Skip to main content

06.05.2024 | Review

A Review on Effect of Cooling Rate on Metallurgical, Mechanical, Geometrical Characteristics and Defects of Laser Cladding Process

verfasst von: Amir Mohammad Sedighi, Seyedeh Fatemeh Nabavi, Anooshiravan Farshidianfar

Erschienen in: Lasers in Manufacturing and Materials Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past decade, laser cladding has made significant strides, proving highly effective in cladding applications due to its efficiency. The process involves manipulating a base plate and powder, and adjustments to these components yield noticeable variations in outcomes. Parameters such as scan speed, laser power, and feeding rate demonstrate unpredictable behaviors, influencing metallurgical results. For instance, modifying the feeding rate can lead to diverse metallurgical granulation sizes. Introducing a mediating parameter, cooling rate (CR), addresses this variability, impacting metallurgical, mechanical, geometrical properties, and defects. CR is customized for each laser cladding process to estimate properties accurately. Despite this, comprehensive summaries on CR’s influence on laser cladding properties are scarce. This study aims to fill this gap by synthesizing numerous articles in the field, offering a consolidated analysis. Moreover, comparisons with related laser processes like welding and additive manufacturing enhance comprehension. Given limited resources on laser cladding’s cooling rate, relevant articles from similar processes are also reviewed. By consolidating existing knowledge, this study aims to comprehensively elucidate CR’s impact on laser cladding properties, thus contributing to process optimization and advancement. Understanding CR’s role is pivotal in achieving desired material characteristics and properties in laser cladding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pant, P., Chatterjee, D., Nandi, T., Samanta, S.K., Lohar, A.K., Changdar, A.: Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–10 (2019)CrossRef Pant, P., Chatterjee, D., Nandi, T., Samanta, S.K., Lohar, A.K., Changdar, A.: Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–10 (2019)CrossRef
2.
Zurück zum Zitat Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Braz. Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Braz. Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef
3.
Zurück zum Zitat Pant, P., Chatterjee, D., Samanta, S.K., Lohar, A.K.: Experimental and numerical analysis of the powder flow in a multi-channel coaxial nozzle of a direct metal deposition system. J. Manuf. Sci. Eng. 143(7), 071003 (2021)CrossRef Pant, P., Chatterjee, D., Samanta, S.K., Lohar, A.K.: Experimental and numerical analysis of the powder flow in a multi-channel coaxial nozzle of a direct metal deposition system. J. Manuf. Sci. Eng. 143(7), 071003 (2021)CrossRef
4.
Zurück zum Zitat Awd, M., Tenkamp, J., Hirtler, M., Siddique, S., Bambach, M., Walther, F.: Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials 11(1), 17 (2017)CrossRef Awd, M., Tenkamp, J., Hirtler, M., Siddique, S., Bambach, M., Walther, F.: Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials 11(1), 17 (2017)CrossRef
5.
Zurück zum Zitat Katayama, S.: Handbook of Laser Welding Technologies, 1st edn. Elsevier (2013) Katayama, S.: Handbook of Laser Welding Technologies, 1st edn. Elsevier (2013)
6.
Zurück zum Zitat Zhang, Y., Lu, J., Luo, K., Zhang, Y., Lu, J., Luo, K.: Mechanical properties of AISI 304 SS and its welded joint subjected to laser shock processing. Laser Shock Processing of FCC Metals: Mechanical Properties and Micro-structural Strengthening Mechanism, pp. 113–135, (2013) Zhang, Y., Lu, J., Luo, K., Zhang, Y., Lu, J., Luo, K.: Mechanical properties of AISI 304 SS and its welded joint subjected to laser shock processing. Laser Shock Processing of FCC Metals: Mechanical Properties and Micro-structural Strengthening Mechanism, pp. 113–135, (2013)
7.
Zurück zum Zitat Deev, V., et al.: The influence of the melt cooling rate on shrinkage behaviour during solidification of aluminum alloys. IOP Conf. Ser.: Mater. Sci. Eng. 537(2), 022080. (2019). IOP Publishing Deev, V., et al.: The influence of the melt cooling rate on shrinkage behaviour during solidification of aluminum alloys. IOP Conf. Ser.: Mater. Sci. Eng. 537(2), 022080. (2019). IOP Publishing
8.
Zurück zum Zitat Bendoumi, A., et al.: The effect of temperature distribution and cooling rate on microstructure and microhardness of laser re-melted and laser-borided carbon steels with various carbon concentrations. Surf. Coat. Technol. 387, 125541 (2020)CrossRef Bendoumi, A., et al.: The effect of temperature distribution and cooling rate on microstructure and microhardness of laser re-melted and laser-borided carbon steels with various carbon concentrations. Surf. Coat. Technol. 387, 125541 (2020)CrossRef
9.
Zurück zum Zitat Das, B., Gopinath, M., Nath, A.K., Bandyopadhyay, P.: Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating. J. Eur. Ceram. Soc. 38(11), 3932–3944 (2018)CrossRef Das, B., Gopinath, M., Nath, A.K., Bandyopadhyay, P.: Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating. J. Eur. Ceram. Soc. 38(11), 3932–3944 (2018)CrossRef
10.
Zurück zum Zitat Sprague, E., Mazumder, J., Misra, A.: Cooling rate and dendrite spacing control in direct metal deposition printed Cu-Fe alloys. J. Laser Appl. 34(2), 022013 (2022)CrossRef Sprague, E., Mazumder, J., Misra, A.: Cooling rate and dendrite spacing control in direct metal deposition printed Cu-Fe alloys. J. Laser Appl. 34(2), 022013 (2022)CrossRef
11.
Zurück zum Zitat Selicati, V., Mazzarisi, M., Lovecchio, F.S., Guerra, M.G., Campanelli, S.L., Dassisti, M.: A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process. Int. J. Adv. Manuf. Technol. 118(11), 3641–3656 (2022)CrossRef Selicati, V., Mazzarisi, M., Lovecchio, F.S., Guerra, M.G., Campanelli, S.L., Dassisti, M.: A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process. Int. J. Adv. Manuf. Technol. 118(11), 3641–3656 (2022)CrossRef
12.
Zurück zum Zitat Xiao, H., et al.: Influence of molten-pool cooling rate on solidification structure and mechanical property of laser additive manufactured inconel 718. J. Mater. Res. Technol. 19, 4404–4416 (2022)CrossRef Xiao, H., et al.: Influence of molten-pool cooling rate on solidification structure and mechanical property of laser additive manufactured inconel 718. J. Mater. Res. Technol. 19, 4404–4416 (2022)CrossRef
13.
Zurück zum Zitat Xie, L., et al.: Effect of Dynamic Preheating on the Thermal Behavior and Mechanical Properties of Laser-Welded Joints. Materials 15(17), 6159 (2022)CrossRef Xie, L., et al.: Effect of Dynamic Preheating on the Thermal Behavior and Mechanical Properties of Laser-Welded Joints. Materials 15(17), 6159 (2022)CrossRef
14.
Zurück zum Zitat Yuan, W., Li, R., Chen, Z., Gu, J., Tian, Y.: A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surf. Coat. Technol. 405, 126582 (2021)CrossRef Yuan, W., Li, R., Chen, Z., Gu, J., Tian, Y.: A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surf. Coat. Technol. 405, 126582 (2021)CrossRef
15.
Zurück zum Zitat Xiong, W., et al.: Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater. Design 170, 107697 (2019)CrossRef Xiong, W., et al.: Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater. Design 170, 107697 (2019)CrossRef
16.
Zurück zum Zitat Lamberson, L.E.: Fatigue and fracture of thin metallic foils with aerospace applications. Georgia Institute of Technology, Master Thesis, Georgia Institute of Technology (2006) Lamberson, L.E.: Fatigue and fracture of thin metallic foils with aerospace applications. Georgia Institute of Technology, Master Thesis, Georgia Institute of Technology (2006)
17.
Zurück zum Zitat Vemanaboina, H., et al.: Mechanical and metallurgical properties of CO2 laser Beam INCONEL 625 welded joints. Appl. Sci. 11(15), 7002 (2021)CrossRef Vemanaboina, H., et al.: Mechanical and metallurgical properties of CO2 laser Beam INCONEL 625 welded joints. Appl. Sci. 11(15), 7002 (2021)CrossRef
18.
Zurück zum Zitat Zagade, P., Gautham, B., De, A., DebRoy, T.: Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit. Manuf. 46, 102222 (2021) Zagade, P., Gautham, B., De, A., DebRoy, T.: Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit. Manuf. 46, 102222 (2021)
19.
Zurück zum Zitat Zhang, Z., et al.: The role of the pulsed-wave laser characteristics on restraining hot cracking in laser cladding non-weldable nickel-based superalloy. Mater. Design 198, 109346 (2021)CrossRef Zhang, Z., et al.: The role of the pulsed-wave laser characteristics on restraining hot cracking in laser cladding non-weldable nickel-based superalloy. Mater. Design 198, 109346 (2021)CrossRef
20.
Zurück zum Zitat Siddiqui, A.A., Dubey, A.K.: Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 134, 106619 (2021)CrossRef Siddiqui, A.A., Dubey, A.K.: Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 134, 106619 (2021)CrossRef
21.
Zurück zum Zitat Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef
22.
Zurück zum Zitat Zhou, W., Aprilia, A., Mark, C.K.: Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 11(7), 1127 (2021)CrossRef Zhou, W., Aprilia, A., Mark, C.K.: Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 11(7), 1127 (2021)CrossRef
23.
Zurück zum Zitat Zhang, L., Li, Y., Zhang, S., Zhang, Q.: Selective laser melting of IN738 superalloy with a low mn + Si content: Effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties. Mater. Sci. Eng.: A 826, 141985 (2021)CrossRef Zhang, L., Li, Y., Zhang, S., Zhang, Q.: Selective laser melting of IN738 superalloy with a low mn + Si content: Effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties. Mater. Sci. Eng.: A 826, 141985 (2021)CrossRef
24.
Zurück zum Zitat Muvvala, G., Mullick, S., Nath, A.K.: Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf. Coat. Technol. 399, 126100 (2020)CrossRef Muvvala, G., Mullick, S., Nath, A.K.: Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf. Coat. Technol. 399, 126100 (2020)CrossRef
25.
Zurück zum Zitat Xu, R., Li, R., Yuan, T., Niu, P., Wang, M., Lin, Z.: Microstructure, metallurgical defects and hardness of Al–Cu–Mg–Li–Zr alloy additively manufactured by selective laser melting. J. Alloys Compd. 835, 155372 (2020)CrossRef Xu, R., Li, R., Yuan, T., Niu, P., Wang, M., Lin, Z.: Microstructure, metallurgical defects and hardness of Al–Cu–Mg–Li–Zr alloy additively manufactured by selective laser melting. J. Alloys Compd. 835, 155372 (2020)CrossRef
26.
Zurück zum Zitat Zhang, J., et al.: Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 1(4), 100035 (2022)MathSciNetCrossRef Zhang, J., et al.: Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 1(4), 100035 (2022)MathSciNetCrossRef
27.
Zurück zum Zitat Kumar, K.S.: Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater. Sci. 6, 821–834 (2014)CrossRef Kumar, K.S.: Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater. Sci. 6, 821–834 (2014)CrossRef
28.
Zurück zum Zitat Gilath, I., Signamarcheix, J., Bensussan, P.: A comparison of methods for estimating the weld-metal cooling rate in laser welds. J. Mater. Sci. 29, 3358–3362 (1994)CrossRef Gilath, I., Signamarcheix, J., Bensussan, P.: A comparison of methods for estimating the weld-metal cooling rate in laser welds. J. Mater. Sci. 29, 3358–3362 (1994)CrossRef
29.
Zurück zum Zitat Shao, J., Yu, G., He, X., Li, S., Chen, R., Zhao, Y.: Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol. 119, 105662 (2019)CrossRef Shao, J., Yu, G., He, X., Li, S., Chen, R., Zhao, Y.: Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol. 119, 105662 (2019)CrossRef
30.
Zurück zum Zitat Song, J., Chew, Y., Jiao, L., Yao, X., Moon, S.K., Bi, G.: Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Addit. Manuf. 24, 543–551 (2018) Song, J., Chew, Y., Jiao, L., Yao, X., Moon, S.K., Bi, G.: Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Addit. Manuf. 24, 543–551 (2018)
31.
Zurück zum Zitat Pauly, S., Wang, P., Kühn, U., Kosiba, K.: Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit. Manuf. 22, 753–757 (2018) Pauly, S., Wang, P., Kühn, U., Kosiba, K.: Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit. Manuf. 22, 753–757 (2018)
32.
Zurück zum Zitat Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating. Metall. Mater. Trans. A 44, 5513–5521 (2013)CrossRef Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating. Metall. Mater. Trans. A 44, 5513–5521 (2013)CrossRef
33.
Zurück zum Zitat Emamian, A., Alimardani, M., Khajepour, A.: Effect of cooling rate and laser process parameters on additive manufactured Fe–Ti–C metal matrix composites microstructure and carbide morphology. J. Manuf. Process. 16(4), 511–517 (2014)CrossRef Emamian, A., Alimardani, M., Khajepour, A.: Effect of cooling rate and laser process parameters on additive manufactured Fe–Ti–C metal matrix composites microstructure and carbide morphology. J. Manuf. Process. 16(4), 511–517 (2014)CrossRef
34.
Zurück zum Zitat Letenneur, M., Kreitcberg, A., Brailovski, V.: The average grain size and grain aspect ratio in metal laser powder bed fusion: Modeling and experiment. J. Manuf. Mater. Process. 4(1), 25 (2020) Letenneur, M., Kreitcberg, A., Brailovski, V.: The average grain size and grain aspect ratio in metal laser powder bed fusion: Modeling and experiment. J. Manuf. Mater. Process. 4(1), 25 (2020)
35.
Zurück zum Zitat Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using nd: YAG laser. Opt. Lasers Eng. 51(6), 681–695 (2013)CrossRef Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using nd: YAG laser. Opt. Lasers Eng. 51(6), 681–695 (2013)CrossRef
36.
Zurück zum Zitat Liu, H., et al.: Finite element analysis of effects of dynamic preheating on thermal behavior of multi-track and multi-layer laser cladding. Optik 228, 166194 (2021)CrossRef Liu, H., et al.: Finite element analysis of effects of dynamic preheating on thermal behavior of multi-track and multi-layer laser cladding. Optik 228, 166194 (2021)CrossRef
37.
Zurück zum Zitat Tran, H.-S., et al.: 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations. Mater. Design 128, 130–142 (2017)CrossRef Tran, H.-S., et al.: 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations. Mater. Design 128, 130–142 (2017)CrossRef
38.
Zurück zum Zitat Nie, P., Ojo, O., Li, Z.: Modeling analysis of laser cladding of a nickel-based superalloy. Surf. Coat. Technol. 258, 1048–1059 (2014)CrossRef Nie, P., Ojo, O., Li, Z.: Modeling analysis of laser cladding of a nickel-based superalloy. Surf. Coat. Technol. 258, 1048–1059 (2014)CrossRef
39.
Zurück zum Zitat Gouge, M.F., Heigel, J.C., Michaleris, P., Palmer, T.A.: Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 79, 307–320 (2015)CrossRef Gouge, M.F., Heigel, J.C., Michaleris, P., Palmer, T.A.: Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 79, 307–320 (2015)CrossRef
40.
Zurück zum Zitat Darabi, R., Ferreira, A., Azinpour, E., de Sa, J.C., Reis, A.: Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. Int. J. Adv. Manuf. Technol. 119(5), 3975–3993 (2022)CrossRef Darabi, R., Ferreira, A., Azinpour, E., de Sa, J.C., Reis, A.: Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. Int. J. Adv. Manuf. Technol. 119(5), 3975–3993 (2022)CrossRef
41.
Zurück zum Zitat Wang, Y., Zhou, J., Zhang, T., Li, P., Zhu, H., Meng, X.: Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings 13(2), 432 (2023)CrossRef Wang, Y., Zhou, J., Zhang, T., Li, P., Zhu, H., Meng, X.: Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings 13(2), 432 (2023)CrossRef
42.
Zurück zum Zitat Papazoglou, E., Karkalos, N., Markopoulos, A.: A comprehensive study on thermal modeling of SLM process under conduction mode using FEM. Int. J. Adv. Manuf. Technol. 111(9), 2939–2955 (2020)CrossRef Papazoglou, E., Karkalos, N., Markopoulos, A.: A comprehensive study on thermal modeling of SLM process under conduction mode using FEM. Int. J. Adv. Manuf. Technol. 111(9), 2939–2955 (2020)CrossRef
43.
Zurück zum Zitat Lin, Y., Lüthi, C., Afrasiabi, M., Bambach, M.: Enhanced heat source modeling in particle-based laser manufacturing simulations with ray tracing. Int. J. Heat Mass Transf. 214, 124378 (2023)CrossRef Lin, Y., Lüthi, C., Afrasiabi, M., Bambach, M.: Enhanced heat source modeling in particle-based laser manufacturing simulations with ray tracing. Int. J. Heat Mass Transf. 214, 124378 (2023)CrossRef
44.
Zurück zum Zitat Devesse, W., De Baere, D., Guillaume, P.: Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing. J. Laser Appl., 27(S2), (2015) Devesse, W., De Baere, D., Guillaume, P.: Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing. J. Laser Appl., 27(S2), (2015)
45.
Zurück zum Zitat Srisungsitthisunti, P., Kaewprachum, B., Yang, Z., Gao, G.: Real-time quality monitoring of laser cladding process on rail steel by an infrared camera. Metals 12(5), 825 (2022)CrossRef Srisungsitthisunti, P., Kaewprachum, B., Yang, Z., Gao, G.: Real-time quality monitoring of laser cladding process on rail steel by an infrared camera. Metals 12(5), 825 (2022)CrossRef
46.
Zurück zum Zitat Yan, Z., et al.: Effect of thermal characteristics on distortion in laser cladding of AISI 316L. J. Manuf. Process. 44, 309–318 (2019)CrossRef Yan, Z., et al.: Effect of thermal characteristics on distortion in laser cladding of AISI 316L. J. Manuf. Process. 44, 309–318 (2019)CrossRef
47.
Zurück zum Zitat Doubenskaia, M., Pavlov, M., Grigoriev, S., Smurov, I.: Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 220, 244–247 (2013)CrossRef Doubenskaia, M., Pavlov, M., Grigoriev, S., Smurov, I.: Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 220, 244–247 (2013)CrossRef
48.
Zurück zum Zitat D’Accardi, E., et al.: Online monitoring of direct laser metal deposition process by means of infrared thermography. Prog. Addit. Manuf. 1–19 (2023) D’Accardi, E., et al.: Online monitoring of direct laser metal deposition process by means of infrared thermography. Prog. Addit. Manuf. 1–19 (2023)
49.
Zurück zum Zitat Liu, H., Li, M., Qin, X., Huang, S., Hong, F.: Numerical simulation and experimental analysis of wide-beam laser cladding. Int. J. Adv. Manuf. Technol. 100, 237–249 (2019)CrossRef Liu, H., Li, M., Qin, X., Huang, S., Hong, F.: Numerical simulation and experimental analysis of wide-beam laser cladding. Int. J. Adv. Manuf. Technol. 100, 237–249 (2019)CrossRef
50.
Zurück zum Zitat Muvvala, G., Karmakar, D.P., Nath, A.K.: In-process detection of microstructural changes in laser cladding of in-situ inconel 718/TiC metal matrix composite coating. J. Alloys Compd. 740, 545–558 (2018)CrossRef Muvvala, G., Karmakar, D.P., Nath, A.K.: In-process detection of microstructural changes in laser cladding of in-situ inconel 718/TiC metal matrix composite coating. J. Alloys Compd. 740, 545–558 (2018)CrossRef
51.
Zurück zum Zitat Khan, M., Maurya, K., Thawari, N., Gupta, T.: Temperature monitoring in laser cladding process. In: IOP Conference Series: Materials Science and Engineering, vol. 455, no. 1, p. 012129. IOP Publishing (2018) Khan, M., Maurya, K., Thawari, N., Gupta, T.: Temperature monitoring in laser cladding process. In: IOP Conference Series: Materials Science and Engineering, vol. 455, no. 1, p. 012129. IOP Publishing (2018)
52.
Zurück zum Zitat Mazzarisi, M., Campanelli, S.L., Angelastro, A., Palano, F., Dassisti, M.: In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography. Int. J. Adv. Manuf. Technol. 112, 157–173 (2021)CrossRef Mazzarisi, M., Campanelli, S.L., Angelastro, A., Palano, F., Dassisti, M.: In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography. Int. J. Adv. Manuf. Technol. 112, 157–173 (2021)CrossRef
53.
Zurück zum Zitat Mazzarisi, M., Angelastro, A., Latte, M., Colucci, T., Palano, F., Campanelli, S.L.: Thermal monitoring of laser metal deposition strategies using infrared thermography. J. Manuf. Process. 85, 594–611 (2023)CrossRef Mazzarisi, M., Angelastro, A., Latte, M., Colucci, T., Palano, F., Campanelli, S.L.: Thermal monitoring of laser metal deposition strategies using infrared thermography. J. Manuf. Process. 85, 594–611 (2023)CrossRef
54.
Zurück zum Zitat Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef
55.
Zurück zum Zitat Farshidianfar, M.H., Khajepour, A., Gerlich, A.P.: Effect of real-time cooling rate on microstructure in laser additive manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef Farshidianfar, M.H., Khajepour, A., Gerlich, A.P.: Effect of real-time cooling rate on microstructure in laser additive manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef
56.
Zurück zum Zitat Raza, M.R., Ahmad, F., Omar, M., German, R.: Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316L stainless steel. J. Mater. Process. Technol. 212(1), 164–170 (2012)CrossRef Raza, M.R., Ahmad, F., Omar, M., German, R.: Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316L stainless steel. J. Mater. Process. Technol. 212(1), 164–170 (2012)CrossRef
57.
Zurück zum Zitat Song, L., Mazumder, J.: Feedback control of melt pool temperature during laser cladding process. IEEE Trans. Control Syst. Technol. 19(6), 1349–1356 (2010)CrossRef Song, L., Mazumder, J.: Feedback control of melt pool temperature during laser cladding process. IEEE Trans. Control Syst. Technol. 19(6), 1349–1356 (2010)CrossRef
58.
Zurück zum Zitat Farshidianfar, M.H.: Real-time closed-loop control of microstructure and geometry in laser materials processing, PhD Thesis, University of Waterloo (2017) Farshidianfar, M.H.: Real-time closed-loop control of microstructure and geometry in laser materials processing, PhD Thesis, University of Waterloo (2017)
59.
Zurück zum Zitat Smoqi, Z., et al.: Closed-loop control of meltpool temperature in directed energy deposition. Mater. Design 215, 110508 (2022)CrossRef Smoqi, Z., et al.: Closed-loop control of meltpool temperature in directed energy deposition. Mater. Design 215, 110508 (2022)CrossRef
60.
Zurück zum Zitat Khamidullin, B., Tsivilskiy, I., Gorunov, A., Gilmutdinov, A.K.: Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surf. Coat. Technol. 364, 430–443 (2019)CrossRef Khamidullin, B., Tsivilskiy, I., Gorunov, A., Gilmutdinov, A.K.: Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surf. Coat. Technol. 364, 430–443 (2019)CrossRef
61.
Zurück zum Zitat Moeinfar, K., Khodabakhshi, F., Kashani-Bozorg, S., Mohammadi, M., Gerlich, A.: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 16, 1029–1068 (2022)CrossRef Moeinfar, K., Khodabakhshi, F., Kashani-Bozorg, S., Mohammadi, M., Gerlich, A.: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 16, 1029–1068 (2022)CrossRef
62.
Zurück zum Zitat Ge, J., Yuan, B., Zhao, L., Yan, M., Chen, W., Zhang, L.: Effect of volume energy density on selective laser melting NiTi shape memory alloys: Microstructural evolution, mechanical and functional properties. J. Mater. Res. Technol. 20, 2872–2888 (2022)CrossRef Ge, J., Yuan, B., Zhao, L., Yan, M., Chen, W., Zhang, L.: Effect of volume energy density on selective laser melting NiTi shape memory alloys: Microstructural evolution, mechanical and functional properties. J. Mater. Res. Technol. 20, 2872–2888 (2022)CrossRef
63.
Zurück zum Zitat Chen, S., Zhan, X., Zhao, Y., Wu, Y., Liu, D.: Influence of laser power on grain size and tensile strength of 5a90 Al–Li alloy t-joint fabricated by dual laser-beam bilateral synchronous welding. Met. Mater. Int. 27, 1671–1685 (2021)CrossRef Chen, S., Zhan, X., Zhao, Y., Wu, Y., Liu, D.: Influence of laser power on grain size and tensile strength of 5a90 Al–Li alloy t-joint fabricated by dual laser-beam bilateral synchronous welding. Met. Mater. Int. 27, 1671–1685 (2021)CrossRef
64.
Zurück zum Zitat Ma, P., Wu, Y., Zhang, P., Chen, J.: Solidification prediction of laser cladding 316L by the finite element simulation. Int. J. Adv. Manuf. Technol. 103(1), 957–969 (2019)CrossRef Ma, P., Wu, Y., Zhang, P., Chen, J.: Solidification prediction of laser cladding 316L by the finite element simulation. Int. J. Adv. Manuf. Technol. 103(1), 957–969 (2019)CrossRef
65.
Zurück zum Zitat Chen, L., Zhao, Y., Song, B., Yu, T., Liu, Z.: Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding. Opt. Laser Technol. 139, 107009 (2021)CrossRef Chen, L., Zhao, Y., Song, B., Yu, T., Liu, Z.: Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding. Opt. Laser Technol. 139, 107009 (2021)CrossRef
66.
Zurück zum Zitat Jin, K., Yang, Z., Chen, P., Feng, P., Qiao, X.: Modeling of solidification process during multi-track laser cladding with 3D cellular automata coupling gas-liquid interface tracking and solute suppression nucleation. J. Mater. Process. Technol. 315, 117927 (2023)CrossRef Jin, K., Yang, Z., Chen, P., Feng, P., Qiao, X.: Modeling of solidification process during multi-track laser cladding with 3D cellular automata coupling gas-liquid interface tracking and solute suppression nucleation. J. Mater. Process. Technol. 315, 117927 (2023)CrossRef
67.
Zurück zum Zitat Chai, Q., Fang, C., Hu, J., Xing, Y., Huang, D.: Cellular automaton model for the simulation of laser cladding profile of metal alloys. Mater. Design 195, 109033 (2020)CrossRef Chai, Q., Fang, C., Hu, J., Xing, Y., Huang, D.: Cellular automaton model for the simulation of laser cladding profile of metal alloys. Mater. Design 195, 109033 (2020)CrossRef
68.
Zurück zum Zitat Cao, Y., Choi, J.: Solidification microstructure evolution model for laser cladding process. Journal of Heat and Transfer, ASME. 129(7), 852–863 (2007) Cao, Y., Choi, J.: Solidification microstructure evolution model for laser cladding process. Journal of Heat and Transfer, ASME. 129(7), 852–863 (2007)
69.
Zurück zum Zitat Xie, H., Yang, K., Li, F., Sun, C., Yu, Z.: Investigation on the Laves phase formation during laser cladding of IN718 alloy by CA-FE. J. Manuf. Process. 52, 132–144 (2020)CrossRef Xie, H., Yang, K., Li, F., Sun, C., Yu, Z.: Investigation on the Laves phase formation during laser cladding of IN718 alloy by CA-FE. J. Manuf. Process. 52, 132–144 (2020)CrossRef
70.
Zurück zum Zitat Jie, D., Wu, M., He, R., Cui, C., Miao, X.: A multiphase modeling for investigating temperature history, flow field and solidification microstructure evolution of FeCoNiCrTi coating by laser cladding. Opt. Laser. Technol. 169, 110197 (2024)CrossRef Jie, D., Wu, M., He, R., Cui, C., Miao, X.: A multiphase modeling for investigating temperature history, flow field and solidification microstructure evolution of FeCoNiCrTi coating by laser cladding. Opt. Laser. Technol. 169, 110197 (2024)CrossRef
71.
Zurück zum Zitat Liu, Y., et al.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56–67 (2016)CrossRef Liu, Y., et al.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56–67 (2016)CrossRef
72.
Zurück zum Zitat Khorasani, A.M., Gibson, I., Goldberg, M., Littlefair, G.: A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater. Design 103, 348–355 (2016)CrossRef Khorasani, A.M., Gibson, I., Goldberg, M., Littlefair, G.: A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater. Design 103, 348–355 (2016)CrossRef
73.
Zurück zum Zitat Ahmadi, M., Tabary, S.B., Rahmatabadi, D., Ebrahimi, M.S., Abrinia, K. and Hashemi, R.: Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 19, 1537–1562 (2022) Ahmadi, M., Tabary, S.B., Rahmatabadi, D., Ebrahimi, M.S., Abrinia, K. and Hashemi, R.: Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 19, 1537–1562 (2022)
74.
Zurück zum Zitat Liu, Y., Liu, Z., Jiang, Y., Wang, G., Yang, Y., Zhang, L.: Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys. Compd. 735, 1414–1421 (2018)CrossRef Liu, Y., Liu, Z., Jiang, Y., Wang, G., Yang, Y., Zhang, L.: Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys. Compd. 735, 1414–1421 (2018)CrossRef
75.
Zurück zum Zitat Guo, W., et al.: Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater. Design 215, 110460 (2022)CrossRef Guo, W., et al.: Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater. Design 215, 110460 (2022)CrossRef
76.
Zurück zum Zitat Narasimharaju, S.R., et al.: A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J. Manuf. Process. 75, 375–414 (2022)CrossRef Narasimharaju, S.R., et al.: A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J. Manuf. Process. 75, 375–414 (2022)CrossRef
77.
Zurück zum Zitat Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L.: Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178, 1–3 (2006)CrossRef Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L.: Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178, 1–3 (2006)CrossRef
78.
Zurück zum Zitat Shi, R., Khairallah, S.A., Roehling, T.T., Heo, T.W., McKeown, J.T., Matthews, M.J.: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater. 184, 284–305 (2020)CrossRef Shi, R., Khairallah, S.A., Roehling, T.T., Heo, T.W., McKeown, J.T., Matthews, M.J.: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater. 184, 284–305 (2020)CrossRef
79.
Zurück zum Zitat Ali, M., Porter, D., Kömi, J., Eissa, M., Faramawy, H.E., Mattar, T.: Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J. Iron Steel Res. Int. 26, 1350–1365 (2019)CrossRef Ali, M., Porter, D., Kömi, J., Eissa, M., Faramawy, H.E., Mattar, T.: Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J. Iron Steel Res. Int. 26, 1350–1365 (2019)CrossRef
80.
Zurück zum Zitat Liu, H., Lu, S., Zhang, Y., Chen, H., Chen, Y., Qian, M.: Migration of solidification grain boundaries and prediction. Nat. Commun. 13(1), 5910 (2022)CrossRef Liu, H., Lu, S., Zhang, Y., Chen, H., Chen, Y., Qian, M.: Migration of solidification grain boundaries and prediction. Nat. Commun. 13(1), 5910 (2022)CrossRef
81.
Zurück zum Zitat Mazumder, J.: Laser heat treatment: the state of the art. JOM 35(5), 18–26 (1983)CrossRef Mazumder, J.: Laser heat treatment: the state of the art. JOM 35(5), 18–26 (1983)CrossRef
82.
Zurück zum Zitat Bertoli, U.S., Guss, G., Wu, S., Matthews, M.J., Schoenung, J.M.: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater. Design 135, 385–396 (2017)CrossRef Bertoli, U.S., Guss, G., Wu, S., Matthews, M.J., Schoenung, J.M.: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater. Design 135, 385–396 (2017)CrossRef
83.
Zurück zum Zitat Nair, A.M., Muvvala, G., Sarkar, S., Nath, A.K.: Real-time detection of cooling rate using pyrometers in tandem in laser material processing and directed energy deposition. Mater. Lett. 277, 128330 (2020)CrossRef Nair, A.M., Muvvala, G., Sarkar, S., Nath, A.K.: Real-time detection of cooling rate using pyrometers in tandem in laser material processing and directed energy deposition. Mater. Lett. 277, 128330 (2020)CrossRef
84.
Zurück zum Zitat Lee, Y., Nordin, M., Babu, S.S., Farson, D.F.: Effect of fluid convection on dendrite arm spacing in laser deposition. Metall. Mater. Trans. B 45, 1520–1529 (2014)CrossRef Lee, Y., Nordin, M., Babu, S.S., Farson, D.F.: Effect of fluid convection on dendrite arm spacing in laser deposition. Metall. Mater. Trans. B 45, 1520–1529 (2014)CrossRef
85.
Zurück zum Zitat Huang, H., Mayer, H.: Extraction of the 3D branching structure of unfoliaged deciduous trees from image sequences. Photogrammetrie Fernerkundung Geoinformation 2007(6), 429 (2007) Huang, H., Mayer, H.: Extraction of the 3D branching structure of unfoliaged deciduous trees from image sequences. Photogrammetrie Fernerkundung Geoinformation 2007(6), 429 (2007)
86.
Zurück zum Zitat Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer Science and Business Media (2005) Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer Science and Business Media (2005)
87.
Zurück zum Zitat Bhowmik, A., Yang, Y., Zhou, W., Chew, Y., Bi, G.: On the heterogeneous cooling rates in laser-clad Al-50Si alloy. Surf. Coat. Technol. 408, 126780 (2021)CrossRef Bhowmik, A., Yang, Y., Zhou, W., Chew, Y., Bi, G.: On the heterogeneous cooling rates in laser-clad Al-50Si alloy. Surf. Coat. Technol. 408, 126780 (2021)CrossRef
88.
Zurück zum Zitat Odabaşı, A., Ünlü, N., Göller, G., Eruslu, M.N.: A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy Inconel 718. Metall. Mater. Trans. A 41, 2357–2365 (2010)CrossRef Odabaşı, A., Ünlü, N., Göller, G., Eruslu, M.N.: A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy Inconel 718. Metall. Mater. Trans. A 41, 2357–2365 (2010)CrossRef
89.
Zurück zum Zitat Wenzler, D.L., Bergmeier, K., Baehr, S., Diller, J., Zaeh, M.F.: A novel methodology for the thermographic cooling rate measurement during Powder Bed Fusion of metals using a laser Beam. Integrating Mater. Manuf. Innov. 12(1), 41–51 (2023)CrossRef Wenzler, D.L., Bergmeier, K., Baehr, S., Diller, J., Zaeh, M.F.: A novel methodology for the thermographic cooling rate measurement during Powder Bed Fusion of metals using a laser Beam. Integrating Mater. Manuf. Innov. 12(1), 41–51 (2023)CrossRef
90.
Zurück zum Zitat Gawert, C., Bähr, R.: Automatic determination of secondary dendrite arm spacing in AlSi-cast microstructures. Materials 14(11), 2827 (2021)CrossRef Gawert, C., Bähr, R.: Automatic determination of secondary dendrite arm spacing in AlSi-cast microstructures. Materials 14(11), 2827 (2021)CrossRef
91.
Zurück zum Zitat Hong, K.-M., Shin, Y.C.: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model. J. Mater. Process. Technol. 237, 420–429 (2016)CrossRef Hong, K.-M., Shin, Y.C.: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model. J. Mater. Process. Technol. 237, 420–429 (2016)CrossRef
92.
Zurück zum Zitat Li, S., Chen, B., Tan, C., Song, X.: Effects of oxygen content on microstructure and mechanical properties of 18Ni300 maraging steel manufactured by laser directed energy deposition. Opt. Laser Technol. 153, 108281 (2022)CrossRef Li, S., Chen, B., Tan, C., Song, X.: Effects of oxygen content on microstructure and mechanical properties of 18Ni300 maraging steel manufactured by laser directed energy deposition. Opt. Laser Technol. 153, 108281 (2022)CrossRef
93.
Zurück zum Zitat Yang, J., Yu, H., Yin, J., Gao, M., Wang, Z., Zeng, X.: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Design 108, 308–318 (2016)CrossRef Yang, J., Yu, H., Yin, J., Gao, M., Wang, Z., Zeng, X.: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Design 108, 308–318 (2016)CrossRef
94.
Zurück zum Zitat Xu, P.G., Yin, F.X., Nagai, K.: Effect of cooling rate on as-cast texture of low-carbon steel strips during rapid solidification. In: Materials Science Forum, vol. 512, pp. 41–48. Trans Tech Publ (2006) Xu, P.G., Yin, F.X., Nagai, K.: Effect of cooling rate on as-cast texture of low-carbon steel strips during rapid solidification. In: Materials Science Forum, vol. 512, pp. 41–48. Trans Tech Publ (2006)
95.
Zurück zum Zitat Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 29(6), 414–418 (2013)CrossRef Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 29(6), 414–418 (2013)CrossRef
96.
Zurück zum Zitat Fatoba, O., Akinlabi, E., Makahtha, M.: Effects of cooling rate and silicon content on microstructure and mechanical properties of laser deposited Ti-6Al-4V alloy. Mater. Today: Proc. 5(9), 18368–18375 (2018) Fatoba, O., Akinlabi, E., Makahtha, M.: Effects of cooling rate and silicon content on microstructure and mechanical properties of laser deposited Ti-6Al-4V alloy. Mater. Today: Proc. 5(9), 18368–18375 (2018)
97.
Zurück zum Zitat Dixit, S., Liu, S.: Laser additive manufacturing of high-strength aluminum alloys: challenges and strategies. J. Manuf. Mater. Process. 6(6), 156 (2022) Dixit, S., Liu, S.: Laser additive manufacturing of high-strength aluminum alloys: challenges and strategies. J. Manuf. Mater. Process. 6(6), 156 (2022)
98.
Zurück zum Zitat Park, S.-H., Liu, P., Yi, K., Choi, G., Jhang, K.-Y., Sohn, H.: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int. J. Mach. Tools Manuf. 166, 103745 (2021)CrossRef Park, S.-H., Liu, P., Yi, K., Choi, G., Jhang, K.-Y., Sohn, H.: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int. J. Mach. Tools Manuf. 166, 103745 (2021)CrossRef
99.
Zurück zum Zitat Baker, B.W., et al.: Processing-microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E 1, 318–330 (2014) Baker, B.W., et al.: Processing-microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E 1, 318–330 (2014)
100.
Zurück zum Zitat Chen, Z., Nash, P., Zhang, Y.: Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B 50, 1718–1728 (2019)CrossRef Chen, Z., Nash, P., Zhang, Y.: Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B 50, 1718–1728 (2019)CrossRef
101.
Zurück zum Zitat Zare, M.A., Taghiabadi, R., Ghoncheh, M.: Effect of cooling rate on microstructure and mechanical properties of AA5056 Al-Mg alloy. Springer Science and Business Media LLC. Int. J. Metalcast. (3), 1533–1543 (2021) Zare, M.A., Taghiabadi, R., Ghoncheh, M.: Effect of cooling rate on microstructure and mechanical properties of AA5056 Al-Mg alloy. Springer Science and Business Media LLC. Int. J. Metalcast.  (3), 1533–1543 (2021)
102.
Zurück zum Zitat Moravec, J., Mičian, M., Málek, M., Švec, M.: Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel. Materials 15(13), 4637 (2022)CrossRef Moravec, J., Mičian, M., Málek, M., Švec, M.: Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel. Materials 15(13), 4637 (2022)CrossRef
103.
Zurück zum Zitat Yang, X., et al.: Effect of cooling rate and austenite deformation on hardness and microstructure of 960 MPa high strength steel. Sci. Eng. Compos. Mater. 27(1), 415–423 (2020)CrossRef Yang, X., et al.: Effect of cooling rate and austenite deformation on hardness and microstructure of 960 MPa high strength steel. Sci. Eng. Compos. Mater. 27(1), 415–423 (2020)CrossRef
104.
Zurück zum Zitat Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015)CrossRef Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015)CrossRef
105.
Zurück zum Zitat Tian, X., Zhang, S., Wang, H.: The influences of anneal temperature and cooling rate on microstructure and tensile properties of laser deposited Ti–4Al–1.5 mn titanium alloy. J. Alloys Compd. 608, 95–101 (2014)CrossRef Tian, X., Zhang, S., Wang, H.: The influences of anneal temperature and cooling rate on microstructure and tensile properties of laser deposited Ti–4Al–1.5 mn titanium alloy. J. Alloys Compd. 608, 95–101 (2014)CrossRef
106.
Zurück zum Zitat Rasouli, D., Asl, S.K., Akbarzadeh, A., Daneshi, G.: Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel. J. Mater. Process. Technol. 206, 1–3 (2008)CrossRef Rasouli, D., Asl, S.K., Akbarzadeh, A., Daneshi, G.: Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel. J. Mater. Process. Technol. 206, 1–3 (2008)CrossRef
107.
Zurück zum Zitat Totten, G., Webster, G., Bates, C., Mackenzie, D.: Industrial use of quench factor analysis: application as a specification procedure for quenchant qualification. In: Advances in the Metallurgy of Aluminum Alloys, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys, pp. 204–212. (2001) Totten, G., Webster, G., Bates, C., Mackenzie, D.: Industrial use of quench factor analysis: application as a specification procedure for quenchant qualification. In: Advances in the Metallurgy of Aluminum Alloys, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys, pp. 204–212. (2001)
108.
Zurück zum Zitat Amine, T., Newkirk, J.W., Liou, F.: Methodology for studying effect of cooling rate during laser deposition on microstructure. J. Mater. Eng. Perform. 24, 3129–3136 (2015)CrossRef Amine, T., Newkirk, J.W., Liou, F.: Methodology for studying effect of cooling rate during laser deposition on microstructure. J. Mater. Eng. Perform. 24, 3129–3136 (2015)CrossRef
109.
Zurück zum Zitat Chen, P., et al.: Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J. Mater. Sci. Technol. 125, 105–117 (2022)CrossRef Chen, P., et al.: Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J. Mater. Sci. Technol. 125, 105–117 (2022)CrossRef
110.
Zurück zum Zitat Vitek, J., David, S., Hinman, C.: Improved ferrite number prediction model that accounts for cooling rate effects part 1: Model development. Weld. J.-New York-. 82(1), 10–S (2003) Vitek, J., David, S., Hinman, C.: Improved ferrite number prediction model that accounts for cooling rate effects part 1: Model development. Weld. J.-New York-. 82(1), 10–S (2003)
111.
Zurück zum Zitat Panwisawas, C., Gong, Y., Tang, Y.T., Reed, R.C., Shinjo, J.: Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Additive Manuf. 47, 102339 (2021)CrossRef Panwisawas, C., Gong, Y., Tang, Y.T., Reed, R.C., Shinjo, J.: Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Additive Manuf. 47, 102339 (2021)CrossRef
112.
Zurück zum Zitat Kashaev, N., Ventzke, V., Fomichev, V., Fomin, F., Riekehr, S.: Effect of nd: YAG laser beam welding on Weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016)CrossRef Kashaev, N., Ventzke, V., Fomichev, V., Fomin, F., Riekehr, S.: Effect of nd: YAG laser beam welding on Weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016)CrossRef
113.
Zurück zum Zitat El-Kashif, E., Asakura, K., Shibata, K.: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43(12), 2007–2014 (2003)CrossRef El-Kashif, E., Asakura, K., Shibata, K.: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43(12), 2007–2014 (2003)CrossRef
114.
Zurück zum Zitat Thampy, V., et al.: Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci. Rep. 10(1), 1–9 (2020)CrossRef Thampy, V., et al.: Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci. Rep. 10(1), 1–9 (2020)CrossRef
115.
Zurück zum Zitat Lin, X., Cao, Y., Wu, X., Yang, H., Chen, J., Huang, W.: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater. Sci. Eng.: A 553, 80–88 (2012)CrossRef Lin, X., Cao, Y., Wu, X., Yang, H., Chen, J., Huang, W.: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater. Sci. Eng.: A 553, 80–88 (2012)CrossRef
116.
Zurück zum Zitat Gan, Z., Yu, G., He, X., Li, S.: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int. J. Heat Mass. Transf. 104, 28–38 (2017)CrossRef Gan, Z., Yu, G., He, X., Li, S.: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int. J. Heat Mass. Transf. 104, 28–38 (2017)CrossRef
117.
Zurück zum Zitat Zhang, K., Wang, S., Liu, W., Shang, X.: Characterization of stainless steel parts by laser metal deposition shaping. Mater. Design 55, 104–119 (2014)CrossRef Zhang, K., Wang, S., Liu, W., Shang, X.: Characterization of stainless steel parts by laser metal deposition shaping. Mater. Design 55, 104–119 (2014)CrossRef
118.
Zurück zum Zitat Lv, H., et al.: Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy. J. Manuf. Process. 67, 63–76 (2021)CrossRef Lv, H., et al.: Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy. J. Manuf. Process. 67, 63–76 (2021)CrossRef
119.
Zurück zum Zitat Moosa, A.A., Kadhim, M.J., Subhi, A.D.: Dilution effect during laser cladding of Inconel 617 with Ni-Al powders. Mod. Appl. Sci. 5(1), 50 (2011)CrossRef Moosa, A.A., Kadhim, M.J., Subhi, A.D.: Dilution effect during laser cladding of Inconel 617 with Ni-Al powders. Mod. Appl. Sci. 5(1), 50 (2011)CrossRef
120.
Zurück zum Zitat Cottam, R., Brandt, M.: Laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate: Effect of laser cladding parameters on microstructure. Phys. Procedia 12, 323–329 (2011)CrossRef Cottam, R., Brandt, M.: Laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate: Effect of laser cladding parameters on microstructure. Phys. Procedia 12, 323–329 (2011)CrossRef
121.
Zurück zum Zitat Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., Cárcel, A.: Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties. Phys. Procedia 56, 284–293 (2014)CrossRef Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., Cárcel, A.: Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties. Phys. Procedia 56, 284–293 (2014)CrossRef
122.
Zurück zum Zitat Bennett, J.L., Wolff, S.J., Hyatt, G., Ehmann, K., Cao, J.: Thermal effect on clad dimension for laser deposited Inconel 718. J. Manuf. Process. 28, 550–557 (2017)CrossRef Bennett, J.L., Wolff, S.J., Hyatt, G., Ehmann, K., Cao, J.: Thermal effect on clad dimension for laser deposited Inconel 718. J. Manuf. Process. 28, 550–557 (2017)CrossRef
123.
Zurück zum Zitat Fetni, S., et al.: Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Design 204, 109661 (2021)CrossRef Fetni, S., et al.: Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Design 204, 109661 (2021)CrossRef
124.
Zurück zum Zitat Chen, B., Mazumder, J.: Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718. Rapid Prototyp. J. (2017) Chen, B., Mazumder, J.: Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718. Rapid Prototyp. J. (2017)
125.
Zurück zum Zitat Do Vale, N.L., Fernandes, C.A., Santos, R.A., Santos, T.F., Urtiga Filho, S.L.: Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate. JOM 73(10), 2868–2877 (2021)CrossRef Do Vale, N.L., Fernandes, C.A., Santos, R.A., Santos, T.F., Urtiga Filho, S.L.: Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate. JOM 73(10), 2868–2877 (2021)CrossRef
126.
Zurück zum Zitat Paul, S., et al.: Critical deposition height for sustainable restoration via laser additive manufacturing. Sci. Rep. 8(1), 14726 (2018)CrossRef Paul, S., et al.: Critical deposition height for sustainable restoration via laser additive manufacturing. Sci. Rep. 8(1), 14726 (2018)CrossRef
127.
Zurück zum Zitat Zhang, Z., Farahmand, P., Kovacevic, R.: Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Mater. Design 109, 686–699 (2016)CrossRef Zhang, Z., Farahmand, P., Kovacevic, R.: Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Mater. Design 109, 686–699 (2016)CrossRef
128.
Zurück zum Zitat Youssef, D., Hassab-Elnaby, S., Al-Sayed, S.R.: New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4V alloy. Alex. Eng. J. 61(5), 4137–4158 (2022)CrossRef Youssef, D., Hassab-Elnaby, S., Al-Sayed, S.R.: New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4V alloy. Alex. Eng. J. 61(5), 4137–4158 (2022)CrossRef
129.
Zurück zum Zitat Górny, M., Sikora, G.: Effect of titanium addition and cooling rate on primary α (Al) grains and tensile properties of Al-Cu alloy. J. Mater. Eng. Perform. 24, 1150–1156 (2015)CrossRef Górny, M., Sikora, G.: Effect of titanium addition and cooling rate on primary α (Al) grains and tensile properties of Al-Cu alloy. J. Mater. Eng. Perform. 24, 1150–1156 (2015)CrossRef
130.
Zurück zum Zitat Xie, Y., et al.: The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy. Virtual Phys. Prototyp. 18(1), e2142802 (2023)CrossRef Xie, Y., et al.: The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy. Virtual Phys. Prototyp. 18(1), e2142802 (2023)CrossRef
131.
Zurück zum Zitat Fathi, A., Toyserkani, E., Khajepour, A., Durali, M.: Prediction of melt pool depth and dilution in laser powder deposition. J. Phys. D 39(12), 2613 (2006)CrossRef Fathi, A., Toyserkani, E., Khajepour, A., Durali, M.: Prediction of melt pool depth and dilution in laser powder deposition. J. Phys. D 39(12), 2613 (2006)CrossRef
132.
Zurück zum Zitat Liu, J., Li, J., Cheng, X., Wang, H.: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate. Surf. Coat. Technol. 325, 352–359 (2017)CrossRef Liu, J., Li, J., Cheng, X., Wang, H.: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate. Surf. Coat. Technol. 325, 352–359 (2017)CrossRef
133.
Zurück zum Zitat Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., Zhang, C.: Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. J. Alloys. Compd. 763, 376–383 (2018)CrossRef Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., Zhang, C.: Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. J. Alloys. Compd. 763, 376–383 (2018)CrossRef
134.
Zurück zum Zitat Garnayak, S., Vanteru, M.R., Dash, S.K.: Liquid Fuel Combustion with Extremely Diluted Oxidizer in High Swirl Flows at High Pressure. In: Proc. 2nd Natl. Aero Propuls. Conf., Kharagpur, West Bengal NAPC 2018. (2018) Garnayak, S., Vanteru, M.R., Dash, S.K.: Liquid Fuel Combustion with Extremely Diluted Oxidizer in High Swirl Flows at High Pressure. In: Proc. 2nd Natl. Aero Propuls. Conf., Kharagpur, West Bengal NAPC 2018. (2018)
135.
Zurück zum Zitat Bruna-Rosso, C., Mergheim, J., Previtali, B.: Finite element modeling of residual stress and geometrical error formations in selective laser melting of metals. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 235(11), 2022–2038 (2021)CrossRef Bruna-Rosso, C., Mergheim, J., Previtali, B.: Finite element modeling of residual stress and geometrical error formations in selective laser melting of metals. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 235(11), 2022–2038 (2021)CrossRef
136.
Zurück zum Zitat Liu, Y., Xue, D., Wang, H.: A new sample preparation method for WD-XRF analysis of sulfide ores by fusion techniques: A BN crucible for protection against contamination and quantitative retention of sulfur. Anal. Methods 8(6), 1299–1306 (2016)CrossRef Liu, Y., Xue, D., Wang, H.: A new sample preparation method for WD-XRF analysis of sulfide ores by fusion techniques: A BN crucible for protection against contamination and quantitative retention of sulfur. Anal. Methods 8(6), 1299–1306 (2016)CrossRef
137.
Zurück zum Zitat Cao, X., Wallace, W., Immarigeon, J.-P., Poon, C.: Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater. Manuf. Process. 18(1), 23–49 (2003)CrossRef Cao, X., Wallace, W., Immarigeon, J.-P., Poon, C.: Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater. Manuf. Process. 18(1), 23–49 (2003)CrossRef
138.
Zurück zum Zitat Lu, Y., Huang, G., Wang, Y., Li, H., Qin, Z., Lu, X.: Crack-free Fe-based amorphous coating synthesized by laser cladding. Mater. Lett. 210, 46–50 (2018)CrossRef Lu, Y., Huang, G., Wang, Y., Li, H., Qin, Z., Lu, X.: Crack-free Fe-based amorphous coating synthesized by laser cladding. Mater. Lett. 210, 46–50 (2018)CrossRef
139.
Zurück zum Zitat Rottwinkel, B., Nölke, C., Kaierle, S., Wesling, V.: Crack repair of single crystal turbine blades using laser cladding technology. Procedia Cirp 22, 263–267 (2014)CrossRef Rottwinkel, B., Nölke, C., Kaierle, S., Wesling, V.: Crack repair of single crystal turbine blades using laser cladding technology. Procedia Cirp 22, 263–267 (2014)CrossRef
140.
Zurück zum Zitat Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef
141.
Zurück zum Zitat Fu, F., Zhang, Y., Chang, G., Dai, J.: Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 127(1), 200–202 (2016)CrossRef Fu, F., Zhang, Y., Chang, G., Dai, J.: Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 127(1), 200–202 (2016)CrossRef
142.
Zurück zum Zitat Triantafyllidis, D., Li, L., Stott, F.: Crack-free densification of ceramics by laser surface treatment. Surf. Coat. Technol. 201(6), 3163–3173 (2006)CrossRef Triantafyllidis, D., Li, L., Stott, F.: Crack-free densification of ceramics by laser surface treatment. Surf. Coat. Technol. 201(6), 3163–3173 (2006)CrossRef
143.
Zurück zum Zitat Carlson, K.D., Lin, Z., Beckermann, C.: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B 38, 541–555 (2007)CrossRef Carlson, K.D., Lin, Z., Beckermann, C.: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B 38, 541–555 (2007)CrossRef
144.
Zurück zum Zitat Nagaumi, H.: Prediction of porosity contents and examination of porosity formation in Al–4.4% mg DC slab. Sci. Technol. Adv. Mater. 2(1), 49–57 (2001)CrossRef Nagaumi, H.: Prediction of porosity contents and examination of porosity formation in Al–4.4% mg DC slab. Sci. Technol. Adv. Mater. 2(1), 49–57 (2001)CrossRef
145.
Zurück zum Zitat Totten, G., Kobasko, N., Aronov, M.: Overview of intensive-quenching processes. Ind. Heat. (USA) 69(4), 31–33 (2002) Totten, G., Kobasko, N., Aronov, M.: Overview of intensive-quenching processes. Ind. Heat. (USA) 69(4), 31–33 (2002)
146.
Zurück zum Zitat Shi, B., Li, T., Wang, D., Zhang, X., Zhang, H.: Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding. J. Mater. Sci. 56(23), 13323–13336 (2021)CrossRef Shi, B., Li, T., Wang, D., Zhang, X., Zhang, H.: Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding. J. Mater. Sci. 56(23), 13323–13336 (2021)CrossRef
147.
Zurück zum Zitat Du, C., et al.: Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surf. Coat. Technol. 424, 127617 (2021)CrossRef Du, C., et al.: Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surf. Coat. Technol. 424, 127617 (2021)CrossRef
148.
Zurück zum Zitat Yan, L., et al.: Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM 69, 586–591 (2017)CrossRef Yan, L., et al.: Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM 69, 586–591 (2017)CrossRef
149.
Zurück zum Zitat Gao, P., et al.: Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 39, 144–154 (2020)CrossRef Gao, P., et al.: Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 39, 144–154 (2020)CrossRef
150.
Zurück zum Zitat Sadhu, A., et al.: A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718. Surf. Coat. Technol. 389, 125646 (2020)CrossRef Sadhu, A., et al.: A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718. Surf. Coat. Technol. 389, 125646 (2020)CrossRef
151.
Zurück zum Zitat Iveković, A., Montero-Sistiaga, M.L., Vleugels, J., Kruth, J.-P., Vanmeensel, K.: Crack mitigation in laser powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach. J. Alloys Compd. 864, 158803 (2021)CrossRef Iveković, A., Montero-Sistiaga, M.L., Vleugels, J., Kruth, J.-P., Vanmeensel, K.: Crack mitigation in laser powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach. J. Alloys Compd. 864, 158803 (2021)CrossRef
152.
Zurück zum Zitat Siddique, S., Imran, M., Walther, F.: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int. J. Fatigue 94, 246–254 (2017)CrossRef Siddique, S., Imran, M., Walther, F.: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int. J. Fatigue 94, 246–254 (2017)CrossRef
153.
Zurück zum Zitat Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136, 6 (2014)CrossRef Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136, 6 (2014)CrossRef
154.
Zurück zum Zitat Xu, M., et al.: Effects of cooling rate on the microstructure and properties of hot-dipped Zn–Al–Mg coatings. Surf. Coat. Technol. 444, 128665 (2022)CrossRef Xu, M., et al.: Effects of cooling rate on the microstructure and properties of hot-dipped Zn–Al–Mg coatings. Surf. Coat. Technol. 444, 128665 (2022)CrossRef
155.
Zurück zum Zitat McKean, S., Priest, J.: Multiple failure state triaxial testing of the Montney Formation. J. Petrol. Sci. Eng. 173, 122–135 (2019) McKean, S., Priest, J.: Multiple failure state triaxial testing of the Montney Formation. J. Petrol. Sci. Eng. 173, 122–135 (2019)
156.
Zurück zum Zitat Fang, X., Li, H., Wang, M., Li, C., Guo, Y.: Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater. Charact. 143, 182–190 (2018)CrossRef Fang, X., Li, H., Wang, M., Li, C., Guo, Y.: Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater. Charact. 143, 182–190 (2018)CrossRef
Metadaten
Titel
A Review on Effect of Cooling Rate on Metallurgical, Mechanical, Geometrical Characteristics and Defects of Laser Cladding Process
verfasst von
Amir Mohammad Sedighi
Seyedeh Fatemeh Nabavi
Anooshiravan Farshidianfar
Publikationsdatum
06.05.2024
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-024-00254-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.