Skip to main content

2024 | OriginalPaper | Buchkapitel

Study on Circumferential and Meridional Modes of Free Vibration Response for Fixed Base and Column-Supported Cooling Tower Shell

verfasst von : Sachin R. Kulkarni, Shivanand Mendigeri, Vinod Hosur

Erschienen in: Recent Advances in Structural Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Axisymmetric shell structures are generated by rotating plane curve around its axis of rotation to form a circumferentially closed surface and are generally used for hyperbolic cooling towers. These are thin shell structures possessing adequate strength and aesthetically pleasing. Considerable research on the behavior of cooling towers is available in the literature since the development in the finite element method. The present work investigates the free vibration analysis of shell on fixed base and column-supported cooling tower shell using ANSYS software. The study on modes of vibration (first lateral mode, torsion mode) and behavior of tower shell in circumferential mode (n) 1, 2, 3, 4, 5, and 6 for Meridional Mode (m) 1, 2, and 3 are observed for shell on fixed base and column supported shell for different uniform shell thicknesses. The analysis results revealed that natural frequency of the first lateral mode is unaffected by change in the shell thicknesses, but it occurs earliest in the thickest shell. Influence of shell thickness on torsion mode was observed to have no significant change except change in mode number. The study of circumferential mode (n = 1, 2, 3, 4, 5, 6) for Meridional mode (m = 1, 2, 3) for shell on fixed base with varying different uniform shell thicknesses (Uniform along the height) revealed that the frequency values alter for circumferential mode (n ≥ 4) greater than or equal to 4. The study of circumferential mode (n = 1, 2, 3, 4, 5, 6) for the Meridional modes (m = 1, 2) for column supported shell with varying different shell thicknesses (Uniform along the height) revealed that the frequency values alter for circumferential mode (n ≥ 1) greater than or equal to 1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carter RL, Robinson AR, Schnobrich WC (1969) Free vibration of hyperboloid shells of revolution. J Eng Mech Div ASCE 95:1033–1052CrossRef Carter RL, Robinson AR, Schnobrich WC (1969) Free vibration of hyperboloid shells of revolution. J Eng Mech Div ASCE 95:1033–1052CrossRef
2.
Zurück zum Zitat Hashish MG, Abu-Sitta SH (1971) Free vibration of hyperbolic cooling towers. J Eng Mech ASCE 97:253–269 Hashish MG, Abu-Sitta SH (1971) Free vibration of hyperbolic cooling towers. J Eng Mech ASCE 97:253–269
3.
Zurück zum Zitat Sen SK, Gould PL (1974) Free vibration of shells of revolution using FEM. J Eng Mech Divi ASCE 100:283–303CrossRef Sen SK, Gould PL (1974) Free vibration of shells of revolution using FEM. J Eng Mech Divi ASCE 100:283–303CrossRef
4.
Zurück zum Zitat Nelson RL (1980) Free vibration analysis of cooling towers. Shock Vibr Digest 12(12):15–24CrossRef Nelson RL (1980) Free vibration analysis of cooling towers. Shock Vibr Digest 12(12):15–24CrossRef
5.
Zurück zum Zitat Yang TY, Kapania RK (1983) Shell elements for cooling tower analysis. J Eng Mech 109(5):1270–1289CrossRef Yang TY, Kapania RK (1983) Shell elements for cooling tower analysis. J Eng Mech 109(5):1270–1289CrossRef
6.
Zurück zum Zitat Kalnins A (1964) Free vibrations of rotationally symmetric shells. J Acoust Soc Am 36:1355–1365 Kalnins A (1964) Free vibrations of rotationally symmetric shells. J Acoust Soc Am 36:1355–1365
7.
Zurück zum Zitat Neal BG (1967) Natural frequencies of cooling tower shells. J Strain Anal 2:127–133CrossRef Neal BG (1967) Natural frequencies of cooling tower shells. J Strain Anal 2:127–133CrossRef
8.
Zurück zum Zitat Gould PL, Sen SK, Suryoutomo H (1974) Dynamic analysis of cooling supported hyperboloid shells. Earthquake Eng Struct Dyn 2:269–279 Gould PL, Sen SK, Suryoutomo H (1974) Dynamic analysis of cooling supported hyperboloid shells. Earthquake Eng Struct Dyn 2:269–279
9.
Zurück zum Zitat Debnath JM (1974) Free vibration, stability and non-classical modes of cooling tower shells. J Sound Vib 33:79–101CrossRef Debnath JM (1974) Free vibration, stability and non-classical modes of cooling tower shells. J Sound Vib 33:79–101CrossRef
10.
Zurück zum Zitat Nelson L, Thomas L (1978) Free vibration analysis of cooling towers with column supports. J Sound Vib 57:149–153CrossRef Nelson L, Thomas L (1978) Free vibration analysis of cooling towers with column supports. J Sound Vib 57:149–153CrossRef
11.
Zurück zum Zitat Gran CS, Yang TY (1978) NASTRAN and SAP IV applications on the seismic response of column supported cooling towers. Comput Struct 8:761–769CrossRef Gran CS, Yang TY (1978) NASTRAN and SAP IV applications on the seismic response of column supported cooling towers. Comput Struct 8:761–769CrossRef
12.
Zurück zum Zitat Wolf J, Skrikerud P (1980) Influence of geometry and of the constitutive law of the supporting columns on the seismic response of a hyperbolic cooling tower. Earthquake Eng Struct Dyn 8:415–437 Wolf J, Skrikerud P (1980) Influence of geometry and of the constitutive law of the supporting columns on the seismic response of a hyperbolic cooling tower. Earthquake Eng Struct Dyn 8:415–437
13.
Zurück zum Zitat Nelson L (1981) Analyses of cooling tower dynamics. J Sound Vib 79:50l–518CrossRef Nelson L (1981) Analyses of cooling tower dynamics. J Sound Vib 79:50l–518CrossRef
14.
Zurück zum Zitat Bhimaraddi A, Moss PJ, Carr AJ (1991) Free-vibration response of column-supported, ring-stiffened cooling tower. J Eng Mech ASCE 117:770–788CrossRef Bhimaraddi A, Moss PJ, Carr AJ (1991) Free-vibration response of column-supported, ring-stiffened cooling tower. J Eng Mech ASCE 117:770–788CrossRef
15.
Zurück zum Zitat Nasir AM, Thambiratnam DP, Butler D, Austin P (2002) Dynamics of axisymmetric hyperbolic shell structures. Thin-Walled Struct 40:665–690CrossRef Nasir AM, Thambiratnam DP, Butler D, Austin P (2002) Dynamics of axisymmetric hyperbolic shell structures. Thin-Walled Struct 40:665–690CrossRef
16.
Zurück zum Zitat Asadzadeh E, Mehtab A, Asadzadeh S (2014) Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations. Struct Eng Mech 50:797–816CrossRef Asadzadeh E, Mehtab A, Asadzadeh S (2014) Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations. Struct Eng Mech 50:797–816CrossRef
17.
Zurück zum Zitat Karakas AI, Daloglu AT (2015) Free and forced vibration analyses of hyperbolic cooling tower shell using harmonic solid ring finite element. J Eng Fundam 2(1):38–53CrossRef Karakas AI, Daloglu AT (2015) Free and forced vibration analyses of hyperbolic cooling tower shell using harmonic solid ring finite element. J Eng Fundam 2(1):38–53CrossRef
18.
Zurück zum Zitat Kucherera GT, Zingoni A (2016) Stability behavior and dynamic response of cooling tower subjected to wind loading. Master’s Thesis, University of Cape town Kucherera GT, Zingoni A (2016) Stability behavior and dynamic response of cooling tower subjected to wind loading. Master’s Thesis, University of Cape town
19.
Zurück zum Zitat Yang TY, Kapania RK (1983) Shell elements for cooling tower analysis. J Eng Mech ASCE 109:1270–1289 Yang TY, Kapania RK (1983) Shell elements for cooling tower analysis. J Eng Mech ASCE 109:1270–1289
20.
Zurück zum Zitat Basu P, Gould P (1979) Finite element discretization of open-type axisymmetric elements. Int J Numer Meth Eng 14:159–178CrossRef Basu P, Gould P (1979) Finite element discretization of open-type axisymmetric elements. Int J Numer Meth Eng 14:159–178CrossRef
Metadaten
Titel
Study on Circumferential and Meridional Modes of Free Vibration Response for Fixed Base and Column-Supported Cooling Tower Shell
verfasst von
Sachin R. Kulkarni
Shivanand Mendigeri
Vinod Hosur
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9502-8_32