Skip to main content

2024 | OriginalPaper | Buchkapitel

Biopolymers in Textile-Based Scaffolding and Wound Healing

verfasst von : Popat Mohite, Sunny R. Shah, Shubham Munde, Nitin Ade, Treasa Boban, Sudarshan Singh, Bhupendra Prajapati

Erschienen in: Biopolymers in the Textile Industry

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biopolymers are made from natural proteins, carbohydrates, and nucleic acids. These materials have become increasingly popular in tissue engineering and regenerative medicine, offering several advantages over synthetic materials. Additionally, biopolymers have been used in various fields, including biomedicine, due to their biocompatibility, biodegradability, and low toxicity. Textile-based scaffolds are a biomaterial used in tissue engineering to support the growth and regeneration of damaged cells and tissues. These scaffolds typically comprise fibres or threads, which can be woven or knitted into various configurations, such as gauzes, meshes, tubes, or sheets. Moreover, textile-based wound dressings are one of the most common forms, and biopolymers have been incorporated into these dressings to improve their property. Biopolymers such as chitosan, alginate, gelatin, collagen, silk fibroin, yarns, and sutures have been successfully used in fabrications of textile-based wound dressings. Textile-based scaffolds and biopolymer wound dressings have shown several advantages over traditional dressings. These dressings provide a moist environment that supports healing, protects wounds from external factors, and promotes tissue regeneration. Moreover, biocompatibility and ease of degradability significantly reduce the risk of infection and facilitate the healing process. Therefore, biopolymers have great potential for use in textile-based scaffold and wound dressing, with several benefits for skin tissue regeneration and overall improvement in the outcome of wound management. This chapter discusses the fabrication of biopolymer-based scaffolds and wound dressings with their characterization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Samalens F, Thomas M, Claverie M, Castejon N, Zhang Y, Pigot T, et al. Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems†. Green Chem [Internet]. 2022;24(5):1762–79. Available from: http://xlink.rsc.org/?DOI=D1GC04327G Samalens F, Thomas M, Claverie M, Castejon N, Zhang Y, Pigot T, et al. Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems†. Green Chem [Internet]. 2022;24(5):1762–79. Available from: http://​xlink.​rsc.​org/​?​DOI=​D1GC04327G
15.
Zurück zum Zitat Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med [Internet]. 2019 Jan;4(1):96–115. Available from: https://doi.org/10.1002/btm2.10124 Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med [Internet]. 2019 Jan;4(1):96–115. Available from: https://​doi.​org/​10.​1002/​btm2.​10124
24.
Zurück zum Zitat Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. Emergent Mater [Internet]. 2022 Jun 25;5(3):873–921. Available from: https://link.springer.com/https://doi.org/10.1007/s42247-021-00319-x Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. Emergent Mater [Internet]. 2022 Jun 25;5(3):873–921. Available from: https://​link.​springer.​com/​https://​doi.​org/​10.​1007/​s42247-021-00319-x
26.
32.
Zurück zum Zitat Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res - Part B Appl Biomater [Internet]. 2022 Nov 17;110(11):2542–73. Available from: https://doi.org/10.1002/jbm.b.35086 Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res - Part B Appl Biomater [Internet]. 2022 Nov 17;110(11):2542–73. Available from: https://​doi.​org/​10.​1002/​jbm.​b.​35086
34.
Zurück zum Zitat Rostamitabar M, Abdelgawad AM, Jockenhoevel S, Ghazanfari S. Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromol Biosci [Internet]. 2021 Jul 5;21(7):2100021. Available from: https://doi.org/10.1002/mabi.202100021 Rostamitabar M, Abdelgawad AM, Jockenhoevel S, Ghazanfari S. Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromol Biosci [Internet]. 2021 Jul 5;21(7):2100021. Available from: https://​doi.​org/​10.​1002/​mabi.​202100021
35.
Zurück zum Zitat El-Ghazali S, Khatri M, Kobayashi S, Kim IS. An overview of medical textile materials. Med Text from Nat Resour. 2022;3–42. El-Ghazali S, Khatri M, Kobayashi S, Kim IS. An overview of medical textile materials. Med Text from Nat Resour. 2022;3–42.
41.
Zurück zum Zitat Cubo-Mateo N, Gelinsky M. Wound and skin healing in space: The 3D bioprinting perspective. Frontiers in Bioengineering and Biotechnology. 2021;9:720217.PubMedPubMedCentralCrossRef Cubo-Mateo N, Gelinsky M. Wound and skin healing in space: The 3D bioprinting perspective. Frontiers in Bioengineering and Biotechnology. 2021;9:720217.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: A systematic review. Journal of Drug Delivery Science and Technology. 2022:103564. Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: A systematic review. Journal of Drug Delivery Science and Technology. 2022:103564.
43.
Zurück zum Zitat Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, et al. The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics [Internet]. 2022; 14(2). Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, et al. The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics [Internet]. 2022; 14(2).
44.
Zurück zum Zitat Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics [Internet]. 2020; 12(8). Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics [Internet]. 2020; 12(8).
45.
Zurück zum Zitat Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers [Internet]. 2020; 12(9). Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers [Internet]. 2020; 12(9).
46.
Zurück zum Zitat Fang F, Aabith S, Homer-Vanniasinkam S, Tiwari MK. High-resolution 3D printing for healthcare underpinned by small-scale fluidics. 3D Print. Med; 2017. Fang F, Aabith S, Homer-Vanniasinkam S, Tiwari MK. High-resolution 3D printing for healthcare underpinned by small-scale fluidics. 3D Print. Med; 2017.
47.
Zurück zum Zitat Qin Y. 10 - Textiles for implants and regenerative medicine. In: Qin Y, editor. Medical Textile Materials: Woodhead Publishing; 2016. p. 133–43. Qin Y. 10 - Textiles for implants and regenerative medicine. In: Qin Y, editor. Medical Textile Materials: Woodhead Publishing; 2016. p. 133–43.
48.
Zurück zum Zitat Li G, Li Y, Chen G, He J, Han Y, Wang X, et al. Silk-Based Biomaterials in Biomedical Textiles and Fiber-Based Implants. Advanced Healthcare Materials. 2015;4(8):1134-51.PubMedPubMedCentralCrossRef Li G, Li Y, Chen G, He J, Han Y, Wang X, et al. Silk-Based Biomaterials in Biomedical Textiles and Fiber-Based Implants. Advanced Healthcare Materials. 2015;4(8):1134-51.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Bachate B, Mahesh AG, Suresh MN, Dodamani G, Sunil R, Hemant G, et al. Wound healing around dental implants–A review of literature. International Journal of Medical and Oral Research. 2020;5(2):15.CrossRef Bachate B, Mahesh AG, Suresh MN, Dodamani G, Sunil R, Hemant G, et al. Wound healing around dental implants–A review of literature. International Journal of Medical and Oral Research. 2020;5(2):15.CrossRef
50.
Zurück zum Zitat Lehmann T, Vaughn AE, Seal S, Liechty KW, Zgheib C. Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics [Internet]. 2022; 14(3). Lehmann T, Vaughn AE, Seal S, Liechty KW, Zgheib C. Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics [Internet]. 2022; 14(3).
51.
Zurück zum Zitat Naomi R, Ratanavaraporn J, Fauzi MB. Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. Materials [Internet]. 2020; 13(14). Naomi R, Ratanavaraporn J, Fauzi MB. Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. Materials [Internet]. 2020; 13(14).
52.
Zurück zum Zitat Xie H, Bai Q, Kong F, Li Y, Zha X, Zhang L, et al. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International Journal of Biological Macromolecules. 2022;207:859-72.PubMedCrossRef Xie H, Bai Q, Kong F, Li Y, Zha X, Zhang L, et al. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International Journal of Biological Macromolecules. 2022;207:859-72.PubMedCrossRef
53.
Zurück zum Zitat Yang J, Deng C, Shafiq M, Li Z, Zhang Q, Du H, et al. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration. Smart Materials in Medicine. 2022;3:217-29.CrossRef Yang J, Deng C, Shafiq M, Li Z, Zhang Q, Du H, et al. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration. Smart Materials in Medicine. 2022;3:217-29.CrossRef
54.
Zurück zum Zitat Othman SH. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia. 2014;2:296-303.CrossRef Othman SH. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia. 2014;2:296-303.CrossRef
55.
Zurück zum Zitat Sampath UGTM, Ching YC, Chuah CH, Sabariah JJ, Lin P-C. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials [Internet]. 2016; 9(12). Sampath UGTM, Ching YC, Chuah CH, Sabariah JJ, Lin P-C. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials [Internet]. 2016; 9(12).
56.
Zurück zum Zitat Choi DJ, Choi K, Park SJ, Kim Y-J, Chung S, Kim C-H. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. International Journal of Molecular Sciences [Internet]. 2021; 22(21). Choi DJ, Choi K, Park SJ, Kim Y-J, Chung S, Kim C-H. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. International Journal of Molecular Sciences [Internet]. 2021; 22(21).
57.
Zurück zum Zitat Dennis C, Sethu S, Nayak S, Mohan L, Morsi Y, Manivasagam G. Suture materials — Current and emerging trends. Journal of Biomedical Materials Research Part A. 2016;104(6):1544-59.PubMedCrossRef Dennis C, Sethu S, Nayak S, Mohan L, Morsi Y, Manivasagam G. Suture materials — Current and emerging trends. Journal of Biomedical Materials Research Part A. 2016;104(6):1544-59.PubMedCrossRef
58.
Zurück zum Zitat Salas C. 4 - Solution electrospinning of nanofibers. In: Afshari M, editor. Electrospun Nanofibers: Woodhead Publishing; 2017. p. 73–108. Salas C. 4 - Solution electrospinning of nanofibers. In: Afshari M, editor. Electrospun Nanofibers: Woodhead Publishing; 2017. p. 73–108.
59.
Zurück zum Zitat Richard AS, Verma RS. Bioactive nano yarns as surgical sutures for wound healing. Materials Science and Engineering: C. 2021;128:112334.PubMedCrossRef Richard AS, Verma RS. Bioactive nano yarns as surgical sutures for wound healing. Materials Science and Engineering: C. 2021;128:112334.PubMedCrossRef
60.
Zurück zum Zitat Qi Y, Wang C, Wang Q, Zhou F, Li T, Wang B, et al. A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. European Polymer Journal. 2023;186:111863.CrossRef Qi Y, Wang C, Wang Q, Zhou F, Li T, Wang B, et al. A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. European Polymer Journal. 2023;186:111863.CrossRef
61.
Zurück zum Zitat Ediyilyam S, Lalitha MM, George B, Shankar SS, Wacławek S, Černík M, et al. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers [Internet]. 2022; 14(3). Ediyilyam S, Lalitha MM, George B, Shankar SS, Wacławek S, Černík M, et al. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers [Internet]. 2022; 14(3).
62.
Zurück zum Zitat Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, et al. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. Materials [Internet]. 2021; 14(11). Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, et al. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. Materials [Internet]. 2021; 14(11).
63.
Zurück zum Zitat Smith JA, Mele E. Electrospinning and additive manufacturing: Adding three-dimensionality to electrospun scaffolds for tissue engineering. Frontiers in Bioengineering and Biotechnology. 2021:1238. Smith JA, Mele E. Electrospinning and additive manufacturing: Adding three-dimensionality to electrospun scaffolds for tissue engineering. Frontiers in Bioengineering and Biotechnology. 2021:1238.
64.
Zurück zum Zitat Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine. 2021;32(8):93.PubMed Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine. 2021;32(8):93.PubMed
65.
Zurück zum Zitat Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug discovery today. 2014;19(6):743-53.PubMedCrossRef Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug discovery today. 2014;19(6):743-53.PubMedCrossRef
66.
Zurück zum Zitat Kumar A, Jacob A. Techniques in scaffold fabrication process for tissue engineering applications: A review. Journal of Applied Biology and Biotechnology. 2022;10(3):163-76.CrossRef Kumar A, Jacob A. Techniques in scaffold fabrication process for tissue engineering applications: A review. Journal of Applied Biology and Biotechnology. 2022;10(3):163-76.CrossRef
67.
Zurück zum Zitat Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent advances on stimuli-responsive hydrogels based on tissue-derived ecms and their components: Towards improving functionality for tissue engineering and controlled drug delivery. Polymers. 2021;13(19):3263.PubMedPubMedCentralCrossRef Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent advances on stimuli-responsive hydrogels based on tissue-derived ecms and their components: Towards improving functionality for tissue engineering and controlled drug delivery. Polymers. 2021;13(19):3263.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Taherkhani S, Moztarzadeh F. Fabrication of a poly (ɛ‐caprolactone)/starch nanocomposite scaffold with a solvent‐casting/salt‐leaching technique for bone tissue engineering applications. Journal of Applied Polymer Science. 2016;133(23). Taherkhani S, Moztarzadeh F. Fabrication of a poly (ɛ‐caprolactone)/starch nanocomposite scaffold with a solvent‐casting/salt‐leaching technique for bone tissue engineering applications. Journal of Applied Polymer Science. 2016;133(23).
69.
Zurück zum Zitat Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. International Journal of Biological Macromolecules. 2022;216:235-50.PubMedCrossRef Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. International Journal of Biological Macromolecules. 2022;216:235-50.PubMedCrossRef
70.
Zurück zum Zitat Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydrate Polymers. 2021;272:118472.PubMedCrossRef Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydrate Polymers. 2021;272:118472.PubMedCrossRef
71.
Zurück zum Zitat Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N. Chitosan in surface modification for bone tissue engineering applications. Biotechnology journal. 2019;14(12):1900171.CrossRef Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N. Chitosan in surface modification for bone tissue engineering applications. Biotechnology journal. 2019;14(12):1900171.CrossRef
72.
Zurück zum Zitat Oudadesse H, Najem S, Mosbahi S, Rocton N, Refifi J, El Feki H, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2021;109(5):590-9.PubMedCrossRef Oudadesse H, Najem S, Mosbahi S, Rocton N, Refifi J, El Feki H, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2021;109(5):590-9.PubMedCrossRef
73.
Zurück zum Zitat Yuan TT, Jenkins PM, DiGeorge Foushee AM, Jockheck-Clark AR, Stahl JM. Electrospun chitosan/polyethylene oxide nanofibrous scaffolds with potential antibacterial wound dressing applications. Journal of Nanomaterials. 2016;2016. Yuan TT, Jenkins PM, DiGeorge Foushee AM, Jockheck-Clark AR, Stahl JM. Electrospun chitosan/polyethylene oxide nanofibrous scaffolds with potential antibacterial wound dressing applications. Journal of Nanomaterials. 2016;2016.
74.
Zurück zum Zitat Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydrate polymers. 2018;199:593-602.PubMedCrossRef Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydrate polymers. 2018;199:593-602.PubMedCrossRef
75.
Zurück zum Zitat Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate polymers. 2020;236:116025.PubMedCrossRef Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate polymers. 2020;236:116025.PubMedCrossRef
76.
Zurück zum Zitat Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Applied Sciences. 2021;3(1):30.CrossRef Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Applied Sciences. 2021;3(1):30.CrossRef
77.
Zurück zum Zitat Raus RA, Nawawi WMFW, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences. 2021;16(3):280-306.CrossRef Raus RA, Nawawi WMFW, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences. 2021;16(3):280-306.CrossRef
78.
Zurück zum Zitat Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012;33(13):3503-14.PubMedPubMedCentralCrossRef Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012;33(13):3503-14.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate based scaffolds for cartilage tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;69(4):230–247. Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate based scaffolds for cartilage tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;69(4):230–247.
80.
Zurück zum Zitat Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: biological, mechanical, and physicochemical characterization. ACS applied materials & interfaces. 2019;12(3):3371-81.CrossRef Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: biological, mechanical, and physicochemical characterization. ACS applied materials & interfaces. 2019;12(3):3371-81.CrossRef
83.
Zurück zum Zitat Westgate S, Cutting KF, DeLuca G, Asaad K. Collagen dressings made easy. Wounds UK. 2012;8(4). Westgate S, Cutting KF, DeLuca G, Asaad K. Collagen dressings made easy. Wounds UK. 2012;8(4).
84.
Zurück zum Zitat Healing EMRDW. Its Impact on Abnormal Scarring/Meilang Xue, Christopher J. Jackson. Adv Wound Care (New Rochelle). 2015;4(3):119–36. Healing EMRDW. Its Impact on Abnormal Scarring/Meilang Xue, Christopher J. Jackson. Adv Wound Care (New Rochelle). 2015;4(3):119–36.
85.
Zurück zum Zitat El Masry MS, Chaffee S, Ghatak PD, Mathew-Steiner SS, Das A, Higuita-Castro N, et al. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. The FASEB Journal. 2019;33(2):2144.PubMedCrossRef El Masry MS, Chaffee S, Ghatak PD, Mathew-Steiner SS, Das A, Higuita-Castro N, et al. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. The FASEB Journal. 2019;33(2):2144.PubMedCrossRef
86.
Zurück zum Zitat Das A, Abas M, Biswas N, Banerjee P, Ghosh N, Rawat A, et al. A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Scientific Reports. 2019;9(1):14293.PubMedPubMedCentralCrossRef Das A, Abas M, Biswas N, Banerjee P, Ghosh N, Rawat A, et al. A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Scientific Reports. 2019;9(1):14293.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Elgharably H, Roy S, Khanna S, Abas M, DasGhatak P, Das A, et al. A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds. Wound Repair and Regeneration. 2013;21(3):473-81.PubMedPubMedCentralCrossRef Elgharably H, Roy S, Khanna S, Abas M, DasGhatak P, Das A, et al. A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds. Wound Repair and Regeneration. 2013;21(3):473-81.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Barnes M. Update on collagens: What you need to know and consider. Plastic and Aesthetic Nursing. 2019;39(4):112-5. Barnes M. Update on collagens: What you need to know and consider. Plastic and Aesthetic Nursing. 2019;39(4):112-5.
89.
Zurück zum Zitat Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Frontiers in bioengineering and biotechnology. 2020;8:474.PubMedPubMedCentralCrossRef Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Frontiers in bioengineering and biotechnology. 2020;8:474.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Kandhasamy S, Perumal S, Madhan B, Umamaheswari N, Banday JA, Perumal PT, et al. Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Applied Materials & Interfaces. 2017;9(10):8556-68.CrossRef Kandhasamy S, Perumal S, Madhan B, Umamaheswari N, Banday JA, Perumal PT, et al. Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Applied Materials & Interfaces. 2017;9(10):8556-68.CrossRef
91.
Zurück zum Zitat Dias JR, Baptista-Silva S, De Oliveira CMT, Sousa A, Oliveira AL, Bártolo PJ, et al. In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal. 2017;95:161-73.CrossRef Dias JR, Baptista-Silva S, De Oliveira CMT, Sousa A, Oliveira AL, Bártolo PJ, et al. In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal. 2017;95:161-73.CrossRef
92.
Zurück zum Zitat Wiwatwongwana F, Surin P. In vitro degradation of gelatin/carboxymethylcellulose scaffolds for skin tissue regeneration. CHEMICAL ENGINEERING. 2019;74. Wiwatwongwana F, Surin P. In vitro degradation of gelatin/carboxymethylcellulose scaffolds for skin tissue regeneration. CHEMICAL ENGINEERING. 2019;74.
93.
Zurück zum Zitat Niu C, Wang L, Ji D, Ren M, Ke D, Fu Q, et al. Fabrication of SA/Gel/C scaffold with 3D Bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. Cell Regeneration. 2022;11(1):1-12.CrossRef Niu C, Wang L, Ji D, Ren M, Ke D, Fu Q, et al. Fabrication of SA/Gel/C scaffold with 3D Bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. Cell Regeneration. 2022;11(1):1-12.CrossRef
94.
Zurück zum Zitat Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, et al. Electrospun polyurethane–gelatin composite: a new tissue-engineered scaffold for application in skin regeneration and repair of complex wounds. ACS biomaterials science & engineering. 2019;6(1):505-16.CrossRef Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, et al. Electrospun polyurethane–gelatin composite: a new tissue-engineered scaffold for application in skin regeneration and repair of complex wounds. ACS biomaterials science & engineering. 2019;6(1):505-16.CrossRef
95.
Zurück zum Zitat Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26(14):1961-8.PubMedCrossRef Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26(14):1961-8.PubMedCrossRef
96.
Zurück zum Zitat Esmail A, Pereira JR, Sevrin C, Grandfils C, Menda UD, Fortunato E, et al. Preparation and Characterization of Porous Scaffolds Based on Poly (3-hydroxybutyrate) and Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Life. 2021;11(9):935.PubMedPubMedCentralCrossRef Esmail A, Pereira JR, Sevrin C, Grandfils C, Menda UD, Fortunato E, et al. Preparation and Characterization of Porous Scaffolds Based on Poly (3-hydroxybutyrate) and Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Life. 2021;11(9):935.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS omega. 2018;3(8):8605-11.PubMedPubMedCentralCrossRef Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS omega. 2018;3(8):8605-11.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, et al. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers. 2021;13(6):854.PubMedPubMedCentralCrossRef Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, et al. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers. 2021;13(6):854.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Nokoorani YD, Shamloo A, Bahadoran M, Moravvej H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Scientific reports. 2021;11(1):16164.PubMedPubMedCentralCrossRef Nokoorani YD, Shamloo A, Bahadoran M, Moravvej H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Scientific reports. 2021;11(1):16164.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Dube A, Toullec C, Bideau JL. Curdlan–chitosan electrospun fibers as potential scaffolds for bone regeneration. 2021. Dube A, Toullec C, Bideau JL. Curdlan–chitosan electrospun fibers as potential scaffolds for bone regeneration. 2021.
101.
Zurück zum Zitat Zimina A, Senatov F, Choudhary R, Kolesnikov E, Anisimova N, Kiselevskiy M, et al. Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction. Polymers. 2020;12(12):2938.PubMedPubMedCentralCrossRef Zimina A, Senatov F, Choudhary R, Kolesnikov E, Anisimova N, Kiselevskiy M, et al. Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction. Polymers. 2020;12(12):2938.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Reddy MS, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers [Internet]. 2021; 13(7). Reddy MS, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers [Internet]. 2021; 13(7).
113.
Zurück zum Zitat Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers (Basel). 2020;12(9). Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers (Basel). 2020;12(9).
114.
Zurück zum Zitat Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel). 2020;12(7). Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel). 2020;12(7).
115.
Zurück zum Zitat Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel). 2022;14(5). Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel). 2022;14(5).
116.
Zurück zum Zitat Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, et al. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering. 2023;258:110701.CrossRef Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, et al. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering. 2023;258:110701.CrossRef
117.
Zurück zum Zitat Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J Clin Diagn Res. 2015;9(9):Ze21–5. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J Clin Diagn Res. 2015;9(9):Ze21–5.
119.
Zurück zum Zitat Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol. 2018;6:137.PubMedPubMedCentralCrossRef Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol. 2018;6:137.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers [Internet]. 2022; 14(5). Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers [Internet]. 2022; 14(5).
Metadaten
Titel
Biopolymers in Textile-Based Scaffolding and Wound Healing
verfasst von
Popat Mohite
Sunny R. Shah
Shubham Munde
Nitin Ade
Treasa Boban
Sudarshan Singh
Bhupendra Prajapati
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.