Skip to main content

2017 | OriginalPaper | Buchkapitel

10. Structural Intermetallics

verfasst von : R. Mitra, R. J. H. Wanhill

Erschienen in: Aerospace Materials and Material Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Development of materials for structural applications at elevated temperatures in aeroengines has encouraged research on intermetallic alloys. A select group of aluminides and silicides has shown significant promise for high temperature structural applications owing to their high melting temperatures, as well as their ability to retain strength and oxidation resistance at elevated temperatures. In recent years the focus is on multiphase multicomponent intermetallic alloys with significant volume fractions of ductile constituents to achieve an optimum combination of toughness and elevated temperature strength. The engineering properties and actual or potential aerospace applications of the currently most important structural intermetallics, the nickel, iron, and titanium aluminides, are concisely discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gottstein G (2004) Chapter 4, section 4.4. In: Physical foundations of materials science. Springer, Berlin, Germany Gottstein G (2004) Chapter 4, section 4.4. In: Physical foundations of materials science. Springer, Berlin, Germany
2.
Zurück zum Zitat Westbrook JH, Fleischer RL (eds) (1994) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK Westbrook JH, Fleischer RL (eds) (1994) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK
3.
Zurück zum Zitat Sauthoff G (1995) Intermetallics. VCH Verlagsgesellschaft, Weinheim, GermanyCrossRef Sauthoff G (1995) Intermetallics. VCH Verlagsgesellschaft, Weinheim, GermanyCrossRef
4.
Zurück zum Zitat Stoloff NS, Sikka VK (eds) (1996) Physical metallurgy and processing of intermetallic compounds. Springer, New York, NY 10036, USA Stoloff NS, Sikka VK (eds) (1996) Physical metallurgy and processing of intermetallic compounds. Springer, New York, NY 10036, USA
5.
Zurück zum Zitat Mitra R (2015) Structural intermetallics and intermetallic matrix composites. IIT Kharagpur Research Monograph Series, CRC Press, Taylor & Francis Group, Boca Raton, FL 561, USA Mitra R (2015) Structural intermetallics and intermetallic matrix composites. IIT Kharagpur Research Monograph Series, CRC Press, Taylor & Francis Group, Boca Raton, FL 561, USA
6.
Zurück zum Zitat Mitra R (2006) Mechanical behavior and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64 Mitra R (2006) Mechanical behavior and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64
7.
Zurück zum Zitat Davis JR (ed) (1997) ASM Specialty Handbook, Heat-resistant materials. ASM International, Materials Park, OH 44073-0002, USA, pp 389–414 Davis JR (ed) (1997) ASM Specialty Handbook, Heat-resistant materials. ASM International, Materials Park, OH 44073-0002, USA, pp 389–414
8.
Zurück zum Zitat Nash P, Singleton MF, Murray JL (1991) Al-Ni (aluminum-nickel). In: Nash P (ed) Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH 44073-0002, pp 3–11 Nash P, Singleton MF, Murray JL (1991) Al-Ni (aluminum-nickel). In: Nash P (ed) Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH 44073-0002, pp 3–11
9.
Zurück zum Zitat Lui SC, Davenport JW, Plummer EW, Zehner DM, Fernando GW (1990) Electronic-structure of NiAl. Phys Rev B, 42(3):1582–1597 Lui SC, Davenport JW, Plummer EW, Zehner DM, Fernando GW (1990) Electronic-structure of NiAl. Phys Rev B, 42(3):1582–1597
10.
Zurück zum Zitat Murray JL (1988) Calculation of the titanium–aluminum phase diagram. Metall Trans A 19A:243–247CrossRef Murray JL (1988) Calculation of the titanium–aluminum phase diagram. Metall Trans A 19A:243–247CrossRef
11.
Zurück zum Zitat Banerjee D (1994) Ti3Al and its alloys. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 1. John Wiley & Sons Inc., Chichester, UK, pp 91–131 Banerjee D (1994) Ti3Al and its alloys. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 1. John Wiley & Sons Inc., Chichester, UK, pp 91–131
12.
Zurück zum Zitat Vedula K, Stephens JR (1987) B2 aluminides for high temperature applications. In: Stoloff NS, Koch CC, Liu CT, Izumi O (eds) Proceedings of High Temperature Ordered Intermetallics II, Materials Research Society Symposium, vol 81. Materials Research Society, Warrendale, PA 15086, USA, pp 381–392 Vedula K, Stephens JR (1987) B2 aluminides for high temperature applications. In: Stoloff NS, Koch CC, Liu CT, Izumi O (eds) Proceedings of High Temperature Ordered Intermetallics II, Materials Research Society Symposium, vol 81. Materials Research Society, Warrendale, PA 15086, USA, pp 381–392
13.
Zurück zum Zitat Gokhale AB, Abbaschian GJ (1991) The Mo–Si (molybdenum-silicon) system. J Phase Equilib 12(4):493–498CrossRef Gokhale AB, Abbaschian GJ (1991) The Mo–Si (molybdenum-silicon) system. J Phase Equilib 12(4):493–498CrossRef
14.
Zurück zum Zitat Sakidja R, Perepezko JH, Kim S, Sekido H (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56:5223–5244CrossRef Sakidja R, Perepezko JH, Kim S, Sekido H (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56:5223–5244CrossRef
15.
Zurück zum Zitat Schlesinger ME, Okamoto H, Gokhale AB, Abbaschian R (1993) The Nb–Si (niobium-silicon) system. J Phase Equilib 14(4):502–509CrossRef Schlesinger ME, Okamoto H, Gokhale AB, Abbaschian R (1993) The Nb–Si (niobium-silicon) system. J Phase Equilib 14(4):502–509CrossRef
16.
Zurück zum Zitat Mao W, Guo X (2012) Effects of alloying and high-temperature heat treatment on the microstructure of Nb–Ti–Si based ultrahigh temperature alloys. Prog Nat Sci: Mater Int 22(2):139–145CrossRef Mao W, Guo X (2012) Effects of alloying and high-temperature heat treatment on the microstructure of Nb–Ti–Si based ultrahigh temperature alloys. Prog Nat Sci: Mater Int 22(2):139–145CrossRef
17.
Zurück zum Zitat Schneibel JH, Liu CT, Heatherly L, Kramer MJ (1998) Assessment of processing routes and strength of a 3-phase molybdenum boron silicide (Mo5Si3–Mo5SiB2–Mo3Si). Scripta Mater 38:1169–1176CrossRef Schneibel JH, Liu CT, Heatherly L, Kramer MJ (1998) Assessment of processing routes and strength of a 3-phase molybdenum boron silicide (Mo5Si3–Mo5SiB2–Mo3Si). Scripta Mater 38:1169–1176CrossRef
18.
Zurück zum Zitat Breig PG, Scott SW (1989) Induction skull melting of titanium aluminides. Mater Manuf Process 4:73–83 Breig PG, Scott SW (1989) Induction skull melting of titanium aluminides. Mater Manuf Process 4:73–83
19.
Zurück zum Zitat Bewlay BP, Jackson MR, Lipsitt HA (1996) The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite. Metall Mater Trans A 27A:3801–3808CrossRef Bewlay BP, Jackson MR, Lipsitt HA (1996) The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite. Metall Mater Trans A 27A:3801–3808CrossRef
20.
Zurück zum Zitat Bewlay BP, Jackson MR, Subramanian PR (1999) Processing high-temperature refractory-metal silicide in-situ composites. J Metals 51(4):32–36 Bewlay BP, Jackson MR, Subramanian PR (1999) Processing high-temperature refractory-metal silicide in-situ composites. J Metals 51(4):32–36
21.
Zurück zum Zitat Aguilar J, Schievenbusch A, Kättlitz O (2011) Investment casting technology for production of TiAl low pressure turbine blades—process engineering and parameter analysis. Intermetallics 19(6):757–761CrossRef Aguilar J, Schievenbusch A, Kättlitz O (2011) Investment casting technology for production of TiAl low pressure turbine blades—process engineering and parameter analysis. Intermetallics 19(6):757–761CrossRef
22.
Zurück zum Zitat Aikin RM Jr (1997) The mechanical properties of in-situ composites. J Met 49(8):35–59 Aikin RM Jr (1997) The mechanical properties of in-situ composites. J Met 49(8):35–59
23.
Zurück zum Zitat Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng, A 299:1–15CrossRef Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng, A 299:1–15CrossRef
24.
Zurück zum Zitat Sandvik Osprey Ltd, Neath, West Glamorgan, UK Sandvik Osprey Ltd, Neath, West Glamorgan, UK
25.
Zurück zum Zitat Sikka VK, Wilkening D, Liebetrau J, Mackey B (1998) Melting and casting of FeAl-based cast alloy. Mater Sci Eng A 258:229–235CrossRef Sikka VK, Wilkening D, Liebetrau J, Mackey B (1998) Melting and casting of FeAl-based cast alloy. Mater Sci Eng A 258:229–235CrossRef
26.
Zurück zum Zitat Aoki K, Izumi O (1979) Improvement in room temperature ductility of the intermetallic compound Ni3Al by ternary element addition. J Jpn Inst Met 43:358–359 Aoki K, Izumi O (1979) Improvement in room temperature ductility of the intermetallic compound Ni3Al by ternary element addition. J Jpn Inst Met 43:358–359
27.
Zurück zum Zitat Jozwik P, Polkowski W, Bojar Z (2015) Applications of Ni3Al based intermetallic alloys−current stage and potential perceptivities. Materials 8(5):2537–2568. doi:10.3390/ma8052537 CrossRef Jozwik P, Polkowski W, Bojar Z (2015) Applications of Ni3Al based intermetallic alloys−current stage and potential perceptivities. Materials 8(5):2537–2568. doi:10.​3390/​ma8052537 CrossRef
28.
Zurück zum Zitat Vedula K (1994) FeAl and Fe3Al. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK, pp 199–209 Vedula K (1994) FeAl and Fe3Al. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK, pp 199–209
29.
Zurück zum Zitat Tortorelli PF, DeVan JH (1992) Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mat Sci Eng A, 153:573–577 Tortorelli PF, DeVan JH (1992) Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mat Sci Eng A, 153:573–577
30.
Zurück zum Zitat Kim BG, Kim GM, Kim CJ (1995) Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature. Scr Metall Mater 33(7):1117–1125CrossRef Kim BG, Kim GM, Kim CJ (1995) Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature. Scr Metall Mater 33(7):1117–1125CrossRef
32.
Zurück zum Zitat Darolia R, Walston WS, Nathal MV (1996) NiAl alloys for turbine airfoils. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA 15095, USA, pp 561–570 Darolia R, Walston WS, Nathal MV (1996) NiAl alloys for turbine airfoils. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA 15095, USA, pp 561–570
34.
Zurück zum Zitat Bartolotta PA, Krause DL (1999) Titanium aluminide applications in the high speed civil transport. National Aeronautics and Space Administration Technical Memorandum NASA/TM−1999-209071, Glenn Research Center at Lewis Field, Cleveland, OH 44135-3191: available from the NASA Center for Aerospace Information, Hanover, MD 21076-1320, USA Bartolotta PA, Krause DL (1999) Titanium aluminide applications in the high speed civil transport. National Aeronautics and Space Administration Technical Memorandum NASA/TM−1999-209071, Glenn Research Center at Lewis Field, Cleveland, OH 44135-3191: available from the NASA Center for Aerospace Information, Hanover, MD 21076-1320, USA
35.
Zurück zum Zitat Banerjee D (2003) Titanium, its alloys and intermetallics. In: Chidambaram R, Banerjee S (eds) Materials research: current scenario and future projections. Allied Publishers Pvt. Limited, New Delhi, India, pp 215–237 Banerjee D (2003) Titanium, its alloys and intermetallics. In: Chidambaram R, Banerjee S (eds) Materials research: current scenario and future projections. Allied Publishers Pvt. Limited, New Delhi, India, pp 215–237
Metadaten
Titel
Structural Intermetallics
verfasst von
R. Mitra
R. J. H. Wanhill
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2134-3_10

    Premium Partner