Skip to main content

2024 | OriginalPaper | Buchkapitel

8. Spatiotemporal and Intelligent Transportation Forecasting

verfasst von : K. Maithili, S. Leelavathy, G. Karthi, M. Adimoolam

Erschienen in: Spatiotemporal Data Analytics and Modeling

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatiotemporal-based intelligent transportation systems are increasingly being integrated into various surveillance systems. To enhance the efficiency of these systems, automated forecasting was introduced to identify and penalize non-compliant behaviors. This chapter explores a range of location-based transportation forecasting systems and the necessary adaptations for smart cities. Additionally, the frameworks of transportation systems using intelligent methods have been evaluated to analyze their merits and demerits. Subsequently, route-based prediction was examined for its real-time application efficacy. Building upon spatial forecasting methods, their essential techniques and adaptation potentials have been explored for the transportation application of spatiotemporal data. In conclusion, analysis and forecasting-based performance metrics are presented, focusing on intelligent transportation systems across various countries, along with their challenges. As a key focus, the applications of spatiotemporal-based intelligent transportation forecasting are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Dairi A, Harrou F, Sun Y, Senouci M (2018) Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme. IEEE Sens J 18:5122–5132CrossRef Dairi A, Harrou F, Sun Y, Senouci M (2018) Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme. IEEE Sens J 18:5122–5132CrossRef
4.
Zurück zum Zitat Liu Y, Wang Y, Yang X, Zhang L (2017) Short-term travel time prediction by deep learning: a comparison of different LSTM-DNN models. In: 2017 IEEE 20th international conference on intelligent transportation systems (ITSC), IEEE, pp 1–8. Liu Y, Wang Y, Yang X, Zhang L (2017) Short-term travel time prediction by deep learning: a comparison of different LSTM-DNN models. In: 2017 IEEE 20th international conference on intelligent transportation systems (ITSC), IEEE, pp 1–8.
6.
Zurück zum Zitat Gang X, Kang W, Wang F, Zhu F, Lv Y, Dong X, Riekki J, Pirttikangas S (2015) Continuous travel time prediction for transit signal priority based on a deep network. In: 2015 IEEE 18th international conference on intelligent transportation systems, IEEE, pp 523–528. Gang X, Kang W, Wang F, Zhu F, Lv Y, Dong X, Riekki J, Pirttikangas S (2015) Continuous travel time prediction for transit signal priority based on a deep network. In: 2015 IEEE 18th international conference on intelligent transportation systems, IEEE, pp 523–528.
7.
Zurück zum Zitat Wang Y, Zhang D, Liu Y, Dai B, Lee LH (2018a) Enhancing transportation systems via deep learning: a survey. Transp Res Part C Emerg Technol 99:144–163CrossRef Wang Y, Zhang D, Liu Y, Dai B, Lee LH (2018a) Enhancing transportation systems via deep learning: a survey. Transp Res Part C Emerg Technol 99:144–163CrossRef
15.
Zurück zum Zitat Zhu L, Yu FR, Wang Y, Ning B, Tang T (2018a) Big data analytics in intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 20(1):383–398CrossRef Zhu L, Yu FR, Wang Y, Ning B, Tang T (2018a) Big data analytics in intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 20(1):383–398CrossRef
16.
Zurück zum Zitat Niu K, Zhang H, Zhou T, Cheng C, Wang C (2019) A novel spatio-temporal model for city-scale traffic speed prediction. IEEE Access 7:30050–30057CrossRef Niu K, Zhang H, Zhou T, Cheng C, Wang C (2019) A novel spatio-temporal model for city-scale traffic speed prediction. IEEE Access 7:30050–30057CrossRef
17.
Zurück zum Zitat Zheng C, Fan X, Wang C, Qi J (2020) Gman: A graph multi-attention network for traffic prediction. In: AAAI. pp. 1234–1241 Zheng C, Fan X, Wang C, Qi J (2020) Gman: A graph multi-attention network for traffic prediction. In: AAAI. pp. 1234–1241
20.
Zurück zum Zitat Cui Z, Zhao C (2019) Spatio-temporal broad learning networks for traffic speed prediction*. In: 2019 12th Asian control conference (ASCC). pp 1536–1541 Cui Z, Zhao C (2019) Spatio-temporal broad learning networks for traffic speed prediction*. In: 2019 12th Asian control conference (ASCC). pp 1536–1541
23.
Zurück zum Zitat Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI) Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI)
24.
Zurück zum Zitat Zhao L, Song Y, Deng M, Li H (2018) Temporal graph convolutional network for urban traffic flow prediction method. arXiv:1811.05320 Zhao L, Song Y, Deng M, Li H (2018) Temporal graph convolutional network for urban traffic flow prediction method. arXiv:1811.05320
26.
Zurück zum Zitat Li Y, Luo J, Chow C-Y, Chan K-L, Ding Y, Zhang F (2015) Growing the charging station network for electric vehicles with trajectory data analytics. In: ICDE, pp. 1376–1387 Li Y, Luo J, Chow C-Y, Chan K-L, Ding Y, Zhang F (2015) Growing the charging station network for electric vehicles with trajectory data analytics. In: ICDE, pp. 1376–1387
27.
Zurück zum Zitat Liu C, Deng K, Li C, Li J, Li Y, Luo J (2016) The optimal distribution of electric-vehicle chargers across a city. In: ICDM, pp. 261–270 Liu C, Deng K, Li C, Li J, Li Y, Luo J (2016) The optimal distribution of electric-vehicle chargers across a city. In: ICDM, pp. 261–270
28.
Zurück zum Zitat Karamshuk D, Noulas A, Scellato S, Nicosia V, Mascolo C (2013) Geo-spotting: mining online location-based services for optimal retail store placement. In: SIGKDD, pp. 793–801 Karamshuk D, Noulas A, Scellato S, Nicosia V, Mascolo C (2013) Geo-spotting: mining online location-based services for optimal retail store placement. In: SIGKDD, pp. 793–801
29.
Zurück zum Zitat Zhang Z, He Q, Gao J, Ni M (2018) A deep learning approach for detecting traffic accidents from social media data. Transp Res Part C Emerg Technol 86:580–596CrossRef Zhang Z, He Q, Gao J, Ni M (2018) A deep learning approach for detecting traffic accidents from social media data. Transp Res Part C Emerg Technol 86:580–596CrossRef
30.
Zurück zum Zitat Quanjun C, Xuan S, Harutoshi Y, Ryosuke S (2016) Learning deep representation from big and heterogeneous data for traffic accident inference. In: AAAI, pp. 338–344 Quanjun C, Xuan S, Harutoshi Y, Ryosuke S (2016) Learning deep representation from big and heterogeneous data for traffic accident inference. In: AAAI, pp. 338–344
31.
Zurück zum Zitat Fangzhou S, Abhishek D, Jules W (2017) Dxnat-deep neural networks for explaining non-recurring traffic congestion. In: Big Data, pp. 2141–2150 Fangzhou S, Abhishek D, Jules W (2017) Dxnat-deep neural networks for explaining non-recurring traffic congestion. In: Big Data, pp. 2141–2150
32.
Zurück zum Zitat Lin Z, Fangce G, Rajesh K, John WP (2018) A deep learning approach for traffic incident detection in urban networks. In: ITSC, pp. 1011–1016 Lin Z, Fangce G, Rajesh K, John WP (2018) A deep learning approach for traffic incident detection in urban networks. In: ITSC, pp. 1011–1016
33.
Zurück zum Zitat Chao C, Daqing Z, Pablo SC, Nan L, Lin S, Shijian L (2011) Real-time detection of anomalous taxi trajectories from gps traces. In: MobiQuitous, pp. 63–74 Chao C, Daqing Z, Pablo SC, Nan L, Lin S, Shijian L (2011) Real-time detection of anomalous taxi trajectories from gps traces. In: MobiQuitous, pp. 63–74
34.
Zurück zum Zitat Jae-Gil L, Jiawei H, Xiaolei L (2008) Trajectory outlier detection: a partition-and-detect framework. In: ICDE, pp. 140–149 Jae-Gil L, Jiawei H, Xiaolei L (2008) Trajectory outlier detection: a partition-and-detect framework. In: ICDE, pp. 140–149
35.
Zurück zum Zitat Shen M, Liu D-R, Shann S-H (2015) Outlier detection from vehicle trajectories to discover roaming events. Inf Sci 294:242–254MathSciNetCrossRef Shen M, Liu D-R, Shann S-H (2015) Outlier detection from vehicle trajectories to discover roaming events. Inf Sci 294:242–254MathSciNetCrossRef
36.
Zurück zum Zitat Wang Y, Qin K, Chen Y, Zhao P (2018) Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi gps data. GEIN 7(1):25CrossRef Wang Y, Qin K, Chen Y, Zhao P (2018) Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi gps data. GEIN 7(1):25CrossRef
37.
Zurück zum Zitat Jaeyoung Jung R, Jayakrishnan, Park JY (2016) Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing. Comput-Aid Civ Infrastruct Eng 31(4):275–291CrossRef Jaeyoung Jung R, Jayakrishnan, Park JY (2016) Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing. Comput-Aid Civ Infrastruct Eng 31(4):275–291CrossRef
38.
Zurück zum Zitat Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. In: ICDE, pp. 410–421 Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. In: ICDE, pp. 410–421
39.
Zurück zum Zitat Jaw J-J, Odoni AR, Psaraftis HN, Wilson NHM (1986) A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transp Res Part B Methodol 20(3):243–257CrossRef Jaw J-J, Odoni AR, Psaraftis HN, Wilson NHM (1986) A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transp Res Part B Methodol 20(3):243–257CrossRef
40.
Zurück zum Zitat Shuo M, Zheng Y, Ouri W (2014) Real-time city-scale taxi ridesharing. TKDE 27(7):1782–1795 Shuo M, Zheng Y, Ouri W (2014) Real-time city-scale taxi ridesharing. TKDE 27(7):1782–1795
41.
Zurück zum Zitat Yan H, Favyen B, Ruoming J, Xiaoyang SW (2014) Large scale real-time ridesharing with service guarantee on road networks. VLDB, 7(14) Yan H, Favyen B, Ruoming J, Xiaoyang SW (2014) Large scale real-time ridesharing with service guarantee on road networks. VLDB, 7(14)
42.
Zurück zum Zitat Wang S, Zhifeng Bao J, Culpepper S, Sellis T, Cong G (2017) Reverse k nearest neighbor search over trajectories. TKDE 30(4):757–771 Wang S, Zhifeng Bao J, Culpepper S, Sellis T, Cong G (2017) Reverse k nearest neighbor search over trajectories. TKDE 30(4):757–771
43.
Zurück zum Zitat Cheng P, Xin H, Chen L (2017) Utility-aware ridesharing on road networks. In: SIGMOD, pp. 1197–1210 Cheng P, Xin H, Chen L (2017) Utility-aware ridesharing on road networks. In: SIGMOD, pp. 1197–1210
44.
45.
Zurück zum Zitat Tian C, Huang Y, Liu Z, Bastani F, Jin R (2013) Noah: a dynamic ridesharing system. In: SIGMOD, pp. 985–988 Tian C, Huang Y, Liu Z, Bastani F, Jin R (2013) Noah: a dynamic ridesharing system. In: SIGMOD, pp. 985–988
46.
Zurück zum Zitat Lee D-H, Wang H, Ruey LC, Siew HT (2004) Taxi dispatch system based on current demands and real-time traffic conditions. Transp Res Rec 1:193–200CrossRef Lee D-H, Wang H, Ruey LC, Siew HT (2004) Taxi dispatch system based on current demands and real-time traffic conditions. Transp Res Rec 1:193–200CrossRef
47.
Zurück zum Zitat Lee J, Park G-L, Kim H, Yang Y-K, Kim P, Kim S-W (2007) A telematics service system based on the linux cluster. In: ICCS, pp. 660–667 Lee J, Park G-L, Kim H, Yang Y-K, Kim P, Kim S-W (2007) A telematics service system based on the linux cluster. In: ICCS, pp. 660–667
48.
Zurück zum Zitat Zhang L, Hu T, Min Y, Wu G, Zhang J, Feng P, Gong P, Ye J (2017) A taxi order dispatch model based on combinatorial optimization. In: SIGKDD, pp. 2151–2159 Zhang L, Hu T, Min Y, Wu G, Zhang J, Feng P, Gong P, Ye J (2017) A taxi order dispatch model based on combinatorial optimization. In: SIGKDD, pp. 2151–2159
49.
Zurück zum Zitat Seow KT, Dang NH, Lee D-H (2009) A collaborative multiagent taxi-dispatch system. TASE 7(3):607–616 Seow KT, Dang NH, Lee D-H (2009) A collaborative multiagent taxi-dispatch system. TASE 7(3):607–616
50.
Zurück zum Zitat Alshamsi A, Abdallah S, Rahwan I (2009) Multiagent self-organization for a taxi dispatch system. In: ICAAMS, pp. 21–28 Alshamsi A, Abdallah S, Rahwan I (2009) Multiagent self-organization for a taxi dispatch system. In: ICAAMS, pp. 21–28
Metadaten
Titel
Spatiotemporal and Intelligent Transportation Forecasting
verfasst von
K. Maithili
S. Leelavathy
G. Karthi
M. Adimoolam
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9651-3_8

Premium Partner