Skip to main content

2024 | OriginalPaper | Buchkapitel

Alleviating Over-Smoothing via Aggregation over Compact Manifolds

verfasst von : Dongzhuoran Zhou, Hui Yang, Bo Xiong, Yue Ma, Evgeny Kharlamov

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph neural networks (GNNs) have achieved significant success in various applications. Most GNNs learn the node features with information aggregation of its neighbors and feature transformation in each layer. However, the node features become indistinguishable after many layers, leading to performance deterioration: a significant limitation known as over-smoothing. Past work adopted various techniques for addressing this issue, such as normalization and skip-connection of layer-wise output. After the study, we found that the information aggregations in existing work are all contracted aggregations, with the intrinsic property that features will inevitably converge to the same single point after many layers. To this end, we propose the aggregation over compacted manifolds method (ACM) that replaces the existing information aggregation with aggregation over compact manifolds, a special type of manifold, which avoids contracted aggregations. In this work, we theoretically analyze contracted aggregation and its properties. We also provide an extensive empirical evaluation that shows ACM can effectively alleviate over-smoothing and outperforms the state-of-the-art. The code can be found in https://​github.​com/​DongzhuoranZhou/​ACM.​git.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In Fig. 1b, the unit circle is used as the embedding space. The aggregation of points is defined under polar coordinates. For example, the aggregation of two points in the unit circle with polar coordinate \((1, \theta ), (1, \phi )\) is \((1, \frac{\theta +\phi }{2})\).
 
Literatur
1.
Zurück zum Zitat Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: ICML, pp. 486–496. PMLR (2020) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: ICML, pp. 486–496. PMLR (2020)
2.
Zurück zum Zitat Balazevic, I., Allen, C., Hospedales, T.M.: Multi-relational poincaré graph embeddings. In: NeurIPS, pp. 4465–4475 (2019) Balazevic, I., Allen, C., Hospedales, T.M.: Multi-relational poincaré graph embeddings. In: NeurIPS, pp. 4465–4475 (2019)
4.
Zurück zum Zitat Chami, I., et al: Hyperbolic graph convolutional neural networks. In: NeurIPS, pp. 4869–4880 (2019) Chami, I., et al: Hyperbolic graph convolutional neural networks. In: NeurIPS, pp. 4869–4880 (2019)
5.
Zurück zum Zitat Chen, D., Lin, Y., et al.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. CoRR abs/ arXiv: 1909.03211 (2019) Chen, D., Lin, Y., et al.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. CoRR abs/ arXiv:​ 1909.​03211 (2019)
6.
Zurück zum Zitat Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: ICML, pp. 1725–1735. PMLR (2020) Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: ICML, pp. 1725–1735. PMLR (2020)
7.
Zurück zum Zitat Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. In: ICLR (2021) Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. In: ICLR (2021)
8.
Zurück zum Zitat Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: NeurIPS, pp. 5350–5360 (2018) Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: NeurIPS, pp. 5350–5360 (2018)
9.
Zurück zum Zitat Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: KDD, pp. 1416–1424. ACM (2018) Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: KDD, pp. 1416–1424. ACM (2018)
10.
Zurück zum Zitat Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)
11.
Zurück zum Zitat Gülçehre, Ç., et al.: Hyperbolic attention networks. In: ICLR (2019) Gülçehre, Ç., et al.: Hyperbolic attention networks. In: ICLR (2019)
12.
Zurück zum Zitat Hamilton, W.L.: Graph Representation Learning. Synthesis Lect. Artifi. Intell. Mach. Learn. (2020) Hamilton, W.L.: Graph Representation Learning. Synthesis Lect. Artifi. Intell. Mach. Learn. (2020)
13.
Zurück zum Zitat Hamilton, W.L., et al.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017) Hamilton, W.L., et al.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017)
14.
Zurück zum Zitat He, K., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016) He, K., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)
15.
Zurück zum Zitat Hou, Y., Zhang, J., et al.: Measuring and improving the use of graph information in graph neural networks. In: ICLR (2020) Hou, Y., Zhang, J., et al.: Measuring and improving the use of graph information in graph neural networks. In: ICLR (2020)
16.
Zurück zum Zitat Huang, W., et al.: Tackling over-smoothing for general graph convolutional networks. CoRR (2020) Huang, W., et al.: Tackling over-smoothing for general graph convolutional networks. CoRR (2020)
17.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
18.
Zurück zum Zitat Jin, W., Et al.: Feature overcorrelation in deep graph neural networks: a new perspective. In: KDD, pp. 709–719. ACM (2022) Jin, W., Et al.: Feature overcorrelation in deep graph neural networks: a new perspective. In: KDD, pp. 709–719. ACM (2022)
19.
Zurück zum Zitat Khrulkov, V., Et al.: Hyperbolic image embeddings. In: CVPR, pp. 6417–6427. Computer Vision Foundation/IEEE (2020) Khrulkov, V., Et al.: Hyperbolic image embeddings. In: CVPR, pp. 6417–6427. Computer Vision Foundation/IEEE (2020)
20.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
21.
22.
Zurück zum Zitat Klicpera, J., Et al.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2019) Klicpera, J., Et al.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2019)
23.
Zurück zum Zitat . Klicpera, J., et al.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2019) . Klicpera, J., et al.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2019)
24.
Zurück zum Zitat Lee, J.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics Lee, J.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics
25.
Zurück zum Zitat Li, G., Müller, M., et al.: Deepgcns: can gcns go as deep as cnns? In: ICCV, pp. 9266–9275. IEEE (2019) Li, G., Müller, M., et al.: Deepgcns: can gcns go as deep as cnns? In: ICCV, pp. 9266–9275. IEEE (2019)
26.
Zurück zum Zitat Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI, pp. 3538–3545 (2018) Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI, pp. 3538–3545 (2018)
27.
Zurück zum Zitat Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: KDD, pp. 338–348. ACM (2020) Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: KDD, pp. 338–348. ACM (2020)
28.
Zurück zum Zitat Mendelson, B.: Introduction to topology (1990) Mendelson, B.: Introduction to topology (1990)
29.
Zurück zum Zitat Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node classification. In: ICLR (2020) Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node classification. In: ICLR (2020)
30.
Zurück zum Zitat Pei, H., et al.: Geom-gcn: Geometric graph convolutional networks. In: ICLR (2020) Pei, H., et al.: Geom-gcn: Geometric graph convolutional networks. In: ICLR (2020)
31.
Zurück zum Zitat Rashid, A.M., Karypis, G., et al.: Learning preferences of new users in recommender systems: an information theoretic approach. SIGKDD Explor., 90–100 (2008) Rashid, A.M., Karypis, G., et al.: Learning preferences of new users in recommender systems: an information theoretic approach. SIGKDD Explor., 90–100 (2008)
32.
Zurück zum Zitat Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. In: ICLR (2020) Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. In: ICLR (2020)
33.
Zurück zum Zitat Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. CoRR abs/ arXiv: 1811.05868 (2018) Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. CoRR abs/ arXiv:​ 1811.​05868 (2018)
34.
Zurück zum Zitat Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet
35.
Zurück zum Zitat Ungar, A.A.: Barycentric calculus in Euclidean and hyperbolic geometry: a comparative introduction (2010) Ungar, A.A.: Barycentric calculus in Euclidean and hyperbolic geometry: a comparative introduction (2010)
36.
Zurück zum Zitat Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. CoRR abs/ arXiv: 1710.10903 (2017) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. CoRR abs/ arXiv:​ 1710.​10903 (2017)
37.
Zurück zum Zitat Wu, F., et al.: Simplifying graph convolutional networks. In: ICML, vol. 97, pp. 6861–6871. PMLR (2019) Wu, F., et al.: Simplifying graph convolutional networks. In: ICML, vol. 97, pp. 6861–6871. PMLR (2019)
38.
Zurück zum Zitat Xu, K., Hu, W., et al.: How powerful are graph neural networks? In: ICLR (2019) Xu, K., Hu, W., et al.: How powerful are graph neural networks? In: ICLR (2019)
39.
Zurück zum Zitat Xu, K., Li, C., Tian, Y., et al.: Representation learning on graphs with jumping knowledge networks. In: ICML, pp. 5449–5458. PMLR (2018) Xu, K., Li, C., Tian, Y., et al.: Representation learning on graphs with jumping knowledge networks. In: ICML, pp. 5449–5458. PMLR (2018)
40.
Zurück zum Zitat Yang, Z., et al.: Revisiting semi-supervised learning with graph embeddings. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 40–48 (2016) Yang, Z., et al.: Revisiting semi-supervised learning with graph embeddings. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 40–48 (2016)
41.
Zurück zum Zitat Zhao, L., Akoglu, L.: Pairnorm: tackling oversmoothing in gnns. In: ICLR (2020) Zhao, L., Akoglu, L.: Pairnorm: tackling oversmoothing in gnns. In: ICLR (2020)
42.
Zurück zum Zitat Zhou, J., Cui, G., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)CrossRef Zhou, J., Cui, G., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)CrossRef
43.
Zurück zum Zitat Zhou, K., et al.: Towards deeper graph neural networks with differentiable group normalization. In: NeurIPS (2020) Zhou, K., et al.: Towards deeper graph neural networks with differentiable group normalization. In: NeurIPS (2020)
Metadaten
Titel
Alleviating Over-Smoothing via Aggregation over Compact Manifolds
verfasst von
Dongzhuoran Zhou
Hui Yang
Bo Xiong
Yue Ma
Evgeny Kharlamov
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2253-2_31

Premium Partner