiers in Microbiology, 10, 751.CrossRef Quarantin, A., Hadeler, B., Kröger, C., Schäfer, W., Favaron, F., Sella, L., & Martínez-Rocha, A. L. (2019). Different hydrophobins of Fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration, and plant infection. Frontiers in Microbiology, 10, 751.CrossRef
Zurück zum Zitat Raziyafathima, M. P. P. K., Praseetha, P. K., & Rimal, I. R. S. (2016). Microbial degradation of plastic waste: A review. Chemical and Biological Sciences, 4, 231–242. Raziyafathima, M. P. P. K., Praseetha, P. K., & Rimal, I. R. S. (2016). Microbial degradation of plastic waste: A review. Chemical and Biological Sciences, 4, 231–242.
Zurück zum Zitat Ribitsch, D., Herrero Acero, E., Greimel, K., Dellacher, A., Zitzenbacher, S., Marold, A., et al. (2012). A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers, 4, 617–629. https://doi.org/10.3390/polym4010617CrossRef Ribitsch, D., Herrero Acero, E., Greimel, K., Dellacher, A., Zitzenbacher, S., Marold, A., et al. (2012). A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers, 4, 617–629. https://​doi.​org/​10.​3390/​polym4010617CrossRef
Zurück zum Zitat Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnology Advances, 40, 107501.CrossRef Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnology Advances, 40, 107501.CrossRef
Zurück zum Zitat Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Gas chromatography-mass spectra analysis and deleterious potential of fungal based polythene-degradation products. Scientific Reports, 9(1), 1599.CrossRef Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Gas chromatography-mass spectra analysis and deleterious potential of fungal based polythene-degradation products. Scientific Reports, 9(1), 1599.CrossRef
Zurück zum Zitat Schwaminger, S. P., Fehn, S., Steegmüller, T., Rauwolf, S., Löwe, H., Pflüger-Grau, K., & Berensmeier, S. (2021). Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. Nanoscale Advances, 3(15), 4395–4399.CrossRef Schwaminger, S. P., Fehn, S., Steegmüller, T., Rauwolf, S., Löwe, H., Pflüger-Grau, K., & Berensmeier, S. (2021). Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. Nanoscale Advances, 3(15), 4395–4399.CrossRef
Zurück zum Zitat Schwibbert, K., Menzel, F., Epperlein, N., Bonse, J., & Krüger, J. (2019). Bacterial adhesion on femtosecond laser-modified polyethylene. Materials, 12(19), 3107.CrossRef Schwibbert, K., Menzel, F., Epperlein, N., Bonse, J., & Krüger, J. (2019). Bacterial adhesion on femtosecond laser-modified polyethylene. Materials, 12(19), 3107.CrossRef
Zurück zum Zitat Sekhar, V. C., Nampoothiri, K. M., Mohan, A. J., Nair, N. R., Bhaskar, T., & Pandey, A. (2016). Microbial degradation of high-impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347–354.CrossRef Sekhar, V. C., Nampoothiri, K. M., Mohan, A. J., Nair, N. R., Bhaskar, T., & Pandey, A. (2016). Microbial degradation of high-impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347–354.CrossRef
Zurück zum Zitat Shah, A. A., Hasan, F., Akhter, J. I., Hameed, A., & Ahmed, S. (2008). Degradation of polyurethane by novel bacterial consortium isolated from soil. Annals of Microbiology, 58, 381–386.CrossRef Shah, A. A., Hasan, F., Akhter, J. I., Hameed, A., & Ahmed, S. (2008). Degradation of polyurethane by novel bacterial consortium isolated from soil. Annals of Microbiology, 58, 381–386.CrossRef
Zurück zum Zitat Shilpa, Basak, N., & Meena, S. S. (2022). Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16(12), 161.CrossRef Shilpa, Basak, N., & Meena, S. S. (2022). Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16(12), 161.CrossRef
Zurück zum Zitat Shukla, P. (2019). Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian Journal of Microbiology, 59(4), 401–409.CrossRef Shukla, P. (2019). Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian Journal of Microbiology, 59(4), 401–409.CrossRef
Zurück zum Zitat Singh, M. J., & Sedhuraman, P. (2015). Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosa-sinensis leaves. Bioresources and Bioprocessing, 2, 1–7.CrossRef Singh, M. J., & Sedhuraman, P. (2015). Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosa-sinensis leaves. Bioresources and Bioprocessing, 2, 1–7.CrossRef
Zurück zum Zitat Sukkhum, S., Tokuyama, S., Kongsaeree, P., Tamura, T., Ishida, Y., & Kitpreechavanich, V. (2011). A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing. African Journal of Microbiology Research, 5(18), 2575–2582.CrossRef Sukkhum, S., Tokuyama, S., Kongsaeree, P., Tamura, T., Ishida, Y., & Kitpreechavanich, V. (2011). A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing. African Journal of Microbiology Research, 5(18), 2575–2582.CrossRef
Zurück zum Zitat Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6), 1180.CrossRef Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6), 1180.CrossRef
Zurück zum Zitat Thakur, S., Mathur, S., Patel, S., & Paital, B. (2022). Microplastic accumulation and degradation in environment via biotechnological approaches. Water, 14(24), 4053.CrossRef Thakur, S., Mathur, S., Patel, S., & Paital, B. (2022). Microplastic accumulation and degradation in environment via biotechnological approaches. Water, 14(24), 4053.CrossRef
Zurück zum Zitat Torres, A., Li, S. M., Roussos, S., & Vert, M. (1996). Screening of microorganisms for biodegradation of poly (lactic-acid) and lactic acid-containing polymers. Applied and Environmental Microbiology, 62(7), 2393–2397.CrossRef Torres, A., Li, S. M., Roussos, S., & Vert, M. (1996). Screening of microorganisms for biodegradation of poly (lactic-acid) and lactic acid-containing polymers. Applied and Environmental Microbiology, 62(7), 2393–2397.CrossRef
Zurück zum Zitat Tribedi, P., Gupta, A. D., & Sil, A. K. (2015). Adaptation of pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: An effective strategy for efficient survival and polymer degradation. Bioresources and Bioprocessing, 2, 1–10.CrossRef Tribedi, P., Gupta, A. D., & Sil, A. K. (2015). Adaptation of pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: An effective strategy for efficient survival and polymer degradation. Bioresources and Bioprocessing, 2, 1–10.CrossRef
Zurück zum Zitat Urbanek, A. K., Kosiorowska, K. E., & Mirończuk, A. M. (2021). Current knowledge on polyethylene terephthalate degradation by genetically modified microorganisms. Frontiers in Bioengineering and Biotechnology, 9, 771133.CrossRef Urbanek, A. K., Kosiorowska, K. E., & Mirończuk, A. M. (2021). Current knowledge on polyethylene terephthalate degradation by genetically modified microorganisms. Frontiers in Bioengineering and Biotechnology, 9, 771133.CrossRef
Zurück zum Zitat Usman, M. A., Momohjimoh, I., & Usman, A. O. (2020). Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Materials Research Express, 7(3), 035302.CrossRef Usman, M. A., Momohjimoh, I., & Usman, A. O. (2020). Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Materials Research Express, 7(3), 035302.CrossRef
Zurück zum Zitat Wang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., et al. (2022). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837, 155719.CrossRef Wang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., et al. (2022). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837, 155719.CrossRef
Zurück zum Zitat Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.CrossRef Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.CrossRef
Zurück zum Zitat Yan, F., Wei, R., Cui, Q., Bornscheuer, U. T., & Liu, Y. J. (2021). Thermophilic whole-cell degradation of polyethylene terephthalate using engineered clostridium thermocellum. Microbial Biotechnology, 14, 374–385.CrossRef Yan, F., Wei, R., Cui, Q., Bornscheuer, U. T., & Liu, Y. J. (2021). Thermophilic whole-cell degradation of polyethylene terephthalate using engineered clostridium thermocellum. Microbial Biotechnology, 14, 374–385.CrossRef
Zurück zum Zitat Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3(4), 1–8. Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3(4), 1–8.
Zurück zum Zitat Zhu, B., Wang, D., & Wei, N. (2022). Enzyme discovery and engineering for sustainable plastic recycling. Trends in biotechnology, 40(1), 22–37. Zhu, B., Wang, D., & Wei, N. (2022). Enzyme discovery and engineering for sustainable plastic recycling. Trends in biotechnology, 40(1), 22–37.
Metadaten
Titel
Role of Microbial Enzymes and Their Modification for Plastic Biodegradation
verfasst von
Anand Vaishnav
Jham Lal
N. Sureshchandra Singh
Bikash Kumar Pati
Naresh Kumar Mehta
M. Bhargavi Priyadarshini
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-55661-6_16