Skip to main content
Top

06-05-2024 | Review

A Review on Effect of Cooling Rate on Metallurgical, Mechanical, Geometrical Characteristics and Defects of Laser Cladding Process

Authors: Amir Mohammad Sedighi, Seyedeh Fatemeh Nabavi, Anooshiravan Farshidianfar

Published in: Lasers in Manufacturing and Materials Processing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past decade, laser cladding has made significant strides, proving highly effective in cladding applications due to its efficiency. The process involves manipulating a base plate and powder, and adjustments to these components yield noticeable variations in outcomes. Parameters such as scan speed, laser power, and feeding rate demonstrate unpredictable behaviors, influencing metallurgical results. For instance, modifying the feeding rate can lead to diverse metallurgical granulation sizes. Introducing a mediating parameter, cooling rate (CR), addresses this variability, impacting metallurgical, mechanical, geometrical properties, and defects. CR is customized for each laser cladding process to estimate properties accurately. Despite this, comprehensive summaries on CR’s influence on laser cladding properties are scarce. This study aims to fill this gap by synthesizing numerous articles in the field, offering a consolidated analysis. Moreover, comparisons with related laser processes like welding and additive manufacturing enhance comprehension. Given limited resources on laser cladding’s cooling rate, relevant articles from similar processes are also reviewed. By consolidating existing knowledge, this study aims to comprehensively elucidate CR’s impact on laser cladding properties, thus contributing to process optimization and advancement. Understanding CR’s role is pivotal in achieving desired material characteristics and properties in laser cladding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pant, P., Chatterjee, D., Nandi, T., Samanta, S.K., Lohar, A.K., Changdar, A.: Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–10 (2019)CrossRef Pant, P., Chatterjee, D., Nandi, T., Samanta, S.K., Lohar, A.K., Changdar, A.: Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–10 (2019)CrossRef
2.
go back to reference Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Braz. Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Braz. Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef
3.
go back to reference Pant, P., Chatterjee, D., Samanta, S.K., Lohar, A.K.: Experimental and numerical analysis of the powder flow in a multi-channel coaxial nozzle of a direct metal deposition system. J. Manuf. Sci. Eng. 143(7), 071003 (2021)CrossRef Pant, P., Chatterjee, D., Samanta, S.K., Lohar, A.K.: Experimental and numerical analysis of the powder flow in a multi-channel coaxial nozzle of a direct metal deposition system. J. Manuf. Sci. Eng. 143(7), 071003 (2021)CrossRef
4.
go back to reference Awd, M., Tenkamp, J., Hirtler, M., Siddique, S., Bambach, M., Walther, F.: Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials 11(1), 17 (2017)CrossRef Awd, M., Tenkamp, J., Hirtler, M., Siddique, S., Bambach, M., Walther, F.: Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials 11(1), 17 (2017)CrossRef
5.
go back to reference Katayama, S.: Handbook of Laser Welding Technologies, 1st edn. Elsevier (2013) Katayama, S.: Handbook of Laser Welding Technologies, 1st edn. Elsevier (2013)
6.
go back to reference Zhang, Y., Lu, J., Luo, K., Zhang, Y., Lu, J., Luo, K.: Mechanical properties of AISI 304 SS and its welded joint subjected to laser shock processing. Laser Shock Processing of FCC Metals: Mechanical Properties and Micro-structural Strengthening Mechanism, pp. 113–135, (2013) Zhang, Y., Lu, J., Luo, K., Zhang, Y., Lu, J., Luo, K.: Mechanical properties of AISI 304 SS and its welded joint subjected to laser shock processing. Laser Shock Processing of FCC Metals: Mechanical Properties and Micro-structural Strengthening Mechanism, pp. 113–135, (2013)
7.
go back to reference Deev, V., et al.: The influence of the melt cooling rate on shrinkage behaviour during solidification of aluminum alloys. IOP Conf. Ser.: Mater. Sci. Eng. 537(2), 022080. (2019). IOP Publishing Deev, V., et al.: The influence of the melt cooling rate on shrinkage behaviour during solidification of aluminum alloys. IOP Conf. Ser.: Mater. Sci. Eng. 537(2), 022080. (2019). IOP Publishing
8.
go back to reference Bendoumi, A., et al.: The effect of temperature distribution and cooling rate on microstructure and microhardness of laser re-melted and laser-borided carbon steels with various carbon concentrations. Surf. Coat. Technol. 387, 125541 (2020)CrossRef Bendoumi, A., et al.: The effect of temperature distribution and cooling rate on microstructure and microhardness of laser re-melted and laser-borided carbon steels with various carbon concentrations. Surf. Coat. Technol. 387, 125541 (2020)CrossRef
9.
go back to reference Das, B., Gopinath, M., Nath, A.K., Bandyopadhyay, P.: Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating. J. Eur. Ceram. Soc. 38(11), 3932–3944 (2018)CrossRef Das, B., Gopinath, M., Nath, A.K., Bandyopadhyay, P.: Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating. J. Eur. Ceram. Soc. 38(11), 3932–3944 (2018)CrossRef
10.
go back to reference Sprague, E., Mazumder, J., Misra, A.: Cooling rate and dendrite spacing control in direct metal deposition printed Cu-Fe alloys. J. Laser Appl. 34(2), 022013 (2022)CrossRef Sprague, E., Mazumder, J., Misra, A.: Cooling rate and dendrite spacing control in direct metal deposition printed Cu-Fe alloys. J. Laser Appl. 34(2), 022013 (2022)CrossRef
11.
go back to reference Selicati, V., Mazzarisi, M., Lovecchio, F.S., Guerra, M.G., Campanelli, S.L., Dassisti, M.: A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process. Int. J. Adv. Manuf. Technol. 118(11), 3641–3656 (2022)CrossRef Selicati, V., Mazzarisi, M., Lovecchio, F.S., Guerra, M.G., Campanelli, S.L., Dassisti, M.: A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process. Int. J. Adv. Manuf. Technol. 118(11), 3641–3656 (2022)CrossRef
12.
go back to reference Xiao, H., et al.: Influence of molten-pool cooling rate on solidification structure and mechanical property of laser additive manufactured inconel 718. J. Mater. Res. Technol. 19, 4404–4416 (2022)CrossRef Xiao, H., et al.: Influence of molten-pool cooling rate on solidification structure and mechanical property of laser additive manufactured inconel 718. J. Mater. Res. Technol. 19, 4404–4416 (2022)CrossRef
13.
go back to reference Xie, L., et al.: Effect of Dynamic Preheating on the Thermal Behavior and Mechanical Properties of Laser-Welded Joints. Materials 15(17), 6159 (2022)CrossRef Xie, L., et al.: Effect of Dynamic Preheating on the Thermal Behavior and Mechanical Properties of Laser-Welded Joints. Materials 15(17), 6159 (2022)CrossRef
14.
go back to reference Yuan, W., Li, R., Chen, Z., Gu, J., Tian, Y.: A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surf. Coat. Technol. 405, 126582 (2021)CrossRef Yuan, W., Li, R., Chen, Z., Gu, J., Tian, Y.: A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surf. Coat. Technol. 405, 126582 (2021)CrossRef
15.
go back to reference Xiong, W., et al.: Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater. Design 170, 107697 (2019)CrossRef Xiong, W., et al.: Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater. Design 170, 107697 (2019)CrossRef
16.
go back to reference Lamberson, L.E.: Fatigue and fracture of thin metallic foils with aerospace applications. Georgia Institute of Technology, Master Thesis, Georgia Institute of Technology (2006) Lamberson, L.E.: Fatigue and fracture of thin metallic foils with aerospace applications. Georgia Institute of Technology, Master Thesis, Georgia Institute of Technology (2006)
17.
go back to reference Vemanaboina, H., et al.: Mechanical and metallurgical properties of CO2 laser Beam INCONEL 625 welded joints. Appl. Sci. 11(15), 7002 (2021)CrossRef Vemanaboina, H., et al.: Mechanical and metallurgical properties of CO2 laser Beam INCONEL 625 welded joints. Appl. Sci. 11(15), 7002 (2021)CrossRef
18.
go back to reference Zagade, P., Gautham, B., De, A., DebRoy, T.: Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit. Manuf. 46, 102222 (2021) Zagade, P., Gautham, B., De, A., DebRoy, T.: Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit. Manuf. 46, 102222 (2021)
19.
go back to reference Zhang, Z., et al.: The role of the pulsed-wave laser characteristics on restraining hot cracking in laser cladding non-weldable nickel-based superalloy. Mater. Design 198, 109346 (2021)CrossRef Zhang, Z., et al.: The role of the pulsed-wave laser characteristics on restraining hot cracking in laser cladding non-weldable nickel-based superalloy. Mater. Design 198, 109346 (2021)CrossRef
20.
go back to reference Siddiqui, A.A., Dubey, A.K.: Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 134, 106619 (2021)CrossRef Siddiqui, A.A., Dubey, A.K.: Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 134, 106619 (2021)CrossRef
21.
go back to reference Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef
22.
go back to reference Zhou, W., Aprilia, A., Mark, C.K.: Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 11(7), 1127 (2021)CrossRef Zhou, W., Aprilia, A., Mark, C.K.: Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 11(7), 1127 (2021)CrossRef
23.
go back to reference Zhang, L., Li, Y., Zhang, S., Zhang, Q.: Selective laser melting of IN738 superalloy with a low mn + Si content: Effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties. Mater. Sci. Eng.: A 826, 141985 (2021)CrossRef Zhang, L., Li, Y., Zhang, S., Zhang, Q.: Selective laser melting of IN738 superalloy with a low mn + Si content: Effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties. Mater. Sci. Eng.: A 826, 141985 (2021)CrossRef
24.
go back to reference Muvvala, G., Mullick, S., Nath, A.K.: Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf. Coat. Technol. 399, 126100 (2020)CrossRef Muvvala, G., Mullick, S., Nath, A.K.: Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf. Coat. Technol. 399, 126100 (2020)CrossRef
25.
go back to reference Xu, R., Li, R., Yuan, T., Niu, P., Wang, M., Lin, Z.: Microstructure, metallurgical defects and hardness of Al–Cu–Mg–Li–Zr alloy additively manufactured by selective laser melting. J. Alloys Compd. 835, 155372 (2020)CrossRef Xu, R., Li, R., Yuan, T., Niu, P., Wang, M., Lin, Z.: Microstructure, metallurgical defects and hardness of Al–Cu–Mg–Li–Zr alloy additively manufactured by selective laser melting. J. Alloys Compd. 835, 155372 (2020)CrossRef
26.
go back to reference Zhang, J., et al.: Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 1(4), 100035 (2022)MathSciNetCrossRef Zhang, J., et al.: Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 1(4), 100035 (2022)MathSciNetCrossRef
27.
go back to reference Kumar, K.S.: Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater. Sci. 6, 821–834 (2014)CrossRef Kumar, K.S.: Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater. Sci. 6, 821–834 (2014)CrossRef
28.
go back to reference Gilath, I., Signamarcheix, J., Bensussan, P.: A comparison of methods for estimating the weld-metal cooling rate in laser welds. J. Mater. Sci. 29, 3358–3362 (1994)CrossRef Gilath, I., Signamarcheix, J., Bensussan, P.: A comparison of methods for estimating the weld-metal cooling rate in laser welds. J. Mater. Sci. 29, 3358–3362 (1994)CrossRef
29.
go back to reference Shao, J., Yu, G., He, X., Li, S., Chen, R., Zhao, Y.: Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol. 119, 105662 (2019)CrossRef Shao, J., Yu, G., He, X., Li, S., Chen, R., Zhao, Y.: Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol. 119, 105662 (2019)CrossRef
30.
go back to reference Song, J., Chew, Y., Jiao, L., Yao, X., Moon, S.K., Bi, G.: Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Addit. Manuf. 24, 543–551 (2018) Song, J., Chew, Y., Jiao, L., Yao, X., Moon, S.K., Bi, G.: Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Addit. Manuf. 24, 543–551 (2018)
31.
go back to reference Pauly, S., Wang, P., Kühn, U., Kosiba, K.: Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit. Manuf. 22, 753–757 (2018) Pauly, S., Wang, P., Kühn, U., Kosiba, K.: Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit. Manuf. 22, 753–757 (2018)
32.
go back to reference Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating. Metall. Mater. Trans. A 44, 5513–5521 (2013)CrossRef Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating. Metall. Mater. Trans. A 44, 5513–5521 (2013)CrossRef
33.
go back to reference Emamian, A., Alimardani, M., Khajepour, A.: Effect of cooling rate and laser process parameters on additive manufactured Fe–Ti–C metal matrix composites microstructure and carbide morphology. J. Manuf. Process. 16(4), 511–517 (2014)CrossRef Emamian, A., Alimardani, M., Khajepour, A.: Effect of cooling rate and laser process parameters on additive manufactured Fe–Ti–C metal matrix composites microstructure and carbide morphology. J. Manuf. Process. 16(4), 511–517 (2014)CrossRef
34.
go back to reference Letenneur, M., Kreitcberg, A., Brailovski, V.: The average grain size and grain aspect ratio in metal laser powder bed fusion: Modeling and experiment. J. Manuf. Mater. Process. 4(1), 25 (2020) Letenneur, M., Kreitcberg, A., Brailovski, V.: The average grain size and grain aspect ratio in metal laser powder bed fusion: Modeling and experiment. J. Manuf. Mater. Process. 4(1), 25 (2020)
35.
go back to reference Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using nd: YAG laser. Opt. Lasers Eng. 51(6), 681–695 (2013)CrossRef Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using nd: YAG laser. Opt. Lasers Eng. 51(6), 681–695 (2013)CrossRef
36.
go back to reference Liu, H., et al.: Finite element analysis of effects of dynamic preheating on thermal behavior of multi-track and multi-layer laser cladding. Optik 228, 166194 (2021)CrossRef Liu, H., et al.: Finite element analysis of effects of dynamic preheating on thermal behavior of multi-track and multi-layer laser cladding. Optik 228, 166194 (2021)CrossRef
37.
go back to reference Tran, H.-S., et al.: 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations. Mater. Design 128, 130–142 (2017)CrossRef Tran, H.-S., et al.: 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations. Mater. Design 128, 130–142 (2017)CrossRef
38.
go back to reference Nie, P., Ojo, O., Li, Z.: Modeling analysis of laser cladding of a nickel-based superalloy. Surf. Coat. Technol. 258, 1048–1059 (2014)CrossRef Nie, P., Ojo, O., Li, Z.: Modeling analysis of laser cladding of a nickel-based superalloy. Surf. Coat. Technol. 258, 1048–1059 (2014)CrossRef
39.
go back to reference Gouge, M.F., Heigel, J.C., Michaleris, P., Palmer, T.A.: Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 79, 307–320 (2015)CrossRef Gouge, M.F., Heigel, J.C., Michaleris, P., Palmer, T.A.: Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 79, 307–320 (2015)CrossRef
40.
go back to reference Darabi, R., Ferreira, A., Azinpour, E., de Sa, J.C., Reis, A.: Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. Int. J. Adv. Manuf. Technol. 119(5), 3975–3993 (2022)CrossRef Darabi, R., Ferreira, A., Azinpour, E., de Sa, J.C., Reis, A.: Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. Int. J. Adv. Manuf. Technol. 119(5), 3975–3993 (2022)CrossRef
41.
go back to reference Wang, Y., Zhou, J., Zhang, T., Li, P., Zhu, H., Meng, X.: Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings 13(2), 432 (2023)CrossRef Wang, Y., Zhou, J., Zhang, T., Li, P., Zhu, H., Meng, X.: Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings 13(2), 432 (2023)CrossRef
42.
go back to reference Papazoglou, E., Karkalos, N., Markopoulos, A.: A comprehensive study on thermal modeling of SLM process under conduction mode using FEM. Int. J. Adv. Manuf. Technol. 111(9), 2939–2955 (2020)CrossRef Papazoglou, E., Karkalos, N., Markopoulos, A.: A comprehensive study on thermal modeling of SLM process under conduction mode using FEM. Int. J. Adv. Manuf. Technol. 111(9), 2939–2955 (2020)CrossRef
43.
go back to reference Lin, Y., Lüthi, C., Afrasiabi, M., Bambach, M.: Enhanced heat source modeling in particle-based laser manufacturing simulations with ray tracing. Int. J. Heat Mass Transf. 214, 124378 (2023)CrossRef Lin, Y., Lüthi, C., Afrasiabi, M., Bambach, M.: Enhanced heat source modeling in particle-based laser manufacturing simulations with ray tracing. Int. J. Heat Mass Transf. 214, 124378 (2023)CrossRef
44.
go back to reference Devesse, W., De Baere, D., Guillaume, P.: Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing. J. Laser Appl., 27(S2), (2015) Devesse, W., De Baere, D., Guillaume, P.: Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing. J. Laser Appl., 27(S2), (2015)
45.
go back to reference Srisungsitthisunti, P., Kaewprachum, B., Yang, Z., Gao, G.: Real-time quality monitoring of laser cladding process on rail steel by an infrared camera. Metals 12(5), 825 (2022)CrossRef Srisungsitthisunti, P., Kaewprachum, B., Yang, Z., Gao, G.: Real-time quality monitoring of laser cladding process on rail steel by an infrared camera. Metals 12(5), 825 (2022)CrossRef
46.
go back to reference Yan, Z., et al.: Effect of thermal characteristics on distortion in laser cladding of AISI 316L. J. Manuf. Process. 44, 309–318 (2019)CrossRef Yan, Z., et al.: Effect of thermal characteristics on distortion in laser cladding of AISI 316L. J. Manuf. Process. 44, 309–318 (2019)CrossRef
47.
go back to reference Doubenskaia, M., Pavlov, M., Grigoriev, S., Smurov, I.: Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 220, 244–247 (2013)CrossRef Doubenskaia, M., Pavlov, M., Grigoriev, S., Smurov, I.: Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 220, 244–247 (2013)CrossRef
48.
go back to reference D’Accardi, E., et al.: Online monitoring of direct laser metal deposition process by means of infrared thermography. Prog. Addit. Manuf. 1–19 (2023) D’Accardi, E., et al.: Online monitoring of direct laser metal deposition process by means of infrared thermography. Prog. Addit. Manuf. 1–19 (2023)
49.
go back to reference Liu, H., Li, M., Qin, X., Huang, S., Hong, F.: Numerical simulation and experimental analysis of wide-beam laser cladding. Int. J. Adv. Manuf. Technol. 100, 237–249 (2019)CrossRef Liu, H., Li, M., Qin, X., Huang, S., Hong, F.: Numerical simulation and experimental analysis of wide-beam laser cladding. Int. J. Adv. Manuf. Technol. 100, 237–249 (2019)CrossRef
50.
go back to reference Muvvala, G., Karmakar, D.P., Nath, A.K.: In-process detection of microstructural changes in laser cladding of in-situ inconel 718/TiC metal matrix composite coating. J. Alloys Compd. 740, 545–558 (2018)CrossRef Muvvala, G., Karmakar, D.P., Nath, A.K.: In-process detection of microstructural changes in laser cladding of in-situ inconel 718/TiC metal matrix composite coating. J. Alloys Compd. 740, 545–558 (2018)CrossRef
51.
go back to reference Khan, M., Maurya, K., Thawari, N., Gupta, T.: Temperature monitoring in laser cladding process. In: IOP Conference Series: Materials Science and Engineering, vol. 455, no. 1, p. 012129. IOP Publishing (2018) Khan, M., Maurya, K., Thawari, N., Gupta, T.: Temperature monitoring in laser cladding process. In: IOP Conference Series: Materials Science and Engineering, vol. 455, no. 1, p. 012129. IOP Publishing (2018)
52.
go back to reference Mazzarisi, M., Campanelli, S.L., Angelastro, A., Palano, F., Dassisti, M.: In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography. Int. J. Adv. Manuf. Technol. 112, 157–173 (2021)CrossRef Mazzarisi, M., Campanelli, S.L., Angelastro, A., Palano, F., Dassisti, M.: In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography. Int. J. Adv. Manuf. Technol. 112, 157–173 (2021)CrossRef
53.
go back to reference Mazzarisi, M., Angelastro, A., Latte, M., Colucci, T., Palano, F., Campanelli, S.L.: Thermal monitoring of laser metal deposition strategies using infrared thermography. J. Manuf. Process. 85, 594–611 (2023)CrossRef Mazzarisi, M., Angelastro, A., Latte, M., Colucci, T., Palano, F., Campanelli, S.L.: Thermal monitoring of laser metal deposition strategies using infrared thermography. J. Manuf. Process. 85, 594–611 (2023)CrossRef
54.
go back to reference Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef
55.
go back to reference Farshidianfar, M.H., Khajepour, A., Gerlich, A.P.: Effect of real-time cooling rate on microstructure in laser additive manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef Farshidianfar, M.H., Khajepour, A., Gerlich, A.P.: Effect of real-time cooling rate on microstructure in laser additive manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef
56.
go back to reference Raza, M.R., Ahmad, F., Omar, M., German, R.: Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316L stainless steel. J. Mater. Process. Technol. 212(1), 164–170 (2012)CrossRef Raza, M.R., Ahmad, F., Omar, M., German, R.: Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316L stainless steel. J. Mater. Process. Technol. 212(1), 164–170 (2012)CrossRef
57.
go back to reference Song, L., Mazumder, J.: Feedback control of melt pool temperature during laser cladding process. IEEE Trans. Control Syst. Technol. 19(6), 1349–1356 (2010)CrossRef Song, L., Mazumder, J.: Feedback control of melt pool temperature during laser cladding process. IEEE Trans. Control Syst. Technol. 19(6), 1349–1356 (2010)CrossRef
58.
go back to reference Farshidianfar, M.H.: Real-time closed-loop control of microstructure and geometry in laser materials processing, PhD Thesis, University of Waterloo (2017) Farshidianfar, M.H.: Real-time closed-loop control of microstructure and geometry in laser materials processing, PhD Thesis, University of Waterloo (2017)
59.
go back to reference Smoqi, Z., et al.: Closed-loop control of meltpool temperature in directed energy deposition. Mater. Design 215, 110508 (2022)CrossRef Smoqi, Z., et al.: Closed-loop control of meltpool temperature in directed energy deposition. Mater. Design 215, 110508 (2022)CrossRef
60.
go back to reference Khamidullin, B., Tsivilskiy, I., Gorunov, A., Gilmutdinov, A.K.: Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surf. Coat. Technol. 364, 430–443 (2019)CrossRef Khamidullin, B., Tsivilskiy, I., Gorunov, A., Gilmutdinov, A.K.: Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surf. Coat. Technol. 364, 430–443 (2019)CrossRef
61.
go back to reference Moeinfar, K., Khodabakhshi, F., Kashani-Bozorg, S., Mohammadi, M., Gerlich, A.: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 16, 1029–1068 (2022)CrossRef Moeinfar, K., Khodabakhshi, F., Kashani-Bozorg, S., Mohammadi, M., Gerlich, A.: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 16, 1029–1068 (2022)CrossRef
62.
go back to reference Ge, J., Yuan, B., Zhao, L., Yan, M., Chen, W., Zhang, L.: Effect of volume energy density on selective laser melting NiTi shape memory alloys: Microstructural evolution, mechanical and functional properties. J. Mater. Res. Technol. 20, 2872–2888 (2022)CrossRef Ge, J., Yuan, B., Zhao, L., Yan, M., Chen, W., Zhang, L.: Effect of volume energy density on selective laser melting NiTi shape memory alloys: Microstructural evolution, mechanical and functional properties. J. Mater. Res. Technol. 20, 2872–2888 (2022)CrossRef
63.
go back to reference Chen, S., Zhan, X., Zhao, Y., Wu, Y., Liu, D.: Influence of laser power on grain size and tensile strength of 5a90 Al–Li alloy t-joint fabricated by dual laser-beam bilateral synchronous welding. Met. Mater. Int. 27, 1671–1685 (2021)CrossRef Chen, S., Zhan, X., Zhao, Y., Wu, Y., Liu, D.: Influence of laser power on grain size and tensile strength of 5a90 Al–Li alloy t-joint fabricated by dual laser-beam bilateral synchronous welding. Met. Mater. Int. 27, 1671–1685 (2021)CrossRef
64.
go back to reference Ma, P., Wu, Y., Zhang, P., Chen, J.: Solidification prediction of laser cladding 316L by the finite element simulation. Int. J. Adv. Manuf. Technol. 103(1), 957–969 (2019)CrossRef Ma, P., Wu, Y., Zhang, P., Chen, J.: Solidification prediction of laser cladding 316L by the finite element simulation. Int. J. Adv. Manuf. Technol. 103(1), 957–969 (2019)CrossRef
65.
go back to reference Chen, L., Zhao, Y., Song, B., Yu, T., Liu, Z.: Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding. Opt. Laser Technol. 139, 107009 (2021)CrossRef Chen, L., Zhao, Y., Song, B., Yu, T., Liu, Z.: Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding. Opt. Laser Technol. 139, 107009 (2021)CrossRef
66.
go back to reference Jin, K., Yang, Z., Chen, P., Feng, P., Qiao, X.: Modeling of solidification process during multi-track laser cladding with 3D cellular automata coupling gas-liquid interface tracking and solute suppression nucleation. J. Mater. Process. Technol. 315, 117927 (2023)CrossRef Jin, K., Yang, Z., Chen, P., Feng, P., Qiao, X.: Modeling of solidification process during multi-track laser cladding with 3D cellular automata coupling gas-liquid interface tracking and solute suppression nucleation. J. Mater. Process. Technol. 315, 117927 (2023)CrossRef
67.
go back to reference Chai, Q., Fang, C., Hu, J., Xing, Y., Huang, D.: Cellular automaton model for the simulation of laser cladding profile of metal alloys. Mater. Design 195, 109033 (2020)CrossRef Chai, Q., Fang, C., Hu, J., Xing, Y., Huang, D.: Cellular automaton model for the simulation of laser cladding profile of metal alloys. Mater. Design 195, 109033 (2020)CrossRef
68.
go back to reference Cao, Y., Choi, J.: Solidification microstructure evolution model for laser cladding process. Journal of Heat and Transfer, ASME. 129(7), 852–863 (2007) Cao, Y., Choi, J.: Solidification microstructure evolution model for laser cladding process. Journal of Heat and Transfer, ASME. 129(7), 852–863 (2007)
69.
go back to reference Xie, H., Yang, K., Li, F., Sun, C., Yu, Z.: Investigation on the Laves phase formation during laser cladding of IN718 alloy by CA-FE. J. Manuf. Process. 52, 132–144 (2020)CrossRef Xie, H., Yang, K., Li, F., Sun, C., Yu, Z.: Investigation on the Laves phase formation during laser cladding of IN718 alloy by CA-FE. J. Manuf. Process. 52, 132–144 (2020)CrossRef
70.
go back to reference Jie, D., Wu, M., He, R., Cui, C., Miao, X.: A multiphase modeling for investigating temperature history, flow field and solidification microstructure evolution of FeCoNiCrTi coating by laser cladding. Opt. Laser. Technol. 169, 110197 (2024)CrossRef Jie, D., Wu, M., He, R., Cui, C., Miao, X.: A multiphase modeling for investigating temperature history, flow field and solidification microstructure evolution of FeCoNiCrTi coating by laser cladding. Opt. Laser. Technol. 169, 110197 (2024)CrossRef
71.
go back to reference Liu, Y., et al.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56–67 (2016)CrossRef Liu, Y., et al.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56–67 (2016)CrossRef
72.
go back to reference Khorasani, A.M., Gibson, I., Goldberg, M., Littlefair, G.: A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater. Design 103, 348–355 (2016)CrossRef Khorasani, A.M., Gibson, I., Goldberg, M., Littlefair, G.: A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater. Design 103, 348–355 (2016)CrossRef
73.
go back to reference Ahmadi, M., Tabary, S.B., Rahmatabadi, D., Ebrahimi, M.S., Abrinia, K. and Hashemi, R.: Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 19, 1537–1562 (2022) Ahmadi, M., Tabary, S.B., Rahmatabadi, D., Ebrahimi, M.S., Abrinia, K. and Hashemi, R.: Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 19, 1537–1562 (2022)
74.
go back to reference Liu, Y., Liu, Z., Jiang, Y., Wang, G., Yang, Y., Zhang, L.: Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys. Compd. 735, 1414–1421 (2018)CrossRef Liu, Y., Liu, Z., Jiang, Y., Wang, G., Yang, Y., Zhang, L.: Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys. Compd. 735, 1414–1421 (2018)CrossRef
75.
go back to reference Guo, W., et al.: Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater. Design 215, 110460 (2022)CrossRef Guo, W., et al.: Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater. Design 215, 110460 (2022)CrossRef
76.
go back to reference Narasimharaju, S.R., et al.: A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J. Manuf. Process. 75, 375–414 (2022)CrossRef Narasimharaju, S.R., et al.: A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J. Manuf. Process. 75, 375–414 (2022)CrossRef
77.
go back to reference Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L.: Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178, 1–3 (2006)CrossRef Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L.: Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178, 1–3 (2006)CrossRef
78.
go back to reference Shi, R., Khairallah, S.A., Roehling, T.T., Heo, T.W., McKeown, J.T., Matthews, M.J.: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater. 184, 284–305 (2020)CrossRef Shi, R., Khairallah, S.A., Roehling, T.T., Heo, T.W., McKeown, J.T., Matthews, M.J.: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater. 184, 284–305 (2020)CrossRef
79.
go back to reference Ali, M., Porter, D., Kömi, J., Eissa, M., Faramawy, H.E., Mattar, T.: Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J. Iron Steel Res. Int. 26, 1350–1365 (2019)CrossRef Ali, M., Porter, D., Kömi, J., Eissa, M., Faramawy, H.E., Mattar, T.: Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J. Iron Steel Res. Int. 26, 1350–1365 (2019)CrossRef
80.
go back to reference Liu, H., Lu, S., Zhang, Y., Chen, H., Chen, Y., Qian, M.: Migration of solidification grain boundaries and prediction. Nat. Commun. 13(1), 5910 (2022)CrossRef Liu, H., Lu, S., Zhang, Y., Chen, H., Chen, Y., Qian, M.: Migration of solidification grain boundaries and prediction. Nat. Commun. 13(1), 5910 (2022)CrossRef
81.
go back to reference Mazumder, J.: Laser heat treatment: the state of the art. JOM 35(5), 18–26 (1983)CrossRef Mazumder, J.: Laser heat treatment: the state of the art. JOM 35(5), 18–26 (1983)CrossRef
82.
go back to reference Bertoli, U.S., Guss, G., Wu, S., Matthews, M.J., Schoenung, J.M.: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater. Design 135, 385–396 (2017)CrossRef Bertoli, U.S., Guss, G., Wu, S., Matthews, M.J., Schoenung, J.M.: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater. Design 135, 385–396 (2017)CrossRef
83.
go back to reference Nair, A.M., Muvvala, G., Sarkar, S., Nath, A.K.: Real-time detection of cooling rate using pyrometers in tandem in laser material processing and directed energy deposition. Mater. Lett. 277, 128330 (2020)CrossRef Nair, A.M., Muvvala, G., Sarkar, S., Nath, A.K.: Real-time detection of cooling rate using pyrometers in tandem in laser material processing and directed energy deposition. Mater. Lett. 277, 128330 (2020)CrossRef
84.
go back to reference Lee, Y., Nordin, M., Babu, S.S., Farson, D.F.: Effect of fluid convection on dendrite arm spacing in laser deposition. Metall. Mater. Trans. B 45, 1520–1529 (2014)CrossRef Lee, Y., Nordin, M., Babu, S.S., Farson, D.F.: Effect of fluid convection on dendrite arm spacing in laser deposition. Metall. Mater. Trans. B 45, 1520–1529 (2014)CrossRef
85.
go back to reference Huang, H., Mayer, H.: Extraction of the 3D branching structure of unfoliaged deciduous trees from image sequences. Photogrammetrie Fernerkundung Geoinformation 2007(6), 429 (2007) Huang, H., Mayer, H.: Extraction of the 3D branching structure of unfoliaged deciduous trees from image sequences. Photogrammetrie Fernerkundung Geoinformation 2007(6), 429 (2007)
86.
go back to reference Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer Science and Business Media (2005) Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer Science and Business Media (2005)
87.
go back to reference Bhowmik, A., Yang, Y., Zhou, W., Chew, Y., Bi, G.: On the heterogeneous cooling rates in laser-clad Al-50Si alloy. Surf. Coat. Technol. 408, 126780 (2021)CrossRef Bhowmik, A., Yang, Y., Zhou, W., Chew, Y., Bi, G.: On the heterogeneous cooling rates in laser-clad Al-50Si alloy. Surf. Coat. Technol. 408, 126780 (2021)CrossRef
88.
go back to reference Odabaşı, A., Ünlü, N., Göller, G., Eruslu, M.N.: A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy Inconel 718. Metall. Mater. Trans. A 41, 2357–2365 (2010)CrossRef Odabaşı, A., Ünlü, N., Göller, G., Eruslu, M.N.: A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy Inconel 718. Metall. Mater. Trans. A 41, 2357–2365 (2010)CrossRef
89.
go back to reference Wenzler, D.L., Bergmeier, K., Baehr, S., Diller, J., Zaeh, M.F.: A novel methodology for the thermographic cooling rate measurement during Powder Bed Fusion of metals using a laser Beam. Integrating Mater. Manuf. Innov. 12(1), 41–51 (2023)CrossRef Wenzler, D.L., Bergmeier, K., Baehr, S., Diller, J., Zaeh, M.F.: A novel methodology for the thermographic cooling rate measurement during Powder Bed Fusion of metals using a laser Beam. Integrating Mater. Manuf. Innov. 12(1), 41–51 (2023)CrossRef
90.
go back to reference Gawert, C., Bähr, R.: Automatic determination of secondary dendrite arm spacing in AlSi-cast microstructures. Materials 14(11), 2827 (2021)CrossRef Gawert, C., Bähr, R.: Automatic determination of secondary dendrite arm spacing in AlSi-cast microstructures. Materials 14(11), 2827 (2021)CrossRef
91.
go back to reference Hong, K.-M., Shin, Y.C.: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model. J. Mater. Process. Technol. 237, 420–429 (2016)CrossRef Hong, K.-M., Shin, Y.C.: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model. J. Mater. Process. Technol. 237, 420–429 (2016)CrossRef
92.
go back to reference Li, S., Chen, B., Tan, C., Song, X.: Effects of oxygen content on microstructure and mechanical properties of 18Ni300 maraging steel manufactured by laser directed energy deposition. Opt. Laser Technol. 153, 108281 (2022)CrossRef Li, S., Chen, B., Tan, C., Song, X.: Effects of oxygen content on microstructure and mechanical properties of 18Ni300 maraging steel manufactured by laser directed energy deposition. Opt. Laser Technol. 153, 108281 (2022)CrossRef
93.
go back to reference Yang, J., Yu, H., Yin, J., Gao, M., Wang, Z., Zeng, X.: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Design 108, 308–318 (2016)CrossRef Yang, J., Yu, H., Yin, J., Gao, M., Wang, Z., Zeng, X.: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Design 108, 308–318 (2016)CrossRef
94.
go back to reference Xu, P.G., Yin, F.X., Nagai, K.: Effect of cooling rate on as-cast texture of low-carbon steel strips during rapid solidification. In: Materials Science Forum, vol. 512, pp. 41–48. Trans Tech Publ (2006) Xu, P.G., Yin, F.X., Nagai, K.: Effect of cooling rate on as-cast texture of low-carbon steel strips during rapid solidification. In: Materials Science Forum, vol. 512, pp. 41–48. Trans Tech Publ (2006)
95.
go back to reference Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 29(6), 414–418 (2013)CrossRef Zhang, Y., Li, Z., Nie, P., Wu, Y.: Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 29(6), 414–418 (2013)CrossRef
96.
go back to reference Fatoba, O., Akinlabi, E., Makahtha, M.: Effects of cooling rate and silicon content on microstructure and mechanical properties of laser deposited Ti-6Al-4V alloy. Mater. Today: Proc. 5(9), 18368–18375 (2018) Fatoba, O., Akinlabi, E., Makahtha, M.: Effects of cooling rate and silicon content on microstructure and mechanical properties of laser deposited Ti-6Al-4V alloy. Mater. Today: Proc. 5(9), 18368–18375 (2018)
97.
go back to reference Dixit, S., Liu, S.: Laser additive manufacturing of high-strength aluminum alloys: challenges and strategies. J. Manuf. Mater. Process. 6(6), 156 (2022) Dixit, S., Liu, S.: Laser additive manufacturing of high-strength aluminum alloys: challenges and strategies. J. Manuf. Mater. Process. 6(6), 156 (2022)
98.
go back to reference Park, S.-H., Liu, P., Yi, K., Choi, G., Jhang, K.-Y., Sohn, H.: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int. J. Mach. Tools Manuf. 166, 103745 (2021)CrossRef Park, S.-H., Liu, P., Yi, K., Choi, G., Jhang, K.-Y., Sohn, H.: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int. J. Mach. Tools Manuf. 166, 103745 (2021)CrossRef
99.
go back to reference Baker, B.W., et al.: Processing-microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E 1, 318–330 (2014) Baker, B.W., et al.: Processing-microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E 1, 318–330 (2014)
100.
go back to reference Chen, Z., Nash, P., Zhang, Y.: Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B 50, 1718–1728 (2019)CrossRef Chen, Z., Nash, P., Zhang, Y.: Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B 50, 1718–1728 (2019)CrossRef
101.
go back to reference Zare, M.A., Taghiabadi, R., Ghoncheh, M.: Effect of cooling rate on microstructure and mechanical properties of AA5056 Al-Mg alloy. Springer Science and Business Media LLC. Int. J. Metalcast. (3), 1533–1543 (2021) Zare, M.A., Taghiabadi, R., Ghoncheh, M.: Effect of cooling rate on microstructure and mechanical properties of AA5056 Al-Mg alloy. Springer Science and Business Media LLC. Int. J. Metalcast.  (3), 1533–1543 (2021)
102.
go back to reference Moravec, J., Mičian, M., Málek, M., Švec, M.: Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel. Materials 15(13), 4637 (2022)CrossRef Moravec, J., Mičian, M., Málek, M., Švec, M.: Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel. Materials 15(13), 4637 (2022)CrossRef
103.
go back to reference Yang, X., et al.: Effect of cooling rate and austenite deformation on hardness and microstructure of 960 MPa high strength steel. Sci. Eng. Compos. Mater. 27(1), 415–423 (2020)CrossRef Yang, X., et al.: Effect of cooling rate and austenite deformation on hardness and microstructure of 960 MPa high strength steel. Sci. Eng. Compos. Mater. 27(1), 415–423 (2020)CrossRef
104.
go back to reference Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015)CrossRef Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015)CrossRef
105.
go back to reference Tian, X., Zhang, S., Wang, H.: The influences of anneal temperature and cooling rate on microstructure and tensile properties of laser deposited Ti–4Al–1.5 mn titanium alloy. J. Alloys Compd. 608, 95–101 (2014)CrossRef Tian, X., Zhang, S., Wang, H.: The influences of anneal temperature and cooling rate on microstructure and tensile properties of laser deposited Ti–4Al–1.5 mn titanium alloy. J. Alloys Compd. 608, 95–101 (2014)CrossRef
106.
go back to reference Rasouli, D., Asl, S.K., Akbarzadeh, A., Daneshi, G.: Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel. J. Mater. Process. Technol. 206, 1–3 (2008)CrossRef Rasouli, D., Asl, S.K., Akbarzadeh, A., Daneshi, G.: Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel. J. Mater. Process. Technol. 206, 1–3 (2008)CrossRef
107.
go back to reference Totten, G., Webster, G., Bates, C., Mackenzie, D.: Industrial use of quench factor analysis: application as a specification procedure for quenchant qualification. In: Advances in the Metallurgy of Aluminum Alloys, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys, pp. 204–212. (2001) Totten, G., Webster, G., Bates, C., Mackenzie, D.: Industrial use of quench factor analysis: application as a specification procedure for quenchant qualification. In: Advances in the Metallurgy of Aluminum Alloys, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys, pp. 204–212. (2001)
108.
go back to reference Amine, T., Newkirk, J.W., Liou, F.: Methodology for studying effect of cooling rate during laser deposition on microstructure. J. Mater. Eng. Perform. 24, 3129–3136 (2015)CrossRef Amine, T., Newkirk, J.W., Liou, F.: Methodology for studying effect of cooling rate during laser deposition on microstructure. J. Mater. Eng. Perform. 24, 3129–3136 (2015)CrossRef
109.
go back to reference Chen, P., et al.: Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J. Mater. Sci. Technol. 125, 105–117 (2022)CrossRef Chen, P., et al.: Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J. Mater. Sci. Technol. 125, 105–117 (2022)CrossRef
110.
go back to reference Vitek, J., David, S., Hinman, C.: Improved ferrite number prediction model that accounts for cooling rate effects part 1: Model development. Weld. J.-New York-. 82(1), 10–S (2003) Vitek, J., David, S., Hinman, C.: Improved ferrite number prediction model that accounts for cooling rate effects part 1: Model development. Weld. J.-New York-. 82(1), 10–S (2003)
111.
go back to reference Panwisawas, C., Gong, Y., Tang, Y.T., Reed, R.C., Shinjo, J.: Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Additive Manuf. 47, 102339 (2021)CrossRef Panwisawas, C., Gong, Y., Tang, Y.T., Reed, R.C., Shinjo, J.: Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Additive Manuf. 47, 102339 (2021)CrossRef
112.
go back to reference Kashaev, N., Ventzke, V., Fomichev, V., Fomin, F., Riekehr, S.: Effect of nd: YAG laser beam welding on Weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016)CrossRef Kashaev, N., Ventzke, V., Fomichev, V., Fomin, F., Riekehr, S.: Effect of nd: YAG laser beam welding on Weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016)CrossRef
113.
go back to reference El-Kashif, E., Asakura, K., Shibata, K.: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43(12), 2007–2014 (2003)CrossRef El-Kashif, E., Asakura, K., Shibata, K.: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43(12), 2007–2014 (2003)CrossRef
114.
go back to reference Thampy, V., et al.: Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci. Rep. 10(1), 1–9 (2020)CrossRef Thampy, V., et al.: Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci. Rep. 10(1), 1–9 (2020)CrossRef
115.
go back to reference Lin, X., Cao, Y., Wu, X., Yang, H., Chen, J., Huang, W.: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater. Sci. Eng.: A 553, 80–88 (2012)CrossRef Lin, X., Cao, Y., Wu, X., Yang, H., Chen, J., Huang, W.: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater. Sci. Eng.: A 553, 80–88 (2012)CrossRef
116.
go back to reference Gan, Z., Yu, G., He, X., Li, S.: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int. J. Heat Mass. Transf. 104, 28–38 (2017)CrossRef Gan, Z., Yu, G., He, X., Li, S.: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int. J. Heat Mass. Transf. 104, 28–38 (2017)CrossRef
117.
go back to reference Zhang, K., Wang, S., Liu, W., Shang, X.: Characterization of stainless steel parts by laser metal deposition shaping. Mater. Design 55, 104–119 (2014)CrossRef Zhang, K., Wang, S., Liu, W., Shang, X.: Characterization of stainless steel parts by laser metal deposition shaping. Mater. Design 55, 104–119 (2014)CrossRef
118.
go back to reference Lv, H., et al.: Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy. J. Manuf. Process. 67, 63–76 (2021)CrossRef Lv, H., et al.: Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy. J. Manuf. Process. 67, 63–76 (2021)CrossRef
119.
go back to reference Moosa, A.A., Kadhim, M.J., Subhi, A.D.: Dilution effect during laser cladding of Inconel 617 with Ni-Al powders. Mod. Appl. Sci. 5(1), 50 (2011)CrossRef Moosa, A.A., Kadhim, M.J., Subhi, A.D.: Dilution effect during laser cladding of Inconel 617 with Ni-Al powders. Mod. Appl. Sci. 5(1), 50 (2011)CrossRef
120.
go back to reference Cottam, R., Brandt, M.: Laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate: Effect of laser cladding parameters on microstructure. Phys. Procedia 12, 323–329 (2011)CrossRef Cottam, R., Brandt, M.: Laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate: Effect of laser cladding parameters on microstructure. Phys. Procedia 12, 323–329 (2011)CrossRef
121.
go back to reference Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., Cárcel, A.: Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties. Phys. Procedia 56, 284–293 (2014)CrossRef Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., Cárcel, A.: Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties. Phys. Procedia 56, 284–293 (2014)CrossRef
122.
go back to reference Bennett, J.L., Wolff, S.J., Hyatt, G., Ehmann, K., Cao, J.: Thermal effect on clad dimension for laser deposited Inconel 718. J. Manuf. Process. 28, 550–557 (2017)CrossRef Bennett, J.L., Wolff, S.J., Hyatt, G., Ehmann, K., Cao, J.: Thermal effect on clad dimension for laser deposited Inconel 718. J. Manuf. Process. 28, 550–557 (2017)CrossRef
123.
go back to reference Fetni, S., et al.: Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Design 204, 109661 (2021)CrossRef Fetni, S., et al.: Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Design 204, 109661 (2021)CrossRef
124.
go back to reference Chen, B., Mazumder, J.: Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718. Rapid Prototyp. J. (2017) Chen, B., Mazumder, J.: Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718. Rapid Prototyp. J. (2017)
125.
go back to reference Do Vale, N.L., Fernandes, C.A., Santos, R.A., Santos, T.F., Urtiga Filho, S.L.: Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate. JOM 73(10), 2868–2877 (2021)CrossRef Do Vale, N.L., Fernandes, C.A., Santos, R.A., Santos, T.F., Urtiga Filho, S.L.: Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate. JOM 73(10), 2868–2877 (2021)CrossRef
126.
go back to reference Paul, S., et al.: Critical deposition height for sustainable restoration via laser additive manufacturing. Sci. Rep. 8(1), 14726 (2018)CrossRef Paul, S., et al.: Critical deposition height for sustainable restoration via laser additive manufacturing. Sci. Rep. 8(1), 14726 (2018)CrossRef
127.
go back to reference Zhang, Z., Farahmand, P., Kovacevic, R.: Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Mater. Design 109, 686–699 (2016)CrossRef Zhang, Z., Farahmand, P., Kovacevic, R.: Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Mater. Design 109, 686–699 (2016)CrossRef
128.
go back to reference Youssef, D., Hassab-Elnaby, S., Al-Sayed, S.R.: New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4V alloy. Alex. Eng. J. 61(5), 4137–4158 (2022)CrossRef Youssef, D., Hassab-Elnaby, S., Al-Sayed, S.R.: New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4V alloy. Alex. Eng. J. 61(5), 4137–4158 (2022)CrossRef
129.
go back to reference Górny, M., Sikora, G.: Effect of titanium addition and cooling rate on primary α (Al) grains and tensile properties of Al-Cu alloy. J. Mater. Eng. Perform. 24, 1150–1156 (2015)CrossRef Górny, M., Sikora, G.: Effect of titanium addition and cooling rate on primary α (Al) grains and tensile properties of Al-Cu alloy. J. Mater. Eng. Perform. 24, 1150–1156 (2015)CrossRef
130.
go back to reference Xie, Y., et al.: The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy. Virtual Phys. Prototyp. 18(1), e2142802 (2023)CrossRef Xie, Y., et al.: The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy. Virtual Phys. Prototyp. 18(1), e2142802 (2023)CrossRef
131.
go back to reference Fathi, A., Toyserkani, E., Khajepour, A., Durali, M.: Prediction of melt pool depth and dilution in laser powder deposition. J. Phys. D 39(12), 2613 (2006)CrossRef Fathi, A., Toyserkani, E., Khajepour, A., Durali, M.: Prediction of melt pool depth and dilution in laser powder deposition. J. Phys. D 39(12), 2613 (2006)CrossRef
132.
go back to reference Liu, J., Li, J., Cheng, X., Wang, H.: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate. Surf. Coat. Technol. 325, 352–359 (2017)CrossRef Liu, J., Li, J., Cheng, X., Wang, H.: Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate. Surf. Coat. Technol. 325, 352–359 (2017)CrossRef
133.
go back to reference Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., Zhang, C.: Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. J. Alloys. Compd. 763, 376–383 (2018)CrossRef Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., Zhang, C.: Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. J. Alloys. Compd. 763, 376–383 (2018)CrossRef
134.
go back to reference Garnayak, S., Vanteru, M.R., Dash, S.K.: Liquid Fuel Combustion with Extremely Diluted Oxidizer in High Swirl Flows at High Pressure. In: Proc. 2nd Natl. Aero Propuls. Conf., Kharagpur, West Bengal NAPC 2018. (2018) Garnayak, S., Vanteru, M.R., Dash, S.K.: Liquid Fuel Combustion with Extremely Diluted Oxidizer in High Swirl Flows at High Pressure. In: Proc. 2nd Natl. Aero Propuls. Conf., Kharagpur, West Bengal NAPC 2018. (2018)
135.
go back to reference Bruna-Rosso, C., Mergheim, J., Previtali, B.: Finite element modeling of residual stress and geometrical error formations in selective laser melting of metals. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 235(11), 2022–2038 (2021)CrossRef Bruna-Rosso, C., Mergheim, J., Previtali, B.: Finite element modeling of residual stress and geometrical error formations in selective laser melting of metals. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 235(11), 2022–2038 (2021)CrossRef
136.
go back to reference Liu, Y., Xue, D., Wang, H.: A new sample preparation method for WD-XRF analysis of sulfide ores by fusion techniques: A BN crucible for protection against contamination and quantitative retention of sulfur. Anal. Methods 8(6), 1299–1306 (2016)CrossRef Liu, Y., Xue, D., Wang, H.: A new sample preparation method for WD-XRF analysis of sulfide ores by fusion techniques: A BN crucible for protection against contamination and quantitative retention of sulfur. Anal. Methods 8(6), 1299–1306 (2016)CrossRef
137.
go back to reference Cao, X., Wallace, W., Immarigeon, J.-P., Poon, C.: Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater. Manuf. Process. 18(1), 23–49 (2003)CrossRef Cao, X., Wallace, W., Immarigeon, J.-P., Poon, C.: Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater. Manuf. Process. 18(1), 23–49 (2003)CrossRef
138.
go back to reference Lu, Y., Huang, G., Wang, Y., Li, H., Qin, Z., Lu, X.: Crack-free Fe-based amorphous coating synthesized by laser cladding. Mater. Lett. 210, 46–50 (2018)CrossRef Lu, Y., Huang, G., Wang, Y., Li, H., Qin, Z., Lu, X.: Crack-free Fe-based amorphous coating synthesized by laser cladding. Mater. Lett. 210, 46–50 (2018)CrossRef
139.
go back to reference Rottwinkel, B., Nölke, C., Kaierle, S., Wesling, V.: Crack repair of single crystal turbine blades using laser cladding technology. Procedia Cirp 22, 263–267 (2014)CrossRef Rottwinkel, B., Nölke, C., Kaierle, S., Wesling, V.: Crack repair of single crystal turbine blades using laser cladding technology. Procedia Cirp 22, 263–267 (2014)CrossRef
140.
go back to reference Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef
141.
go back to reference Fu, F., Zhang, Y., Chang, G., Dai, J.: Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 127(1), 200–202 (2016)CrossRef Fu, F., Zhang, Y., Chang, G., Dai, J.: Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 127(1), 200–202 (2016)CrossRef
142.
go back to reference Triantafyllidis, D., Li, L., Stott, F.: Crack-free densification of ceramics by laser surface treatment. Surf. Coat. Technol. 201(6), 3163–3173 (2006)CrossRef Triantafyllidis, D., Li, L., Stott, F.: Crack-free densification of ceramics by laser surface treatment. Surf. Coat. Technol. 201(6), 3163–3173 (2006)CrossRef
143.
go back to reference Carlson, K.D., Lin, Z., Beckermann, C.: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B 38, 541–555 (2007)CrossRef Carlson, K.D., Lin, Z., Beckermann, C.: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B 38, 541–555 (2007)CrossRef
144.
go back to reference Nagaumi, H.: Prediction of porosity contents and examination of porosity formation in Al–4.4% mg DC slab. Sci. Technol. Adv. Mater. 2(1), 49–57 (2001)CrossRef Nagaumi, H.: Prediction of porosity contents and examination of porosity formation in Al–4.4% mg DC slab. Sci. Technol. Adv. Mater. 2(1), 49–57 (2001)CrossRef
145.
go back to reference Totten, G., Kobasko, N., Aronov, M.: Overview of intensive-quenching processes. Ind. Heat. (USA) 69(4), 31–33 (2002) Totten, G., Kobasko, N., Aronov, M.: Overview of intensive-quenching processes. Ind. Heat. (USA) 69(4), 31–33 (2002)
146.
go back to reference Shi, B., Li, T., Wang, D., Zhang, X., Zhang, H.: Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding. J. Mater. Sci. 56(23), 13323–13336 (2021)CrossRef Shi, B., Li, T., Wang, D., Zhang, X., Zhang, H.: Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding. J. Mater. Sci. 56(23), 13323–13336 (2021)CrossRef
147.
go back to reference Du, C., et al.: Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surf. Coat. Technol. 424, 127617 (2021)CrossRef Du, C., et al.: Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surf. Coat. Technol. 424, 127617 (2021)CrossRef
148.
go back to reference Yan, L., et al.: Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM 69, 586–591 (2017)CrossRef Yan, L., et al.: Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM 69, 586–591 (2017)CrossRef
149.
go back to reference Gao, P., et al.: Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 39, 144–154 (2020)CrossRef Gao, P., et al.: Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 39, 144–154 (2020)CrossRef
150.
go back to reference Sadhu, A., et al.: A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718. Surf. Coat. Technol. 389, 125646 (2020)CrossRef Sadhu, A., et al.: A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718. Surf. Coat. Technol. 389, 125646 (2020)CrossRef
151.
go back to reference Iveković, A., Montero-Sistiaga, M.L., Vleugels, J., Kruth, J.-P., Vanmeensel, K.: Crack mitigation in laser powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach. J. Alloys Compd. 864, 158803 (2021)CrossRef Iveković, A., Montero-Sistiaga, M.L., Vleugels, J., Kruth, J.-P., Vanmeensel, K.: Crack mitigation in laser powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach. J. Alloys Compd. 864, 158803 (2021)CrossRef
152.
go back to reference Siddique, S., Imran, M., Walther, F.: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int. J. Fatigue 94, 246–254 (2017)CrossRef Siddique, S., Imran, M., Walther, F.: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int. J. Fatigue 94, 246–254 (2017)CrossRef
153.
go back to reference Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136, 6 (2014)CrossRef Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136, 6 (2014)CrossRef
154.
go back to reference Xu, M., et al.: Effects of cooling rate on the microstructure and properties of hot-dipped Zn–Al–Mg coatings. Surf. Coat. Technol. 444, 128665 (2022)CrossRef Xu, M., et al.: Effects of cooling rate on the microstructure and properties of hot-dipped Zn–Al–Mg coatings. Surf. Coat. Technol. 444, 128665 (2022)CrossRef
155.
go back to reference McKean, S., Priest, J.: Multiple failure state triaxial testing of the Montney Formation. J. Petrol. Sci. Eng. 173, 122–135 (2019) McKean, S., Priest, J.: Multiple failure state triaxial testing of the Montney Formation. J. Petrol. Sci. Eng. 173, 122–135 (2019)
156.
go back to reference Fang, X., Li, H., Wang, M., Li, C., Guo, Y.: Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater. Charact. 143, 182–190 (2018)CrossRef Fang, X., Li, H., Wang, M., Li, C., Guo, Y.: Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater. Charact. 143, 182–190 (2018)CrossRef
Metadata
Title
A Review on Effect of Cooling Rate on Metallurgical, Mechanical, Geometrical Characteristics and Defects of Laser Cladding Process
Authors
Amir Mohammad Sedighi
Seyedeh Fatemeh Nabavi
Anooshiravan Farshidianfar
Publication date
06-05-2024
Publisher
Springer US
Published in
Lasers in Manufacturing and Materials Processing
Print ISSN: 2196-7229
Electronic ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-024-00254-9

Premium Partners