Skip to main content

2024 | OriginalPaper | Buchkapitel

DEGNN: Dual Experts Graph Neural Network Handling both Edge and Node Feature Noise

verfasst von : Tai Hasegawa, Sukwon Yun, Xin Liu, Yin Jun Phua, Tsuyoshi Murata

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph Neural Networks (GNNs) have achieved notable success in various applications over graph data. However, recent research has revealed that real-world graphs often contain noise, and GNNs are susceptible to noise in the graph. To address this issue, several Graph Structure Learning (GSL) models have been introduced. While GSL models are tailored to enhance robustness against edge noise through edge reconstruction, a significant limitation surfaces: their high reliance on node features. This inherent dependence amplifies their susceptibility to noise within node features. Recognizing this vulnerability, we present DEGNN, a novel GNN model designed to adeptly mitigate noise in both edges and node features. The core idea of DEGNN is to design two separate experts: an edge expert and a node feature expert. These experts utilize self-supervised learning techniques to produce modified edges and node features. Leveraging these modified representations, DEGNN subsequently addresses downstream tasks, ensuring robustness against noise present in both edges and node features of real-world graphs. Notably, the modification process can be trained end-to-end, empowering DEGNN to adjust dynamically and achieves optimal edge and node representations for specific tasks. Comprehensive experiments demonstrate DEGNN’s efficacy in managing noise, both in original real-world graphs and in graphs with synthetic noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
1.
Zurück zum Zitat Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020) Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)
2.
Zurück zum Zitat McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)CrossRef McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)CrossRef
3.
Zurück zum Zitat Maurya, S.K., Liu, X., Murata T.: Graph neural networks for fast node ranking approximation. In: TKDD (2021) Maurya, S.K., Liu, X., Murata T.: Graph neural networks for fast node ranking approximation. In: TKDD (2021)
4.
Zurück zum Zitat Zhang, M., et al.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018) Zhang, M., et al.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)
5.
Zurück zum Zitat Chung, F.R.K.: Spectral Graph Theory. number 92. American Mathematical Soc (1997) Chung, F.R.K.: Spectral Graph Theory. number 92. American Mathematical Soc (1997)
6.
Zurück zum Zitat Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS (2016) Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS (2016)
7.
Zurück zum Zitat Maurya, S.K., Liu, X., Murata, T.: Fast approximations of betweenness centrality with graph neural networks. In: CIKM (2019) Maurya, S.K., Liu, X., Murata, T.: Fast approximations of betweenness centrality with graph neural networks. In: CIKM (2019)
8.
Zurück zum Zitat Marsden, P.V.: Network data and measurement. Ann. Rev. Sociol. 16(1), 435–463 (1990)CrossRef Marsden, P.V.: Network data and measurement. Ann. Rev. Sociol. 16(1), 435–463 (1990)CrossRef
9.
Zurück zum Zitat Dai, H., et al.: Adversarial attack on graph structured data. In: ICML (2018) Dai, H., et al.: Adversarial attack on graph structured data. In: ICML (2018)
10.
Zurück zum Zitat Jin, W., et al.: Adversarial attacks and defenses on graphs. In: SIGKDD (2021) Jin, W., et al.: Adversarial attacks and defenses on graphs. In: SIGKDD (2021)
11.
Zurück zum Zitat Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
12.
Zurück zum Zitat Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017) Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017)
13.
Zurück zum Zitat Veličković, P., Cucurull, G.: Arantxa Casanova. Pietro Lio, and Yoshua Bengio. Graph attention networks. In ICLR, Adriana Romero (2018) Veličković, P., Cucurull, G.: Arantxa Casanova. Pietro Lio, and Yoshua Bengio. Graph attention networks. In ICLR, Adriana Romero (2018)
14.
Zurück zum Zitat Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: ICML (2019) Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: ICML (2019)
15.
Zurück zum Zitat Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)MathSciNetCrossRef Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)MathSciNetCrossRef
16.
Zurück zum Zitat Jin, R., Xia, T., Liu, X., Murata, T.: Predicting emergency medical service demand with bipartite graph convolutional networks. IEEE Access 9, 9903–9915 (2021)CrossRef Jin, R., Xia, T., Liu, X., Murata, T.: Predicting emergency medical service demand with bipartite graph convolutional networks. IEEE Access 9, 9903–9915 (2021)CrossRef
17.
Zurück zum Zitat Fan, W., et al.: Graph neural networks for social recommendation. In: WWW, pp. 417–426 (2019) Fan, W., et al.: Graph neural networks for social recommendation. In: WWW, pp. 417–426 (2019)
18.
Zurück zum Zitat Jin, W., et al.: Graph structure learning for robust graph neural networks. In: SIGKDD (2020) Jin, W., et al.: Graph structure learning for robust graph neural networks. In: SIGKDD (2020)
19.
Zurück zum Zitat Zhao, T., et al.: Data augmentation for graph neural networks. In: AAAI (2021) Zhao, T., et al.: Data augmentation for graph neural networks. In: AAAI (2021)
20.
Zurück zum Zitat Li, K., et al.: Reliable representations make a stronger defender: unsupervised structure refinement for robust GNN. In: SIGKDD (2022) Li, K., et al.: Reliable representations make a stronger defender: unsupervised structure refinement for robust GNN. In: SIGKDD (2022)
21.
Zurück zum Zitat Berthelot, D., et al.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019) Berthelot, D., et al.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)
22.
Zurück zum Zitat Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. In: ICML (2020) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. In: ICML (2020)
23.
Zurück zum Zitat You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: NeurIPS (2020) You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: NeurIPS (2020)
24.
Zurück zum Zitat Maurya, S.K., Liu, X., Murata, T.: Simplifying approach to node classification in graph neural networks. J. Comput. Sci. 62, 101695 (2022)CrossRef Maurya, S.K., Liu, X., Murata, T.: Simplifying approach to node classification in graph neural networks. J. Comput. Sci. 62, 101695 (2022)CrossRef
25.
Zurück zum Zitat Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: NeurIPS (2020) Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: NeurIPS (2020)
26.
Zurück zum Zitat Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling. In: EMNLP, pp. 1506–1515 (2017) Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling. In: EMNLP, pp. 1506–1515 (2017)
27.
Zurück zum Zitat Rakhimberdina, Z., Liu, X., Murata, T.: Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors 20(21), 6001 (2020)CrossRef Rakhimberdina, Z., Liu, X., Murata, T.: Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors 20(21), 6001 (2020)CrossRef
28.
Zurück zum Zitat Djenouri, Y., Belhadi, A., Srivastava, G., Lin, J.C.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023)CrossRef Djenouri, Y., Belhadi, A., Srivastava, G., Lin, J.C.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023)CrossRef
29.
Zurück zum Zitat Choong, J.J., Liu, X., Murata, T.: Learning community structure with variational autoencoder. In: ICDM, pp. 69–78 (2018) Choong, J.J., Liu, X., Murata, T.: Learning community structure with variational autoencoder. In: ICDM, pp. 69–78 (2018)
30.
Zurück zum Zitat Pei, H., Wei, B., Kevin, C.-C.C., Yu, L., Yang, B.: Geom-GCN: Geometric graph convolutional networks. In: ICLR (2020) Pei, H., Wei, B., Kevin, C.-C.C., Yu, L., Yang, B.: Geom-GCN: Geometric graph convolutional networks. In: ICLR (2020)
31.
Zurück zum Zitat Suresh, S., Li, P., Hao, C., Neville, J.: Adversarial graph augmentation to improve graph contrastive learning. In: NeurIPS (2021) Suresh, S., Li, P., Hao, C., Neville, J.: Adversarial graph augmentation to improve graph contrastive learning. In: NeurIPS (2021)
32.
Zurück zum Zitat Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data Eng. 35(6), 5879–5900 (2022) Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data Eng. 35(6), 5879–5900 (2022)
33.
Zurück zum Zitat Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. In: NeurIPS Workshop (2018) Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. In: NeurIPS Workshop (2018)
34.
Zurück zum Zitat Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial attacks. In: SIGKDD (2019) Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial attacks. In: SIGKDD (2019)
35.
36.
Zurück zum Zitat Wu, T., Ren, H., Li, P., Leskovec, J.: Graph information bottleneck. In: NeurIPS (2020) Wu, T., Ren, H., Li, P., Leskovec, J.: Graph information bottleneck. In: NeurIPS (2020)
37.
Zurück zum Zitat Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: NeurIPS (2018) Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: NeurIPS (2018)
Metadaten
Titel
DEGNN: Dual Experts Graph Neural Network Handling both Edge and Node Feature Noise
verfasst von
Tai Hasegawa
Sukwon Yun
Xin Liu
Yin Jun Phua
Tsuyoshi Murata
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2253-2_30

Premium Partner