Skip to main content

2024 | OriginalPaper | Buchkapitel

13. Tunnel Fire Ventilation

verfasst von : Haukur Ingason, Ying Zhen Li, Anders Lönnermark

Erschienen in: Tunnel Fire Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ventilation is the most common measure to mitigate the effect of fire and smoke in a tunnel. Various normal ventilation systems for removal of heat and contaminants from the tunnels are introduced at first. In case of a tunnel fire, fire ventilation systems are required to control smoke flows and create paths for evacuation and fire-fighting. The fire ventilation systems used in tunnels mainly include longitudinal ventilation systems and smoke extraction ventilation systems, which are discussed in great detail in this chapter. Two key parameters for tunnels with longitudinal ventilation, i.e. critical velocity and backlayering length, are investigated in full detail. For smoke extraction systems, sufficient fresh air flows are required to be supplied from both sides to prevent further smoke spread. Further, fire ventilation systems in tunnel cross-passages and rescue stations are discussed. A simple model of longitudinal flows is introduced for calculation of longitudinal ventilation velocity in a tunnel fire.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Research Station, Borehamwood Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Research Station, Borehamwood
2.
Zurück zum Zitat Thomas PH (1968) The movement of smoke in horizontal passages against an air flow. Fire Research Station, Borehamwood Thomas PH (1968) The movement of smoke in horizontal passages against an air flow. Fire Research Station, Borehamwood
3.
Zurück zum Zitat Danziger NH, Kennedy WD. Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Fourth international symposium on the aerodynamics & ventilation of vehicle tunnels. BHRA Fluid Engineering, York, UK, 23–25 March 1982, pp 169–186 Danziger NH, Kennedy WD. Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Fourth international symposium on the aerodynamics & ventilation of vehicle tunnels. BHRA Fluid Engineering, York, UK, 23–25 March 1982, pp 169–186
4.
Zurück zum Zitat Kennedy WD (1996) Critical velocity: past, present and future. In: Seminar of smoke and critical velocity in tunnels. JFL Lowndes, London, 9–11 March 1996, pp 305–322 Kennedy WD (1996) Critical velocity: past, present and future. In: Seminar of smoke and critical velocity in tunnels. JFL Lowndes, London, 9–11 March 1996, pp 305–322
5.
Zurück zum Zitat Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25:305–322CrossRef Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25:305–322CrossRef
6.
Zurück zum Zitat Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity. Fire Saf J 35:363–390CrossRef Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity. Fire Saf J 35:363–390CrossRef
7.
Zurück zum Zitat Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45:361–370CrossRef Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45:361–370CrossRef
8.
Zurück zum Zitat Lee CK, Chaiken RF, Singer JM (1979) Interaction between duct fires and ventilation flow: an experimental study. Combust Sci Technol 20:59–72CrossRef Lee CK, Chaiken RF, Singer JM (1979) Interaction between duct fires and ventilation flow: an experimental study. Combust Sci Technol 20:59–72CrossRef
9.
Zurück zum Zitat Li YZ, Ingason H (2018) Discussions on critical velocity and critical Froude number for smoke control in tunnels with longitudinal ventilation. Fire Saf J 99:22–26 Li YZ, Ingason H (2018) Discussions on critical velocity and critical Froude number for smoke control in tunnels with longitudinal ventilation. Fire Saf J 99:22–26
10.
Zurück zum Zitat Li YZ, Ingason H (2017) Effect of cross section on critical velocity in longitudinally ventilated tunnel fires. Fire Saf J 91:303–311 Li YZ, Ingason H (2017) Effect of cross section on critical velocity in longitudinally ventilated tunnel fires. Fire Saf J 91:303–311
11.
Zurück zum Zitat Li YZ, Ingason H (2019) Corrigendum to “Effect of cross section on critical velocity in longitudinally ventilated tunnel fires” [Fire Saf. J. 91 (2017) 303–311]. Fire Saf J 110:102893CrossRef Li YZ, Ingason H (2019) Corrigendum to “Effect of cross section on critical velocity in longitudinally ventilated tunnel fires” [Fire Saf. J. 91 (2017) 303–311]. Fire Saf J 110:102893CrossRef
12.
Zurück zum Zitat Tilley N, Rauwoens P, Merci B (2011) Verification of the accuracy of CFD simulations in small-scale tunnel and atrium fire configurations. Fire Saf J 46(4):186–193 Tilley N, Rauwoens P, Merci B (2011) Verification of the accuracy of CFD simulations in small-scale tunnel and atrium fire configurations. Fire Saf J 46(4):186–193
13.
Zurück zum Zitat Zhang T, Wang G, Li J, Huang Y, Zhu K, Wu K (2021) Experimental study of back-layering length and critical velocity in longitudinally ventilated tunnel fire with various rectangular cross-sections. Fire Saf J 126:103483CrossRef Zhang T, Wang G, Li J, Huang Y, Zhu K, Wu K (2021) Experimental study of back-layering length and critical velocity in longitudinally ventilated tunnel fire with various rectangular cross-sections. Fire Saf J 126:103483CrossRef
14.
Zurück zum Zitat Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests. SP Technicial Research Institute, SP Report 2011, p 55 Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests. SP Technicial Research Institute, SP Report 2011, p 55
15.
Zurück zum Zitat Weng M-C, Lu X-L, Liu F, Du C-X (2016) Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Appl Therm Eng 94:422–434CrossRef Weng M-C, Lu X-L, Liu F, Du C-X (2016) Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Appl Therm Eng 94:422–434CrossRef
16.
Zurück zum Zitat Gannouni S (2022) Critical velocity for preventing thermal backlayering flow in tunnel fire using longitudinal ventilation system: effect of floor-fire separation distance. Int J Therm Sci 171:107192 Gannouni S (2022) Critical velocity for preventing thermal backlayering flow in tunnel fire using longitudinal ventilation system: effect of floor-fire separation distance. Int J Therm Sci 171:107192
17.
Zurück zum Zitat Liu Y, Fang Z, Tang Z, Beji T, Merci B (2020) Analysis of experimental data on the effect of fire source elevation on fire and smoke dynamics and the critical velocity in a tunnel with longitudinal ventilation. Fire Saf J 114:103002 Liu Y, Fang Z, Tang Z, Beji T, Merci B (2020) Analysis of experimental data on the effect of fire source elevation on fire and smoke dynamics and the critical velocity in a tunnel with longitudinal ventilation. Fire Saf J 114:103002
18.
Zurück zum Zitat Tian X, Liu C, Zhong M (2021) Numerical and experimental study on the effects of a ceiling beam on the critical velocity of a tunnel fire based on virtual fire source. Int J Therm Sci 159:106635 Tian X, Liu C, Zhong M (2021) Numerical and experimental study on the effects of a ceiling beam on the critical velocity of a tunnel fire based on virtual fire source. Int J Therm Sci 159:106635
19.
Zurück zum Zitat Huang Y, Li Y, Li J, Li J, Wu K, Zhu K, Li H (2020) Modelling and experimental investigation of critical velocity and driving force for preventing smoke backlayering in a branched tunnel fire. Tunn Undergr Space Technol 99:103388 Huang Y, Li Y, Li J, Li J, Wu K, Zhu K, Li H (2020) Modelling and experimental investigation of critical velocity and driving force for preventing smoke backlayering in a branched tunnel fire. Tunn Undergr Space Technol 99:103388
20.
Zurück zum Zitat Chen C, Jiao W, Zhang Y, Shi C, Lei P, Fan C (2023) Experimental investigation on the influence of longitudinal fire location on critical velocity in a T-shaped tunnel fire. Tunn Undergr Space Technol 134:104983 Chen C, Jiao W, Zhang Y, Shi C, Lei P, Fan C (2023) Experimental investigation on the influence of longitudinal fire location on critical velocity in a T-shaped tunnel fire. Tunn Undergr Space Technol 134:104983
21.
Zurück zum Zitat Yan G, Wang M, Yu L, Tian Y (2020) Effects of ambient pressure on the critical velocity and back-layering length in longitudinal ventilated tunnel fire. Indoor Built Environ 29(7):1017–1027CrossRef Yan G, Wang M, Yu L, Tian Y (2020) Effects of ambient pressure on the critical velocity and back-layering length in longitudinal ventilated tunnel fire. Indoor Built Environ 29(7):1017–1027CrossRef
22.
Zurück zum Zitat Zhang S, Shi L, Wang J, Li X, Han Y, He K, Cheng X (2019) Critical ventilation velocity of two fire sources with different separating distances in road tunnel. J Fire Sci 37(4–6):320–339CrossRef Zhang S, Shi L, Wang J, Li X, Han Y, He K, Cheng X (2019) Critical ventilation velocity of two fire sources with different separating distances in road tunnel. J Fire Sci 37(4–6):320–339CrossRef
23.
Zurück zum Zitat Tang F, Deng L, Meng N, McNamee M, Van Hees P, Hu L (2020) Critical longitudinal ventilation velocity for smoke control in a tunnel induced by two nearby fires of various distances: experiments and a revisited model. Tunn Undergr Space Technol 105:103559 Tang F, Deng L, Meng N, McNamee M, Van Hees P, Hu L (2020) Critical longitudinal ventilation velocity for smoke control in a tunnel induced by two nearby fires of various distances: experiments and a revisited model. Tunn Undergr Space Technol 105:103559
24.
Zurück zum Zitat Khattri SK, Log T, Kraaijeveld A (2021) A novel representation of the critical ventilation velocity for mitigating tunnel fires. Tunn Undergr Space Technol 112:103853 Khattri SK, Log T, Kraaijeveld A (2021) A novel representation of the critical ventilation velocity for mitigating tunnel fires. Tunn Undergr Space Technol 112:103853
25.
Zurück zum Zitat Lee Y-P, Tsai K-C (2012) Effect of vehicular blockage on critical ventilation velocity and tunnel fire behavior in longitudinally ventilated tunnels. Fire Saf J 53:35–42CrossRef Lee Y-P, Tsai K-C (2012) Effect of vehicular blockage on critical ventilation velocity and tunnel fire behavior in longitudinally ventilated tunnels. Fire Saf J 53:35–42CrossRef
26.
Zurück zum Zitat Li L, Cheng X, Cui Y, Li S, Zhang H (2012) Effect of blockage ratio on critical velocity in tunnel fires. J Fire Sci 30(5):413–427 Li L, Cheng X, Cui Y, Li S, Zhang H (2012) Effect of blockage ratio on critical velocity in tunnel fires. J Fire Sci 30(5):413–427
27.
Zurück zum Zitat Memorial Tunnel Fire Ventilation Test Program – Test Report (1995) Massachusetts Highway Department and Federal Highway Administration Memorial Tunnel Fire Ventilation Test Program – Test Report (1995) Massachusetts Highway Department and Federal Highway Administration
28.
Zurück zum Zitat Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Saf J 48:38–48CrossRef Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Saf J 48:38–48CrossRef
29.
Zurück zum Zitat Ingason H, Li YZ. New concept for design fires in tunnels. In: Proceedings from the fifth international symposium on tunnel safety and security (ISTSS 2012). SP Technical Research Institute of Sweden, New York, USA, 14–16 March 2012, pp 603–612 Ingason H, Li YZ. New concept for design fires in tunnels. In: Proceedings from the fifth international symposium on tunnel safety and security (ISTSS 2012). SP Technical Research Institute of Sweden, New York, USA, 14–16 March 2012, pp 603–612
30.
Zurück zum Zitat Kunsch JP (2002) Simple model for control of fire gases in a ventilated tunnel. Fire Saf J 37:67–81CrossRef Kunsch JP (2002) Simple model for control of fire gases in a ventilated tunnel. Fire Saf J 37:67–81CrossRef
31.
Zurück zum Zitat Alpert RL (1975) Turbulent ceiling-jet induced by large-scale fires. Combust Sci Technol 11:197–213CrossRef Alpert RL (1975) Turbulent ceiling-jet induced by large-scale fires. Combust Sci Technol 11:197–213CrossRef
32.
Zurück zum Zitat Vauquelin O, Wu Y (2006) Influence of tunnel width on longitudinal smoke control. Fire Saf J 41:420–426CrossRef Vauquelin O, Wu Y (2006) Influence of tunnel width on longitudinal smoke control. Fire Saf J 41:420–426CrossRef
33.
Zurück zum Zitat Li YZ, Ingason H (2014) Position of maximum ceiling temperature in a tunnel fire. Fire Technol 50:889–905CrossRef Li YZ, Ingason H (2014) Position of maximum ceiling temperature in a tunnel fire. Fire Technol 50:889–905CrossRef
34.
Zurück zum Zitat Vauquelin O, Telle D (2005) Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Saf J 40:320–330CrossRef Vauquelin O, Telle D (2005) Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Saf J 40:320–330CrossRef
35.
Zurück zum Zitat Vantelon JP, Guelzim A, Quach D, Son DK, Gabay D, Dallest D (1991) Investigation of fire-induced smoke movement in tunnels and stations: an application to the Paris Metro. In: IAFSS fire safety science-Proceedings of the third international symposium, Edinburg, pp 907–918 Vantelon JP, Guelzim A, Quach D, Son DK, Gabay D, Dallest D (1991) Investigation of fire-induced smoke movement in tunnels and stations: an application to the Paris Metro. In: IAFSS fire safety science-Proceedings of the third international symposium, Edinburg, pp 907–918
36.
Zurück zum Zitat Deberteix P, Gabay D, Blay D (2001) Experimental study of fire-induced smoke propagation in a tunnel in the presence of longitudinal ventilation. In: Proceedings of the international conference on tunnel fires and escape from tunnels, Washington, pp 257–265 Deberteix P, Gabay D, Blay D (2001) Experimental study of fire-induced smoke propagation in a tunnel in the presence of longitudinal ventilation. In: Proceedings of the international conference on tunnel fires and escape from tunnels, Washington, pp 257–265
37.
Zurück zum Zitat Li YZ, Ingason H, Jiang L (2018) Influence of tunnel slope on smoke control. RISE Rapport Li YZ, Ingason H, Jiang L (2018) Influence of tunnel slope on smoke control. RISE Rapport
38.
Zurück zum Zitat Zhang S, Yao Y, Zhu K, Li K, Zhang R, Lu S, Cheng X (2016) Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train. Tunn Undergr Space Technol 53:13–21 Zhang S, Yao Y, Zhu K, Li K, Zhang R, Lu S, Cheng X (2016) Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train. Tunn Undergr Space Technol 53:13–21
39.
Zurück zum Zitat Zhang S, Cheng X, Yao Y, Zhu K, Li K, Lu S, Zhang R, Zhang H (2016) An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires. Appl Therm Eng 99:214–223 Zhang S, Cheng X, Yao Y, Zhu K, Li K, Lu S, Zhang R, Zhang H (2016) An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires. Appl Therm Eng 99:214–223
40.
Zurück zum Zitat Li YZ, Ingason H (2018) Overview of research on fire safety in underground road and railway tunnels. Tunn Undergr Space Technol 81:568–589CrossRef Li YZ, Ingason H (2018) Overview of research on fire safety in underground road and railway tunnels. Tunn Undergr Space Technol 81:568–589CrossRef
41.
Zurück zum Zitat Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. J Fire Prot Eng 21(1):5–36CrossRef Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. J Fire Prot Eng 21(1):5–36CrossRef
42.
Zurück zum Zitat Li YZ, Ingason H (2017) Analysis of Muskö tunnel fire flows with automatic sprinkler activation. RISE – Research Institutes of Sweden Li YZ, Ingason H (2017) Analysis of Muskö tunnel fire flows with automatic sprinkler activation. RISE – Research Institutes of Sweden
43.
Zurück zum Zitat Zhao S, Li YZ, Kumm M, Ingason H, Liu F (2019) Re-direction of smoke flow in inclined tunnel fires. Tunn Undergr Space Technol 86:113–127CrossRef Zhao S, Li YZ, Kumm M, Ingason H, Liu F (2019) Re-direction of smoke flow in inclined tunnel fires. Tunn Undergr Space Technol 86:113–127CrossRef
44.
Zurück zum Zitat Wang Y, Jiang J, Zhu D (2009) Full-scale experiment research and theoretical study for fires in tunnels with roof openings. Fire Saf J 44(3):339–348 Wang Y, Jiang J, Zhu D (2009) Full-scale experiment research and theoretical study for fires in tunnels with roof openings. Fire Saf J 44(3):339–348
45.
Zurück zum Zitat Ji J, Gao ZH, Fan CG, Zhong W, Sun JH (2012) A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires. Int J Heat Mass Transf 55(21–22):6032–6041 Ji J, Gao ZH, Fan CG, Zhong W, Sun JH (2012) A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires. Int J Heat Mass Transf 55(21–22):6032–6041
46.
Zurück zum Zitat Ura F, Kawabata N, Tanaka F (2014) Characteristics of smoke extraction by natural ventilation during a fire in a shallow urban road tunnel with roof openings. Fire Saf J 67:96–106 Ura F, Kawabata N, Tanaka F (2014) Characteristics of smoke extraction by natural ventilation during a fire in a shallow urban road tunnel with roof openings. Fire Saf J 67:96–106
47.
Zurück zum Zitat Yao Y, Li YZ, Ingason H, Cheng X (2019) Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel. Int J Therm Sci 140:491–504CrossRef Yao Y, Li YZ, Ingason H, Cheng X (2019) Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel. Int J Therm Sci 140:491–504CrossRef
48.
Zurück zum Zitat Zhao S, Li YZ, Ingason H, Liu F (2019) A theoretical and experimental study on the buoyancy-driven smoke flow in a tunnel with vertical shafts. Int J Therm Sci 141:33–46CrossRef Zhao S, Li YZ, Ingason H, Liu F (2019) A theoretical and experimental study on the buoyancy-driven smoke flow in a tunnel with vertical shafts. Int J Therm Sci 141:33–46CrossRef
49.
Zurück zum Zitat Guo Q, Li YZ, Ingason H, Yan Z, Zhu H (2021) Theoretical and numerical study on mass flow rates of smoke exhausted from short vertical shafts in naturally ventilated urban road tunnel fires. Tunn Undergr Space Technol 111:103782CrossRef Guo Q, Li YZ, Ingason H, Yan Z, Zhu H (2021) Theoretical and numerical study on mass flow rates of smoke exhausted from short vertical shafts in naturally ventilated urban road tunnel fires. Tunn Undergr Space Technol 111:103782CrossRef
50.
Zurück zum Zitat Tarada F (2000) Critical velocities for smoke control in tunnel cross-passages. In: 1st International conference on major tunnel and infrastructure projects, Taiwan Tarada F (2000) Critical velocities for smoke control in tunnel cross-passages. In: 1st International conference on major tunnel and infrastructure projects, Taiwan
51.
Zurück zum Zitat Li YZ, Lei B, Ingason H (2013) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 49:435–449CrossRef Li YZ, Lei B, Ingason H (2013) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 49:435–449CrossRef
52.
Zurück zum Zitat Feng S, Li Y, Hou Y, Li J, Huang Y (2020) Study on the critical velocity for smoke control in a subway tunnel cross-passage. Tunn Undergr Space Technol 97:103234CrossRef Feng S, Li Y, Hou Y, Li J, Huang Y (2020) Study on the critical velocity for smoke control in a subway tunnel cross-passage. Tunn Undergr Space Technol 97:103234CrossRef
53.
Zurück zum Zitat Gerber P (2006) Quantitative risk assessment and risk-based design of the Gotthard Base Tunnel. In: Proceedings of the 4th international conference safety in road and rail tunnels, Madrid, Spain, pp 395–404 Gerber P (2006) Quantitative risk assessment and risk-based design of the Gotthard Base Tunnel. In: Proceedings of the 4th international conference safety in road and rail tunnels, Madrid, Spain, pp 395–404
54.
Zurück zum Zitat Li YZ, Lei B, Ingason H (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. J Fire Prot Eng 22(2):101–131 Li YZ, Lei B, Ingason H (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. J Fire Prot Eng 22(2):101–131
55.
Zurück zum Zitat Ozawa S (1988) Ventilation and fire countermeasure in Seikan tunnel. In: 6th Int. Symp. on aerodynamics and ventilation of vehicle tunnels, England, pp 481–493 Ozawa S (1988) Ventilation and fire countermeasure in Seikan tunnel. In: 6th Int. Symp. on aerodynamics and ventilation of vehicle tunnels, England, pp 481–493
56.
Zurück zum Zitat Rudin C (2000) Fires in long railway tunnels – the ventilation concepts adopted in the AlpTransit projects. In: 10th Int. Symp. on aerodynamics and ventilation of vehicle tunnels, Boston, pp 481–493 Rudin C (2000) Fires in long railway tunnels – the ventilation concepts adopted in the AlpTransit projects. In: 10th Int. Symp. on aerodynamics and ventilation of vehicle tunnels, Boston, pp 481–493
57.
Zurück zum Zitat Tarada F, Bopp R, Nyfeler S (2000) Ventilation and risk control of the Young Dong Rail Tunnel in Korea. In: 1st International conference on major tunnel and infrastructure projects, Taiwan Tarada F, Bopp R, Nyfeler S (2000) Ventilation and risk control of the Young Dong Rail Tunnel in Korea. In: 1st International conference on major tunnel and infrastructure projects, Taiwan
58.
Zurück zum Zitat Bassler A, Bopp R, Scherer O et al (2006) Ventilation of emergency station in the Koralm tunnel. In: 12th International symposium on aerodynamics and ventilation of vehicle tunnels, Portoroz, Slovenia Bassler A, Bopp R, Scherer O et al (2006) Ventilation of emergency station in the Koralm tunnel. In: 12th International symposium on aerodynamics and ventilation of vehicle tunnels, Portoroz, Slovenia
59.
Zurück zum Zitat Hilar M, Srb M (2009) Long railway tunnels – comparison of major projects. In: WTC 2009, Budapest, Hungary Hilar M, Srb M (2009) Long railway tunnels – comparison of major projects. In: WTC 2009, Budapest, Hungary
60.
Zurück zum Zitat Ingason H, Lönnermark A, Li YZ (2011) Model of ventilation flows during large tunnel fires. Tunn Undergr Space Technol 30:64–73CrossRef Ingason H, Lönnermark A, Li YZ (2011) Model of ventilation flows during large tunnel fires. Tunn Undergr Space Technol 30:64–73CrossRef
61.
Zurück zum Zitat Fried E, Idelchick IE (1989) Flow resistance: a design guide for engineers. Hemisphere Publishing Corporation, New York Fried E, Idelchick IE (1989) Flow resistance: a design guide for engineers. Hemisphere Publishing Corporation, New York
62.
Zurück zum Zitat Ingason H, Lönnermark A (2005) Heat release rates from heavy goods vehicle trailers in tunnels. Fire Saf J 40:646–668CrossRef Ingason H, Lönnermark A (2005) Heat release rates from heavy goods vehicle trailers in tunnels. Fire Saf J 40:646–668CrossRef
Metadaten
Titel
Tunnel Fire Ventilation
verfasst von
Haukur Ingason
Ying Zhen Li
Anders Lönnermark
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53923-7_13