Skip to main content
Top
Published in:
Cover of the book

2024 | OriginalPaper | Chapter

1. Introduction to Electrochemical Energy Storage Technologies

Authors : Junaid Ahmad, Zia Ur Rehman, Muhammad Bilal, Faheem K. Butt

Published in: Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy storage and conversion technologies depending upon sustainable energy sources have gained much attention due to continuous increasing demand of energy for social and economic growth. Electrochemical energy storage (EES) technologies, especially secondary batteries and electrochemical capacitors (ECs), are considered as potential technologies which have been successfully utilized in electronic devices, immobilized storage gadgets, and pure and hybrid electrical vehicles effectively due to their features, like remarkable energy and power density, excellent round-trip ability, long life cycle, cheap, and environment friendly. Among the developed batteries, Li-ion batteries are widely used at a large scale. Among secondary batteries, Li-ion, lithium-sulfur, and sodium-ion batteries have gained much attention of researchers across the globe and could deliver large-scale electric energy in the future. This chapter describes a short introduction to energy storage mechanisms and different types of EES devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Butt FK et al (2020) Graphitic carbon nitride/metal oxides nanocomposites and their applications in engineering. In: Composite materials: applications in engineering, biomedicine and food science. Springer, Cham, pp 231–265CrossRef Butt FK et al (2020) Graphitic carbon nitride/metal oxides nanocomposites and their applications in engineering. In: Composite materials: applications in engineering, biomedicine and food science. Springer, Cham, pp 231–265CrossRef
go back to reference Dudley B (2018) BP statistical review of world energy. BP Statistical Review, London. Accessed Aug 2018. 6, p 00116 Dudley B (2018) BP statistical review of world energy. BP Statistical Review, London. Accessed Aug 2018. 6, p 00116
go back to reference Endo M et al (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39(9):1287–1297CrossRef Endo M et al (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39(9):1287–1297CrossRef
go back to reference Gao B et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327(1–2):69–75CrossRef Gao B et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327(1–2):69–75CrossRef
go back to reference Gulzar U et al (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4(43):16771–16800CrossRef Gulzar U et al (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4(43):16771–16800CrossRef
go back to reference Ji L, Zhang XJN (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705CrossRefPubMed Ji L, Zhang XJN (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705CrossRefPubMed
go back to reference Jun S et al (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRef Jun S et al (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRef
go back to reference Kim C et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95CrossRefPubMed Kim C et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95CrossRefPubMed
go back to reference Leroux F et al (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sources 81:317–322 Leroux F et al (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sources 81:317–322
go back to reference Liang M, Zhi LJ (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878CrossRef Liang M, Zhi LJ (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878CrossRef
go back to reference Oberlin A, Endo M, Koyama TJC (1976) High resolution electron microscope observations of graphitized carbon fibers. Carbon 14(2):133–135CrossRef Oberlin A, Endo M, Koyama TJC (1976) High resolution electron microscope observations of graphitized carbon fibers. Carbon 14(2):133–135CrossRef
go back to reference Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27CrossRef Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27CrossRef
go back to reference Sagadevan S et al (2021) Fundamental electrochemical energy storage systems. In: Advances in supercapacitor and supercapattery. Elsevier, Amsterdam, pp 27–43CrossRef Sagadevan S et al (2021) Fundamental electrochemical energy storage systems. In: Advances in supercapacitor and supercapattery. Elsevier, Amsterdam, pp 27–43CrossRef
go back to reference Sotowa C et al (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. ChemSusChem 1(11):911–915CrossRefPubMed Sotowa C et al (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. ChemSusChem 1(11):911–915CrossRefPubMed
go back to reference Tessonnier J-P et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47(7):1779–1798CrossRef Tessonnier J-P et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47(7):1779–1798CrossRef
go back to reference Wang Q et al (2001) Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique. J Electrochem Soc 148(7):A737CrossRef Wang Q et al (2001) Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique. J Electrochem Soc 148(7):A737CrossRef
go back to reference Wang G et al (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053 Wang G et al (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053
go back to reference Xin S et al (2019) Introduction to electrochemical energy storage. In: Nanostructures and nanomaterials for batteries. Springer, Singapore, pp 1–28 Xin S et al (2019) Introduction to electrochemical energy storage. In: Nanostructures and nanomaterials for batteries. Springer, Singapore, pp 1–28
go back to reference Yoon S-H et al (2004) Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 42(1):21–32CrossRef Yoon S-H et al (2004) Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 42(1):21–32CrossRef
go back to reference Zhu AL, Wilkinson DP, Zhang X, Xing Y et al (2016) Zinc regeneration in rechargeable zinc-air fuel cells—a review. J Energy Storage 8:35–50CrossRef Zhu AL, Wilkinson DP, Zhang X, Xing Y et al (2016) Zinc regeneration in rechargeable zinc-air fuel cells—a review. J Energy Storage 8:35–50CrossRef
Metadata
Title
Introduction to Electrochemical Energy Storage Technologies
Authors
Junaid Ahmad
Zia Ur Rehman
Muhammad Bilal
Faheem K. Butt
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2796-8_1