Skip to main content

2024 | OriginalPaper | Buchkapitel

Valorizing Cellulosic Biomass Waste into Valuable Nano-biosorbents

verfasst von : Sanjay Kumar, Ashish Kumar, Akshay Thakur, Pratibha Kumari

Erschienen in: Integrated Waste Management

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surging global population and industrial expansion have ushered in the introduction of detrimental heavy metals and organic contaminants into the ecosystem. Adsorption-centric methodologies have emerged as a prevalent means of expunging pollutants from diverse sources, underpinned by their inherent simplicity, cost-efficiency, and wide applicability. Cellulose, an innate polysaccharide, encompasses a suite of advantageous attributes, possessing enhanced surface area, mechanical robustness, and the capacity for functionalization with moieties like carboxyl, amino, and sulfur groups. Driven by its versatility, eco-friendliness, widespread availability, and diverse applications, nanocellulose has generated significant interest from both scientific and industrial communities. This chapter delves into recent strides in producing and deploying nanocellulose from waste biomass and its utilization as biosorbent in waste water treatment. Distinct preparation techniques for NC-based composites, either cellulose nanocrystals or cellulose nanofibrils, produce materials with unique structures and properties that have been extensively explored in environmental remediation. Within this discourse, an all-encompassing exploration of different nanocellulose composites intertwines with the latest strides in environmental applications for waste water treatment. This comprehensive narrative underscores recent advancements and prognosticates the potential ecological dividends stemming from NC-based composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 42(11):1357–1378CrossRef Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 42(11):1357–1378CrossRef
2.
Zurück zum Zitat Tuck CO et al (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699CrossRef Tuck CO et al (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699CrossRef
3.
Zurück zum Zitat Tripathi N et al (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1):35CrossRef Tripathi N et al (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1):35CrossRef
4.
Zurück zum Zitat Spiridon I et al (2016) New opportunities to valorize biomass wastes into green materials. J Clean Prod 133:235–242CrossRef Spiridon I et al (2016) New opportunities to valorize biomass wastes into green materials. J Clean Prod 133:235–242CrossRef
5.
Zurück zum Zitat Fajobi M et al (2022) Investigation of physicochemical characteristics of selected lignocellulose biomass. Sci Rep 12(1):2918CrossRef Fajobi M et al (2022) Investigation of physicochemical characteristics of selected lignocellulose biomass. Sci Rep 12(1):2918CrossRef
6.
Zurück zum Zitat Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277CrossRef Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277CrossRef
7.
Zurück zum Zitat Yu S et al (2021) Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol 5:100077CrossRef Yu S et al (2021) Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol 5:100077CrossRef
8.
Zurück zum Zitat Sartika D et al (2023) High yield production of nanocrystalline cellulose from corn cob through a chemical-mechanical treatment under mild conditions. Int J Biol Macromol 240:124327CrossRef Sartika D et al (2023) High yield production of nanocrystalline cellulose from corn cob through a chemical-mechanical treatment under mild conditions. Int J Biol Macromol 240:124327CrossRef
9.
Zurück zum Zitat Zaini HM, et al (2023) Banana biomass waste: a prospective nanocellulose source and its potential application in food industry–a review. Heliyon Zaini HM, et al (2023) Banana biomass waste: a prospective nanocellulose source and its potential application in food industry–a review. Heliyon
10.
Zurück zum Zitat Lee K-Y (2018) Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press Lee K-Y (2018) Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press
11.
Zurück zum Zitat Kumar S et al (2022) Contemporary nanocellulose-composites: a new paradigm for sensing applications. Carbohyd Polym 298:120052CrossRef Kumar S et al (2022) Contemporary nanocellulose-composites: a new paradigm for sensing applications. Carbohyd Polym 298:120052CrossRef
12.
Zurück zum Zitat Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498CrossRef Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498CrossRef
13.
Zurück zum Zitat Alka SK, Kumari P (2023) Sulfonatocalix[6]arene-decorated magnetite nanomaterials for the removal of organic pollutants from water. Int J Environ Sci Technol 20(4): 4467–4482 Alka SK, Kumari P (2023) Sulfonatocalix[6]arene-decorated magnetite nanomaterials for the removal of organic pollutants from water. Int J Environ Sci Technol 20(4): 4467–4482
14.
Zurück zum Zitat Chatterjee K et al (2023) Effective removal of nitrogenous pesticides from water using functionalized calix[4]arene-decorated magnetite nanoparticles. ChemistrySelect 8(3):e202203426CrossRef Chatterjee K et al (2023) Effective removal of nitrogenous pesticides from water using functionalized calix[4]arene-decorated magnetite nanoparticles. ChemistrySelect 8(3):e202203426CrossRef
15.
Zurück zum Zitat Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27(6):2967–2990CrossRef Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27(6):2967–2990CrossRef
16.
Zurück zum Zitat Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J
17.
Zurück zum Zitat Klemm D, et al (2009) Nanocellulose materials–different cellulose, different functionality. in Macromolecular symposia. Wiley Online Library Klemm D, et al (2009) Nanocellulose materials–different cellulose, different functionality. in Macromolecular symposia. Wiley Online Library
18.
Zurück zum Zitat Marakana PG, Dey A, Saini B (2021) Isolation of nanocellulose from lignocellulosic biomass: synthesis, characterization, modification, and potential applications. J Environ Chem Eng 9(6):106606CrossRef Marakana PG, Dey A, Saini B (2021) Isolation of nanocellulose from lignocellulosic biomass: synthesis, characterization, modification, and potential applications. J Environ Chem Eng 9(6):106606CrossRef
19.
Zurück zum Zitat Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160CrossRef Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160CrossRef
20.
Zurück zum Zitat Zaki M et al (2021) Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour Technol Rep 16:100811CrossRef Zaki M et al (2021) Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour Technol Rep 16:100811CrossRef
21.
Zurück zum Zitat Obi F, Ugwuishiwu B, Nwakaire J (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35(4):957–964-957–964 Obi F, Ugwuishiwu B, Nwakaire J (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35(4):957–964-957–964
22.
Zurück zum Zitat Nehra P, Chauhan RP (2022) Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran Polym J 31(6):771–778CrossRef Nehra P, Chauhan RP (2022) Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran Polym J 31(6):771–778CrossRef
23.
Zurück zum Zitat Zhai S et al (2022) Nanocellulose: a promising nanomaterial for fabricating fluorescent composites. Cellulose 29(13):7011–7035CrossRef Zhai S et al (2022) Nanocellulose: a promising nanomaterial for fabricating fluorescent composites. Cellulose 29(13):7011–7035CrossRef
24.
Zurück zum Zitat Nasir M et al (2017) Nanocellulose: preparation methods and applications. Cellulose-reinforced nanofibre composites. Elsevier, pp 261–276CrossRef Nasir M et al (2017) Nanocellulose: preparation methods and applications. Cellulose-reinforced nanofibre composites. Elsevier, pp 261–276CrossRef
25.
Zurück zum Zitat de Amorim JDP et al (2020) Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869CrossRef de Amorim JDP et al (2020) Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869CrossRef
26.
Zurück zum Zitat Gupta GK, Shukla P (2020) Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front Chem 8:601256CrossRef Gupta GK, Shukla P (2020) Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front Chem 8:601256CrossRef
27.
Zurück zum Zitat Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219CrossRef Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219CrossRef
28.
Zurück zum Zitat Mahardika M et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28CrossRef Mahardika M et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28CrossRef
29.
Zurück zum Zitat Nabeela K et al (2016) TEMPO-oxidized nanocellulose fiber-directed stable aqueous suspension of plasmonic flower-like silver nanoconstructs for ultra-trace detection of analytes. ACS Appl Mater Interfaces 8(43):29242–29251CrossRef Nabeela K et al (2016) TEMPO-oxidized nanocellulose fiber-directed stable aqueous suspension of plasmonic flower-like silver nanoconstructs for ultra-trace detection of analytes. ACS Appl Mater Interfaces 8(43):29242–29251CrossRef
30.
Zurück zum Zitat Ribeiro RSA et al (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19(4):279–291CrossRef Ribeiro RSA et al (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19(4):279–291CrossRef
31.
Zurück zum Zitat Bauli CR et al (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416CrossRef Bauli CR et al (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416CrossRef
32.
Zurück zum Zitat Ximenes E et al (2021) Moving from residual lignocellulosic biomass into high-value products: outcomes from a long-term international cooperation. Biofuels, Bioprod Biorefin 15(2):563–573CrossRef Ximenes E et al (2021) Moving from residual lignocellulosic biomass into high-value products: outcomes from a long-term international cooperation. Biofuels, Bioprod Biorefin 15(2):563–573CrossRef
33.
Zurück zum Zitat Liu X et al (2018) Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose 25:7065–7078CrossRef Liu X et al (2018) Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose 25:7065–7078CrossRef
34.
Zurück zum Zitat Squinca P et al (2020) Nanocellulose production in future biorefineries: an integrated approach using tailor-made enzymes. ACS Sustain Chem Eng 8(5):2277–2286CrossRef Squinca P et al (2020) Nanocellulose production in future biorefineries: an integrated approach using tailor-made enzymes. ACS Sustain Chem Eng 8(5):2277–2286CrossRef
35.
Zurück zum Zitat Abba M, et al (2018) Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnol 12(1):52–56 Abba M, et al (2018) Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnol 12(1):52–56
36.
Zurück zum Zitat Jedrzejczak-Krzepkowska M et al (2016) Bacterial nanocellulose synthesis, recent findings. Bacterial nanocellulose. Elsevier, pp 19–46CrossRef Jedrzejczak-Krzepkowska M et al (2016) Bacterial nanocellulose synthesis, recent findings. Bacterial nanocellulose. Elsevier, pp 19–46CrossRef
37.
Zurück zum Zitat Chandana A et al (2022) Recent developments in bacterial nanocellulose production and its biomedical applications. J Polym Environ 30(10):4040–4067CrossRef Chandana A et al (2022) Recent developments in bacterial nanocellulose production and its biomedical applications. J Polym Environ 30(10):4040–4067CrossRef
38.
Zurück zum Zitat Sharma C, Bhardwaj NK, Pathak P (2022) Rotary disc bioreactor-based approach for bacterial nanocellulose production using Gluconacetobacter xylinus NCIM 2526 strain. Cellulose 29(13):7177–7191CrossRef Sharma C, Bhardwaj NK, Pathak P (2022) Rotary disc bioreactor-based approach for bacterial nanocellulose production using Gluconacetobacter xylinus NCIM 2526 strain. Cellulose 29(13):7177–7191CrossRef
39.
Zurück zum Zitat Barja F (2021) Bacterial nanocellulose production and biomedical applications. J Biomed Res 35(4):310CrossRef Barja F (2021) Bacterial nanocellulose production and biomedical applications. J Biomed Res 35(4):310CrossRef
40.
Zurück zum Zitat Reshmy R et al (2021) Bacterial nanocellulose: engineering, production, and applications. Bioengineered 12(2):11463CrossRef Reshmy R et al (2021) Bacterial nanocellulose: engineering, production, and applications. Bioengineered 12(2):11463CrossRef
41.
Zurück zum Zitat Sakovich GV et al (2017) Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock. Dokl Biochem Biophys 477(1):357–359CrossRef Sakovich GV et al (2017) Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock. Dokl Biochem Biophys 477(1):357–359CrossRef
42.
Zurück zum Zitat Ghasemlou M et al (2021) Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog Polym Sci 119:101418CrossRef Ghasemlou M et al (2021) Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog Polym Sci 119:101418CrossRef
43.
Zurück zum Zitat Teixeira LT et al (2021) Sulfated and carboxylated nanocellulose for Co+2 adsorption. J Market Res 15:434–447 Teixeira LT et al (2021) Sulfated and carboxylated nanocellulose for Co+2 adsorption. J Market Res 15:434–447
44.
Zurück zum Zitat Li W et al (2021) A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol 187:922–930CrossRef Li W et al (2021) A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol 187:922–930CrossRef
45.
Zurück zum Zitat Jin L et al (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456CrossRef Jin L et al (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456CrossRef
46.
Zurück zum Zitat Aoudi B, Boluk Y, Gamal El-Din M (2022) Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Sci Total Environ 843:156903 Aoudi B, Boluk Y, Gamal El-Din M (2022) Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Sci Total Environ 843:156903
47.
Zurück zum Zitat Chu Y et al (2020) Dispersion properties of nanocellulose: a review. Carbohyd Polym 250:116892CrossRef Chu Y et al (2020) Dispersion properties of nanocellulose: a review. Carbohyd Polym 250:116892CrossRef
48.
Zurück zum Zitat Ilyas R, et al (2019) Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline Mater 3–32 Ilyas R, et al (2019) Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline Mater 3–32
49.
Zurück zum Zitat Qiao A et al (2021) Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohyd Polym 272:118471CrossRef Qiao A et al (2021) Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohyd Polym 272:118471CrossRef
50.
Zurück zum Zitat Lan G-X et al (2023) Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose 30(1):39–60CrossRef Lan G-X et al (2023) Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose 30(1):39–60CrossRef
51.
Zurück zum Zitat Anirudhan TS, Rejeena SR (2013) Poly(methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Sep Purif Technol 119:82–93CrossRef Anirudhan TS, Rejeena SR (2013) Poly(methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Sep Purif Technol 119:82–93CrossRef
52.
Zurück zum Zitat Hassan HS et al (2017) Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J Taiwan Inst Chem Eng 78:307–316CrossRef Hassan HS et al (2017) Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J Taiwan Inst Chem Eng 78:307–316CrossRef
53.
Zurück zum Zitat Fijoł N, Aguilar-Sánchez A, Mathew AP (2022) 3D-printable biopolymer-based materials for water treatment: a review. Chem Eng J 430:132964CrossRef Fijoł N, Aguilar-Sánchez A, Mathew AP (2022) 3D-printable biopolymer-based materials for water treatment: a review. Chem Eng J 430:132964CrossRef
54.
Zurück zum Zitat Häkkinen R, Abbott A (2019) Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. Green Chem 21(17):4673–4682CrossRef Häkkinen R, Abbott A (2019) Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. Green Chem 21(17):4673–4682CrossRef
55.
Zurück zum Zitat Jogunola O et al (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohyd Polym 135:341–348CrossRef Jogunola O et al (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohyd Polym 135:341–348CrossRef
56.
Zurück zum Zitat Zhang X et al (2019) Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces 11(50):46714–46725CrossRef Zhang X et al (2019) Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces 11(50):46714–46725CrossRef
57.
Zurück zum Zitat Liu Y et al (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohyd Polym 188:27–36CrossRef Liu Y et al (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohyd Polym 188:27–36CrossRef
58.
Zurück zum Zitat Sun L et al (2021) Recent advances in hydrophobic modification of nanocellulose. Curr Org Chem 25(3):417–436CrossRef Sun L et al (2021) Recent advances in hydrophobic modification of nanocellulose. Curr Org Chem 25(3):417–436CrossRef
59.
Zurück zum Zitat Li J et al (2022) Conjoined-network induced highly tough hydrogels by using copolymer and nano-cellulose for oilfield water plugging. J Ind Eng Chem 109:161–172CrossRef Li J et al (2022) Conjoined-network induced highly tough hydrogels by using copolymer and nano-cellulose for oilfield water plugging. J Ind Eng Chem 109:161–172CrossRef
60.
Zurück zum Zitat Yang J, Xu F, Han C-R (2017) Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: mechanistic insight into morphology and dynamics. Biomacromol 18(3):1019–1028CrossRef Yang J, Xu F, Han C-R (2017) Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: mechanistic insight into morphology and dynamics. Biomacromol 18(3):1019–1028CrossRef
61.
Zurück zum Zitat Way AE et al (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1(8):1001–1006CrossRef Way AE et al (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1(8):1001–1006CrossRef
62.
Zurück zum Zitat Yue Y et al (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohyd Polym 147:155–164CrossRef Yue Y et al (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohyd Polym 147:155–164CrossRef
63.
Zurück zum Zitat Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29(3):423–432CrossRef Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29(3):423–432CrossRef
64.
Zurück zum Zitat Kumar A et al (2020) Three-dimensional carbonaceous aerogels embedded with Rh-SrTiO3 for enhanced hydrogen evolution triggered by efficient charge transfer and light absorption. ACS Appl Energy Mater 3(12):12134–12147CrossRef Kumar A et al (2020) Three-dimensional carbonaceous aerogels embedded with Rh-SrTiO3 for enhanced hydrogen evolution triggered by efficient charge transfer and light absorption. ACS Appl Energy Mater 3(12):12134–12147CrossRef
65.
Zurück zum Zitat Gopakumar DA et al (2020) Nanocellulose based aerogels for varying engineering applications. Encycl Renew Sustain Mater 2:155–165 Gopakumar DA et al (2020) Nanocellulose based aerogels for varying engineering applications. Encycl Renew Sustain Mater 2:155–165
66.
Zurück zum Zitat Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10(6):623CrossRef Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10(6):623CrossRef
67.
Zurück zum Zitat Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7(35):19809–19815CrossRef Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7(35):19809–19815CrossRef
68.
Zurück zum Zitat Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRef Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRef
69.
Zurück zum Zitat Zhou X et al (2021) Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 581:299–306CrossRef Zhou X et al (2021) Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 581:299–306CrossRef
70.
Zurück zum Zitat Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohyd Polym 126:199–207CrossRef Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohyd Polym 126:199–207CrossRef
71.
Zurück zum Zitat Wei J et al (2019) Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J Mater Sci 54(8):6709–6718CrossRef Wei J et al (2019) Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J Mater Sci 54(8):6709–6718CrossRef
72.
Zurück zum Zitat Kumar A et al (2017) Recyclable, bifunctional composites of perovskite type N-CaTiO 3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater Chem Front 1(11):2391–2404CrossRef Kumar A et al (2017) Recyclable, bifunctional composites of perovskite type N-CaTiO 3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater Chem Front 1(11):2391–2404CrossRef
73.
Zurück zum Zitat Kumar A et al (2020) Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets: enhanced photocatalytic performance under sunlight irradiation. ChemPhotoChem 4(6):427–444CrossRef Kumar A et al (2020) Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets: enhanced photocatalytic performance under sunlight irradiation. ChemPhotoChem 4(6):427–444CrossRef
74.
Zurück zum Zitat Kumari N et al (2021) Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies. Mater Lett 302:130455CrossRef Kumari N et al (2021) Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies. Mater Lett 302:130455CrossRef
75.
Zurück zum Zitat Akter M et al (2021) Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7(1):30CrossRef Akter M et al (2021) Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7(1):30CrossRef
76.
Zurück zum Zitat Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A: Math Phys Eng Sci 376(2112):20170047CrossRef Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A: Math Phys Eng Sci 376(2112):20170047CrossRef
77.
Zurück zum Zitat Li K et al (2022) Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. J Mater Sci 57(17):8127–8138CrossRef Li K et al (2022) Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. J Mater Sci 57(17):8127–8138CrossRef
78.
Zurück zum Zitat Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632CrossRef Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632CrossRef
79.
Zurück zum Zitat Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on nanocellulose surfaces. Cellulose 26:249–279CrossRef Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on nanocellulose surfaces. Cellulose 26:249–279CrossRef
80.
Zurück zum Zitat Wang Y et al (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohyd Polym 267:118233CrossRef Wang Y et al (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohyd Polym 267:118233CrossRef
81.
Zurück zum Zitat Musarurwa H, Tavengwa NT (2022) Advances in the application of chitosan-based metal organic frameworks as adsorbents for environmental remediation. Carbohyd Polym 283:119153CrossRef Musarurwa H, Tavengwa NT (2022) Advances in the application of chitosan-based metal organic frameworks as adsorbents for environmental remediation. Carbohyd Polym 283:119153CrossRef
82.
Zurück zum Zitat Kumar A, Kumar S, Krishnan V (2019) Perovskite-based materials for photocatalytic environmental remediation. Nanophotocatalysis and environmental applications: materials and technology. pp 139–165 Kumar A, Kumar S, Krishnan V (2019) Perovskite-based materials for photocatalytic environmental remediation. Nanophotocatalysis and environmental applications: materials and technology. pp 139–165
83.
Zurück zum Zitat Kumar A, Kumar A, Krishnan V (2020) Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal 10(17):10253–10315CrossRef Kumar A, Kumar A, Krishnan V (2020) Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal 10(17):10253–10315CrossRef
84.
Zurück zum Zitat Mishra S et al (2022) A review on heavy metal ion adsorption on synthetic microfiber surface in aquatic environments. Appl Biochem Biotechnol 194(10):4639–4654CrossRef Mishra S et al (2022) A review on heavy metal ion adsorption on synthetic microfiber surface in aquatic environments. Appl Biochem Biotechnol 194(10):4639–4654CrossRef
85.
Zurück zum Zitat Sharma A et al (2022) A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J Polym Environ 30(1):1–18CrossRef Sharma A et al (2022) A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J Polym Environ 30(1):1–18CrossRef
86.
Zurück zum Zitat Pandey A, Kalamdhad A, Sharma YC (2023) Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: a sustainable approach integrating with waste management. Environmental nanotechnology, monitoring and management. p 100791 Pandey A, Kalamdhad A, Sharma YC (2023) Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: a sustainable approach integrating with waste management. Environmental nanotechnology, monitoring and management. p 100791
87.
Zurück zum Zitat Abou-Zeid RE et al (2021) Removal of Cu (II), Pb (II), Mg (II), and Fe (II) by adsorption onto alginate/nanocellulose beads as bio-sorbent. J Renew Mater 9(4):601–613CrossRef Abou-Zeid RE et al (2021) Removal of Cu (II), Pb (II), Mg (II), and Fe (II) by adsorption onto alginate/nanocellulose beads as bio-sorbent. J Renew Mater 9(4):601–613CrossRef
88.
Zurück zum Zitat Alsaiari NS et al (2021) Synthesis, characterization and application of polypyrrole functionalized nanocellulose for the removal of Cr (VI) from aqueous solution. Polymers 13(21):3691CrossRef Alsaiari NS et al (2021) Synthesis, characterization and application of polypyrrole functionalized nanocellulose for the removal of Cr (VI) from aqueous solution. Polymers 13(21):3691CrossRef
89.
Zurück zum Zitat Zhang J et al (2021) Microfibrillated cellulose reinforced poly (vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 138(48):51456CrossRef Zhang J et al (2021) Microfibrillated cellulose reinforced poly (vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 138(48):51456CrossRef
90.
Zurück zum Zitat Yu X et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943CrossRef Yu X et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943CrossRef
91.
Zurück zum Zitat Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotechnol 4(1):46–53CrossRef Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotechnol 4(1):46–53CrossRef
92.
Zurück zum Zitat Wang X et al (2019) Magnetic-controlled aerogels from carboxylated cellulose and MnFe 2 O 4 as a novel adsorbent for removal of Cu (II). Cellulose 26:5051–5063CrossRef Wang X et al (2019) Magnetic-controlled aerogels from carboxylated cellulose and MnFe 2 O 4 as a novel adsorbent for removal of Cu (II). Cellulose 26:5051–5063CrossRef
93.
Zurück zum Zitat Kian LK et al (2022) PBAT/PBS blends membranes filled with nanocrystalline cellulose for heavy metal ion separation. J Polym Environ 30(12):5263–5273CrossRef Kian LK et al (2022) PBAT/PBS blends membranes filled with nanocrystalline cellulose for heavy metal ion separation. J Polym Environ 30(12):5263–5273CrossRef
95.
Zurück zum Zitat Jin L et al (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores Technol 197:348–355CrossRef Jin L et al (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores Technol 197:348–355CrossRef
96.
Zurück zum Zitat Qiao H et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303CrossRef Qiao H et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303CrossRef
97.
Zurück zum Zitat Lu J et al (2016) Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb (II) from aqueous solution. Int J Biol Macromol 93:547–556CrossRef Lu J et al (2016) Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb (II) from aqueous solution. Int J Biol Macromol 93:547–556CrossRef
98.
Zurück zum Zitat Khawaja H et al (2021) Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol 167:23–34CrossRef Khawaja H et al (2021) Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol 167:23–34CrossRef
99.
Zurück zum Zitat Xi C et al (2020) The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions. Carbohyd Polym 237:116129CrossRef Xi C et al (2020) The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions. Carbohyd Polym 237:116129CrossRef
100.
Zurück zum Zitat Goswami R et al (2023) Development of nanocellulose-chitosan-based nanocomposite for adsorption of malachite green: isotherms and kinetic study. Water Air Soil Pollut 234(5):315CrossRef Goswami R et al (2023) Development of nanocellulose-chitosan-based nanocomposite for adsorption of malachite green: isotherms and kinetic study. Water Air Soil Pollut 234(5):315CrossRef
101.
Zurück zum Zitat Hou C et al (2020) Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohyd Polym 247:116731CrossRef Hou C et al (2020) Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohyd Polym 247:116731CrossRef
102.
Zurück zum Zitat Song K et al (2017) Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Biores Technol 232:254–262CrossRef Song K et al (2017) Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Biores Technol 232:254–262CrossRef
103.
Zurück zum Zitat Mo L et al (2021) Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J Hazard Mater 415:125612CrossRef Mo L et al (2021) Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J Hazard Mater 415:125612CrossRef
104.
Zurück zum Zitat Hong H-J et al (2021) Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere 278:130288CrossRef Hong H-J et al (2021) Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere 278:130288CrossRef
105.
Zurück zum Zitat Vijayan JG et al (2023) Synthesis of bagasse nanocellulose-filled composite polyurethane xerogel for the efficient adsorption of Rhodamine-B dye from aqueous solution: investigation of adsorption parameters. Eur Phys J E 46(4):23CrossRef Vijayan JG et al (2023) Synthesis of bagasse nanocellulose-filled composite polyurethane xerogel for the efficient adsorption of Rhodamine-B dye from aqueous solution: investigation of adsorption parameters. Eur Phys J E 46(4):23CrossRef
106.
Zurück zum Zitat Nguyen VT et al (2023) Antibiotics tetracycline adsorption and flame-retardant capacity of eco-friendly aerogel-based nanocellulose, graphene oxide, polyvinyl alcohol, and sodium bicarbonate. J Environ Chem Eng 11(2):109523CrossRef Nguyen VT et al (2023) Antibiotics tetracycline adsorption and flame-retardant capacity of eco-friendly aerogel-based nanocellulose, graphene oxide, polyvinyl alcohol, and sodium bicarbonate. J Environ Chem Eng 11(2):109523CrossRef
107.
Zurück zum Zitat Liu X et al (2018) Hydrothermal synthesis of cellulose nanocrystal-grafted-acrylic acid aerogels with superabsorbent properties. Polymers 10(10):1168CrossRef Liu X et al (2018) Hydrothermal synthesis of cellulose nanocrystal-grafted-acrylic acid aerogels with superabsorbent properties. Polymers 10(10):1168CrossRef
108.
Zurück zum Zitat Mo L et al (2022) Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere 291:132887CrossRef Mo L et al (2022) Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere 291:132887CrossRef
109.
Zurück zum Zitat Rong N et al (2021) Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol 274:119120CrossRef Rong N et al (2021) Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol 274:119120CrossRef
110.
Zurück zum Zitat Luo M et al (2021) Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chin Chem Lett 32(6):2091–2096CrossRef Luo M et al (2021) Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chin Chem Lett 32(6):2091–2096CrossRef
111.
Zurück zum Zitat Seo JY et al (2021) Robust nanocellulose/metal–organic framework aerogel composites: superior performance for static and continuous disposal of chemical warfare agent simulants. ACS Appl Mater Interfaces 13(28):33516–33523CrossRef Seo JY et al (2021) Robust nanocellulose/metal–organic framework aerogel composites: superior performance for static and continuous disposal of chemical warfare agent simulants. ACS Appl Mater Interfaces 13(28):33516–33523CrossRef
112.
Zurück zum Zitat Hu D et al (2019) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J Hazard Mater 369:483–493CrossRef Hu D et al (2019) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J Hazard Mater 369:483–493CrossRef
113.
Zurück zum Zitat Hu Z-H et al (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromol 108:149–157CrossRef Hu Z-H et al (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromol 108:149–157CrossRef
114.
Zurück zum Zitat Xu X, Ouyang X-K, Yang L-Y (2021) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq 322:114523CrossRef Xu X, Ouyang X-K, Yang L-Y (2021) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq 322:114523CrossRef
115.
Zurück zum Zitat Melo BC et al (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohyd Polym 181:358–367CrossRef Melo BC et al (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohyd Polym 181:358–367CrossRef
116.
Zurück zum Zitat Putro JN et al (2019) Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag 12:100260 Putro JN et al (2019) Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag 12:100260
117.
Zurück zum Zitat Zhao Q et al (2022) Hierarchical porous nanocellulose aerogels loaded with metal-organic framework particles for the adsorption application of heterocyclic aromatic amines. ACS Appl Mater Interfaces 14(25):29131–29143CrossRef Zhao Q et al (2022) Hierarchical porous nanocellulose aerogels loaded with metal-organic framework particles for the adsorption application of heterocyclic aromatic amines. ACS Appl Mater Interfaces 14(25):29131–29143CrossRef
118.
Zurück zum Zitat Huang X et al (2023) A comparative study of mechanism and performance of anionic and cationic dialdehyde nanocelluloses for dye adsorption and separation. ACS Omega 8(9):8634–8649CrossRef Huang X et al (2023) A comparative study of mechanism and performance of anionic and cationic dialdehyde nanocelluloses for dye adsorption and separation. ACS Omega 8(9):8634–8649CrossRef
119.
Zurück zum Zitat Zeng J et al (2022) Ultrahigh adsorption of toxic substances from cigarette smoke using nanocellulose-SiO2 hybrid aerogels. ACS Appl Polym Mater 4(2):1173–1182CrossRef Zeng J et al (2022) Ultrahigh adsorption of toxic substances from cigarette smoke using nanocellulose-SiO2 hybrid aerogels. ACS Appl Polym Mater 4(2):1173–1182CrossRef
120.
Zurück zum Zitat Lorevice MV et al (2023) Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chem Eng J 462:142166CrossRef Lorevice MV et al (2023) Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chem Eng J 462:142166CrossRef
Metadaten
Titel
Valorizing Cellulosic Biomass Waste into Valuable Nano-biosorbents
verfasst von
Sanjay Kumar
Ashish Kumar
Akshay Thakur
Pratibha Kumari
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0823-9_12