Skip to main content

2023 | OriginalPaper | Buchkapitel

2. Strahlungsquelle Sonne

verfasst von : Gottfried Heinrich Bauer

Erschienen in: Photovoltaik – Physikalische Grundlagen und Konzepte

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Um die Konzepte der Wandlung solarer Strahlung zu verstehen und um die Grenzen abzuleiten, bedarf es zunächst der Beschreibung der Energieform der solaren Strahlung. Ihr Ursprung ist der Fusionsreaktor Sonne, der die Fusionsenergie aus dem Inneren an seiner Oberfläche als Strahlung abgibt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Im Lawson-Kriterium wird die Bedingung formuliert, unter der eine Fusionsreaktion selbständig und stationär verläuft, und zwar mit dem Produkt aus Dichte der fusionierfähigen Teilchen, deren Temperatur und der Einschlusszeit \(n\cdot kT \cdot \tau \geqslant 2.8\cdot 10^{18}\,\textrm{cm}^{-3}\,\textrm{eV}\) s.
 
2
In der Saha-Gleichung werden die Dichten von Spezies im thermischen Gleichgewicht in Abhängigkeit der Energie zur Erzeugung formuliert.
 
3
Der Raumwinkel, den die Sonne und die Planeten unseres Sonnensystems von der Erde aus betrachtet einnehmen, ist sehr klein gegenüber dem Raumwinkel \(4\pi \), den der Weltraum bietet.
 
4
Mit dieser Erkenntnis beginnt die Ära der Quantenmechanik.
 
5
Der Planck-Körper enthält keine Materie mit Ladungen, die im elektrischen Feld zu Schwingungen angeregt werden können.
 
6
Die Energieverteilungsfunktion für nicht unterscheidbare Quantenteilchen mit ganzzahligem Spin, wie für Photonen, Phononen und für Elektronen in supraleitenden Zuständen ist die Bose-Einstein-Verteilung (vgl. Abschn. A.1.2).
 
7
Die Energieverteilungsfunktion für nicht unterscheidbare Quantenteilchen mit halbzahligem Spin, wie für Elektronen (ausgenommen in supraleitenden Zuständen) ist die Fermi-Dirac-Verteilungs-Funktion (vgl. Abschn. A.1.2)
 
8
Für \( T\rightarrow \infty \) folgt \( u_{\epsilon }\rightarrow \infty \), was nur möglich ist, wenn \( B_{12}=B_{21} \).
 
9
Die Anzahl der Dimensionen n geht quantitativ in die Berechnung der Besetzungsmöglichkeiten des Vektorraumes, also in die Zustandsdichte und somit auch in die spektrale Verteilung der Photonendichte ein. Die folgende Integration enthält die unabhängige Variable \(\omega \) in der Potenz n, also in der Zahl der Dimensionen, wie in \((\hslash \omega )^n\). Demzufolge enthält das Integral für den Energiestrom ebenfalls n, beispielsweise in \(\sim T^{(n+1)}\), wodurch konsequenterweise die Temperaturabhängigkeit im Planck’schen Strahlungsgesetz, sowie die der Stefan-Boltzmann-Konstante \(\sigma _\textrm{SB}\) dimensionsabhängig werden [9]. Allgemein formuliert ist
$$\begin{aligned} \sigma _{\textrm{SB}}(n)= 2\pi ^{(n-1)/2}\, \frac{\varGamma _{(n+1)}\,\zeta _{(n+1)}}{\varGamma _{(n+1)/2}}\,\frac{k^{n+1}}{(2\pi \hslash )^{n}\,c^{n-1}} \end{aligned}$$
mit \(\varGamma \) und \(\varsigma \) als Gamma- und als Riemann’sche Zeta-Funktion.
 
10
Die Wechselwirkung von Strahlung in magnetischer Materie (z. B. in ferromagnetischen Festkörpern) wird der fehlenden Bedeutung für die Photovoltaik wegen nicht betrachtet.
 
11
Prinzipiell ändert sich die Energie eines Photons im Gravitationsfeld. Diese „gravitational red shift“ ist für die Gavitationsfelder von Sonne und Erde vernachlässigbar, jedoch nicht für Gravitationsfelder von sehr massereichen Objekten wie von Schwarzen Löchern.
 
12
Die korrekte Temperatur der Planeten kann aufgrund der individuellen Absorptions- und Emissionsvermögen sowie deren lokaler Verteilung merklich von den hier abgeschätzten Temperaturen abweichen. In Raumstationen und Satelliten, deren Energieversorgung via Photovoltaik vorgenommen wird, stellt sich die Temperatur des Strahlungswandlers in Abhängigkeit der Absorptions- und Emissionseigenschaften und der Orientierung zur Quelle von allen Komponenten in sehr komplexer Weise ein.
 
13
Die Raumwinkel für solare Strahlungszufuhr zu den einzelnen Planeten (\(d_{\textrm{SP}}\)) und Objekten im Orbit (\(d_{\textrm{SO}}\)) hängen von deren Abstand zur Sonne \(d_{\textrm{SP}}\) ab und lassen sich durch \(\varOmega _{\textrm{in}}(d_{\mathrm {SP/O}})=(1/4)\left( R_{\textrm{Sun}}/d_{\textrm{SP}} \right) ^{2}\) ausdrücken.
 
14
Das Problem hier ist nicht physikalischer Natur, sondern besteht im Defizit des menschlichen Sprachschatzes, denn wir haben keinen gemeinsamen Ausdruck für beide Varianten.
 
15
Hier zählt wiederum die Temperatur der Sonnenoberfläche \(\mathrm T_\textrm{Sun}\approx 5\,800 \,\textrm{K}\).
 
16
Auch wenn die Auswirkungen auf den theoretisch maximal erreichbaren Wirkungsgrad der Wandlung solarer Strahlung gering sind, wird der Einfluss des Photonendruckes noch immer kontrovers diskutiert.
 
17
Für \(T\rightarrow 0\) existiert für ein Ensemble von nichtunterscheidbaren Teilchen nur die eine Realisierungsmöglichkeit des energetisch tiefsten Zustandes.
 
18
HOMO für highest occupied molecular orbit, LUMO für lowest unoccupied molecular orbit.
 
19
In physikalischer Sprechweise nennt man den Effekt starke „Elektron-Elektron-Kopplung“, die aus der Coulomb-Wechselwirkung herrührt, sowie starke „Elektron-Phonon-Kopplung“ (Coulomb-Wechselwirkung von Elektronen und GitterIonen) mit \(\tau _{\epsilon }\approx (10^{-13}-10^{-12})\mathrm s\).
 
Literatur
1.
Zurück zum Zitat Chitre, S.M.: Lectures in solar physics. In: Atia, H.M., Bathnagar, A., Ulmschneider, P. (Hrsg.) Lecture Notes in Physics. Springer, Berlin (2003) Chitre, S.M.: Lectures in solar physics. In: Atia, H.M., Bathnagar, A., Ulmschneider, P. (Hrsg.) Lecture Notes in Physics. Springer, Berlin (2003)
2.
Zurück zum Zitat Iqbal, M.: An Introduction to Solar Radiation. Academic, Toronto (1983) Iqbal, M.: An Introduction to Solar Radiation. Academic, Toronto (1983)
3.
Zurück zum Zitat Planck, M.: Ann. Phys. 309, 318 (1901) Planck, M.: Ann. Phys. 309, 318 (1901)
4.
Zurück zum Zitat Zemansky, M.W., Dittman, R.H.: Heat and Thermodynamics. Mc Graw-Hill, New York (1997) Zemansky, M.W., Dittman, R.H.: Heat and Thermodynamics. Mc Graw-Hill, New York (1997)
5.
Zurück zum Zitat Landsberg, P.T.: Thermodynamics and Statistical Dynamics. Dover Publ., New York (1978) und Kittel, Ch., Krömer, H.: Physik der Wärme. Oldenbourg, München (1993) Landsberg, P.T.: Thermodynamics and Statistical Dynamics. Dover Publ., New York (1978) und Kittel, Ch., Krömer, H.: Physik der Wärme. Oldenbourg, München (1993)
6.
Zurück zum Zitat Kondepudi, D., Progogine, I.: Modern Thermodynamics. Wiley, Chichester (1998) Kondepudi, D., Progogine, I.: Modern Thermodynamics. Wiley, Chichester (1998)
9.
Zurück zum Zitat deVos, A.: Endoreversible Thermodynamics for Solar Energy Conversion. Wiley-VCH, Weinheim (D) (2008) deVos, A.: Endoreversible Thermodynamics for Solar Energy Conversion. Wiley-VCH, Weinheim (D) (2008)
10.
Zurück zum Zitat Anselm, A.A. (übersetzt von M.M. Samohvalov): Introduction to Semiconductor Theory. MIR, Moskau (1981) Anselm, A.A. (übersetzt von M.M. Samohvalov): Introduction to Semiconductor Theory. MIR, Moskau (1981)
11.
Zurück zum Zitat Kirchhoff, G.R.: Ann. Phys. Chem. 109(2), 275 (1860), und Born, M., Wolf, E.: Principles of Optics. Pergamon Press, New York (1959) Kirchhoff, G.R.: Ann. Phys. Chem. 109(2), 275 (1860), und Born, M., Wolf, E.: Principles of Optics. Pergamon Press, New York (1959)
12.
Zurück zum Zitat Welford, W.T., Winston, R.: The Optics of Non-Imaging Concentrators. Academic, New York (1978) Welford, W.T., Winston, R.: The Optics of Non-Imaging Concentrators. Academic, New York (1978)
13.
14.
Zurück zum Zitat Würfel, P.: Physics of Solar Cells. Wiley-VCH, Weinheim (2009) Würfel, P.: Physics of Solar Cells. Wiley-VCH, Weinheim (2009)
15.
Zurück zum Zitat Würfel, P.: J. Phys. C., Solid Stat. Phys. 15, 3967 (1982) Würfel, P.: J. Phys. C., Solid Stat. Phys. 15, 3967 (1982)
17.
Zurück zum Zitat Bauer, G.H., Brüggemann, R., Tardon, S., Vignoli, S., Kniese, R.: Thin Sol. Films 480–481, 410 (2005)ADSCrossRef Bauer, G.H., Brüggemann, R., Tardon, S., Vignoli, S., Kniese, R.: Thin Sol. Films 480–481, 410 (2005)ADSCrossRef
Metadaten
Titel
Strahlungsquelle Sonne
verfasst von
Gottfried Heinrich Bauer
Copyright-Jahr
2023
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-66291-5_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.