Skip to main content

2024 | OriginalPaper | Buchkapitel

Biopolymers in Textile-Based Insulation Materials

verfasst von : Arti A. Bagada, Monika B. Sangani, Priya V. Patel

Erschienen in: Biopolymers in the Textile Industry

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Textile products are currently being used as thermal barriers in a variety of industrial applications. Textile fabrics’ thermal insulating capabilities are determined by their thermal conductivity, density, thickness, and thermal emission characteristics. The influence of temperature, thermal conductivity, and material density on the behavior of textiles as insulators is one of the most important features that make textiles an appropriate insulating material. In this current era of environmental concern, manufacturers and customers are largely focused on creating and using nature-based sustainable, biocompatible, and renewable stuff. Biopolymers, or biologically generated polymer compounds, are petroleum-free textile sources for the textile industry. They have a large beneficial influence by lowering dependency on fossil fuels as well as the carbon footprint, and they may even be more cost-effective and durable than synthetic fabrics. Biopolymers are employed in specific areas based on pricing, accessibility, moisture retention, temperature resistance, physical characteristics, degrading stability, and biocompatibility. The biopolymer element of the aggregate governs the chemical contents, molecular mass, morphological traits, physical qualities, and processing technology of a bio-composite. The current chapter discusses the method of insulation given by textile materials and biopolymers, the biopolymer used for these purposes, and the many uses of biopolymers for insulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. Textile fabrics as thermal insulators. AUTEX Research Journal. 2006 Sep;6(3):148-61.CrossRef Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. Textile fabrics as thermal insulators. AUTEX Research Journal. 2006 Sep;6(3):148-61.CrossRef
2.
Zurück zum Zitat Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials 2021, 14, 1241.CrossRefPubMedPubMedCentral Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials 2021, 14, 1241.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Özdil N, Marmaralı A, Kretzschmar SD. Effect of yarn properties on thermal comfort of knitted fabrics. International Journal of Thermal sciences. 2007 Dec 1;46(12):1318-22.CrossRef Özdil N, Marmaralı A, Kretzschmar SD. Effect of yarn properties on thermal comfort of knitted fabrics. International Journal of Thermal sciences. 2007 Dec 1;46(12):1318-22.CrossRef
4.
Zurück zum Zitat Stanković SB, Popović D, Poparić GB. Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer testing. 2008 Feb 1;27(1):41-8.CrossRef Stanković SB, Popović D, Poparić GB. Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer testing. 2008 Feb 1;27(1):41-8.CrossRef
5.
Zurück zum Zitat Rosace G, Guido E, Colleoni C, Barigozzi G. Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science. 2016 Jan 1;2016. Rosace G, Guido E, Colleoni C, Barigozzi G. Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science. 2016 Jan 1;2016.
6.
Zurück zum Zitat Choudhuri PK, Majumdar PK, Sarkar B. Thermal behaviour of textiles: A review. Man-Made Text. India. 2013 Mar 1;41(3). Choudhuri PK, Majumdar PK, Sarkar B. Thermal behaviour of textiles: A review. Man-Made Text. India. 2013 Mar 1;41(3).
7.
Zurück zum Zitat Thangavelu K, Subramani KB. Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry: Volume 1. 2016:109-40.CrossRef Thangavelu K, Subramani KB. Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry: Volume 1. 2016:109-40.CrossRef
8.
Zurück zum Zitat Azammi AMN, Ilyas RA, Sapuan SM, et al. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing; 2020. p. 29–93. Azammi AMN, Ilyas RA, Sapuan SM, et al. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing; 2020. p. 29–93.
9.
Zurück zum Zitat Christian SJ. Natural fibre-reinforced noncementitious composites (biocomposites). In: Nonconventional and vernacular construction materials. Woodhead Publishing; 2016. p. 111–126. Christian SJ. Natural fibre-reinforced noncementitious composites (biocomposites). In: Nonconventional and vernacular construction materials. Woodhead Publishing; 2016. p. 111–126.
10.
Zurück zum Zitat Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. 2020;120978. Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. 2020;120978.
11.
Zurück zum Zitat George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–338.CrossRefPubMed George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–338.CrossRefPubMed
13.
Zurück zum Zitat Simmler, Hans, and Samuel Brunner. “Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life.“ Energy and buildings 37.11 (2005): 1122-1131.CrossRef Simmler, Hans, and Samuel Brunner. “Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life.“ Energy and buildings 37.11 (2005): 1122-1131.CrossRef
14.
Zurück zum Zitat Fundamentals of Heat and Mass Transfer, 7th Edition. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253. Fundamentals of Heat and Mass Transfer, 7th Edition. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
15.
Zurück zum Zitat Heat and Mass Transfer. Yunus A. Cengel. McGraw-Hill Education, 2011. ISBN: 9780071077866. Heat and Mass Transfer. Yunus A. Cengel. McGraw-Hill Education, 2011. ISBN: 9780071077866.
16.
Zurück zum Zitat Fundamentals of Heat and Mass Transfer. C. P. Kothandaraman. New Age International, 2006, ISBN: 9788122417722. Fundamentals of Heat and Mass Transfer. C. P. Kothandaraman. New Age International, 2006, ISBN: 9788122417722.
17.
Zurück zum Zitat Tritt, Terry M., ed. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 2005. Tritt, Terry M., ed. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 2005.
18.
Zurück zum Zitat Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science. 2016 Oct 1;61:1-28.CrossRef Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science. 2016 Oct 1;61:1-28.CrossRef
19.
Zurück zum Zitat Carruthers P. Theory of thermal conductivity of solids at low temperatures. Reviews of Modern Physics. 1961 Jan 1;33(1):92.CrossRef Carruthers P. Theory of thermal conductivity of solids at low temperatures. Reviews of Modern Physics. 1961 Jan 1;33(1):92.CrossRef
20.
Zurück zum Zitat Yang J. Theory of thermal conductivity. InThermal Conductivity: Theory, Properties, and Applications 2004 (pp. 1–20). Boston, MA: Springer US. Yang J. Theory of thermal conductivity. InThermal Conductivity: Theory, Properties, and Applications 2004 (pp. 1–20). Boston, MA: Springer US.
21.
Zurück zum Zitat Shen Y, Wang Y, Wang F, Xu H, Li P. A Novel Heat-Proof Clothing Design Algorithm Based on Heat Conduction Theory. InData Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6 2020 (pp. 266–274). Springer Singapore. Shen Y, Wang Y, Wang F, Xu H, Li P. A Novel Heat-Proof Clothing Design Algorithm Based on Heat Conduction Theory. InData Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6 2020 (pp. 266–274). Springer Singapore.
22.
Zurück zum Zitat Ruckman JE. Water vapour transfer in waterproof breathable fabrics: Part 2: under windy conditions. International Journal of Clothing Science and Technology. 1997 Mar 1;9(1):23-33.CrossRef Ruckman JE. Water vapour transfer in waterproof breathable fabrics: Part 2: under windy conditions. International Journal of Clothing Science and Technology. 1997 Mar 1;9(1):23-33.CrossRef
23.
Zurück zum Zitat Das A, Alagirusamy R, Kumar P. Study of heat transfer through multilayer clothing assemblies: A theoretical prediction. AUTEX Research Journal. 2011 Jun 1;11(2):54-60.CrossRef Das A, Alagirusamy R, Kumar P. Study of heat transfer through multilayer clothing assemblies: A theoretical prediction. AUTEX Research Journal. 2011 Jun 1;11(2):54-60.CrossRef
24.
Zurück zum Zitat Farnworth B. Mechanisms of heat flow through clothing insulation. Textile Research Journal. 1983 Dec;53(12):717-25.CrossRef Farnworth B. Mechanisms of heat flow through clothing insulation. Textile Research Journal. 1983 Dec;53(12):717-25.CrossRef
25.
Zurück zum Zitat Parsons KC. Protective clothing: heat exchange and physiological objectives. Ergonomics. 1988 Jul 1;31(7):991-1007.CrossRefPubMed Parsons KC. Protective clothing: heat exchange and physiological objectives. Ergonomics. 1988 Jul 1;31(7):991-1007.CrossRefPubMed
26.
Zurück zum Zitat Lawson LK, Crown EM, Ackerman MY, Douglas Dale J. Moisture effects in heat transfer through clothing systems for wildland firefighters. International journal of occupational safety and ergonomics. 2004 Jan 1;10(3):227-38.CrossRefPubMed Lawson LK, Crown EM, Ackerman MY, Douglas Dale J. Moisture effects in heat transfer through clothing systems for wildland firefighters. International journal of occupational safety and ergonomics. 2004 Jan 1;10(3):227-38.CrossRefPubMed
27.
Zurück zum Zitat Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–306. Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–306.
28.
Zurück zum Zitat Sathya, A.B.; Sivasubramanian, V.; Santhiagu, A.; Sebastian, C.; Sivashankar, R. Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. J. Polym. Environ. 2018; 26: 3995–4012.CrossRef Sathya, A.B.; Sivasubramanian, V.; Santhiagu, A.; Sebastian, C.; Sivashankar, R. Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. J. Polym. Environ. 2018; 26: 3995–4012.CrossRef
30.
Zurück zum Zitat Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007; 7: 255–277.CrossRefPubMed Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007; 7: 255–277.CrossRefPubMed
31.
Zurück zum Zitat Gedde, U.W.; Hedenqvist, M.S.; Hakkarainen, M.; Nilsson, F.; Das, O. Plastics and Sustainability. In Applied Polymer Science; Springer: Cham, Switzerland, 2021; pp. 489–504. Gedde, U.W.; Hedenqvist, M.S.; Hakkarainen, M.; Nilsson, F.; Das, O. Plastics and Sustainability. In Applied Polymer Science; Springer: Cham, Switzerland, 2021; pp. 489–504.
32.
Zurück zum Zitat Anne, B. Environmental-Friendly Biodegradable Polymers and Composites. In Integrated Waste Management; IntechOpen: London, UK, 2011; pp. 341–364. Anne, B. Environmental-Friendly Biodegradable Polymers and Composites. In Integrated Waste Management; IntechOpen: London, UK, 2011; pp. 341–364.
33.
Zurück zum Zitat Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing, and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 1455728349. Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing, and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 1455728349.
34.
Zurück zum Zitat Patti, A.; Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 2022; 14: 692.CrossRefPubMedPubMedCentral Patti, A.; Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 2022; 14: 692.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Editor(s): Sabu Thomas, Sreeraj Gopi, Augustine Amalraj, Biopolymers and their Industrial Applications, Elsevier,2021, Pages 193–218. Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Editor(s): Sabu Thomas, Sreeraj Gopi, Augustine Amalraj, Biopolymers and their Industrial Applications, Elsevier,2021, Pages 193–218.
39.
Zurück zum Zitat Lendlein A. and Sisson A. Handbook of Biodegradable Polymers. Wiley-VSH, Weinheim, Germany, 2011. Lendlein A. and Sisson A. Handbook of Biodegradable Polymers. Wiley-VSH, Weinheim, Germany, 2011.
40.
Zurück zum Zitat Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential-A critical literature survey. Microbiol. Biotechnol., 2009; 2: 186−201.CrossRef Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential-A critical literature survey. Microbiol. Biotechnol., 2009; 2: 186−201.CrossRef
41.
Zurück zum Zitat D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. 2005;44: 3358e3393. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. 2005;44: 3358e3393.
42.
Zurück zum Zitat J.-L. Wertz, J.P. Mercier, O. Be´due´, Cellulose Science and Technology, EPFL Press, 2010 J.-L. Wertz, J.P. Mercier, O. Be´due´, Cellulose Science and Technology, EPFL Press, 2010
43.
Zurück zum Zitat E. Sukara, R. Meliawati, Potential values of bacterial cellulose for industrial applications, Jurnal Selulosa 2014;4: 7e16. E. Sukara, R. Meliawati, Potential values of bacterial cellulose for industrial applications, Jurnal Selulosa 2014;4: 7e16.
44.
Zurück zum Zitat K. Stana-Kleinschek, V. Ribitsch V, Surface properties of textile cellulose as a function of processing steps, in: H.J. Jacobasch (Ed.), Interfaces, Surfactants and Colloids in Engineering, Progress in Colloid & Polymer Science, 1996; 101: pp. 157e165. K. Stana-Kleinschek, V. Ribitsch V, Surface properties of textile cellulose as a function of processing steps, in: H.J. Jacobasch (Ed.), Interfaces, Surfactants and Colloids in Engineering, Progress in Colloid & Polymer Science, 1996; 101: pp. 157e165.
45.
Zurück zum Zitat C. Woodings, Regenerated Cellulose Fibres, Elsevier, 2001 C. Woodings, Regenerated Cellulose Fibres, Elsevier, 2001
46.
Zurück zum Zitat R.C. Law, 5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromol. Symp. 2004; 208: 255e266 R.C. Law, 5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromol. Symp. 2004; 208: 255e266
47.
Zurück zum Zitat S. Tridico, Natural animal textile fibres: structure, characteristics and identification, in: Identification of Textile Fibers, Elsevier, 2009; pp. 27e67. S. Tridico, Natural animal textile fibres: structure, characteristics and identification, in: Identification of Textile Fibers, Elsevier, 2009; pp. 27e67.
48.
Zurück zum Zitat S.C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B.B. Mandal, N. Bhardwaj, M. Botlagunta, B.C. Dash, C. Acharya, A.K. Ghosh, Nonmulberry silk biopolymers, Biopolymers 2012;97: 455e467. S.C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B.B. Mandal, N. Bhardwaj, M. Botlagunta, B.C. Dash, C. Acharya, A.K. Ghosh, Nonmulberry silk biopolymers, Biopolymers 2012;97: 455e467.
49.
Zurück zum Zitat Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Biopolymers and their Industrial Applications, Elsevier, 2021, Pages 193–218, ISBN 9780128192405. Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Biopolymers and their Industrial Applications, Elsevier, 2021, Pages 193–218, ISBN 9780128192405.
51.
Zurück zum Zitat Ganesh S, Samala MMR, Balaraman M, Jonnalagadda RR, Method of addition of acetonitrile influences the structure and stability of collagen. Process Biochem. 2014; 49:210–216CrossRef Ganesh S, Samala MMR, Balaraman M, Jonnalagadda RR, Method of addition of acetonitrile influences the structure and stability of collagen. Process Biochem. 2014; 49:210–216CrossRef
52.
Zurück zum Zitat Hardy JG, Romer LM, Schiebel TR.Polymeric materials based on silk proteins. Polymer,2008; 49:4309–4327CrossRef Hardy JG, Romer LM, Schiebel TR.Polymeric materials based on silk proteins. Polymer,2008; 49:4309–4327CrossRef
53.
Zurück zum Zitat Heim M, Keerl D, Schiebel T. Spider silk from soluble protein to extraordinary fiber. Angew Chem Int Ed.2009; 48:3584–3596 Heim M, Keerl D, Schiebel T. Spider silk from soluble protein to extraordinary fiber. Angew Chem Int Ed.2009; 48:3584–3596
54.
Zurück zum Zitat Singha K, Maity S, Singha M, Spinning and applications of spider silk. Front Sci,2012; 2 (5):92–100CrossRef Singha K, Maity S, Singha M, Spinning and applications of spider silk. Front Sci,2012; 2 (5):92–100CrossRef
55.
Zurück zum Zitat Kang S (2014), Biomimetics: engineering spider silk. University of Southern California, Los Angeles, XV (III) Kang S (2014), Biomimetics: engineering spider silk. University of Southern California, Los Angeles, XV (III)
56.
Zurück zum Zitat Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY,Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in strong fiber. PNAS.2010; 107(32):14059–14063 Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY,Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in strong fiber. PNAS.2010; 107(32):14059–14063
57.
Zurück zum Zitat Gole RS, Kumar P (2012) Spider silk: investigation of spinning process, web material and its properties, biological sciences and bioengineering, IIT Kanpur, India Gole RS, Kumar P (2012) Spider silk: investigation of spinning process, web material and its properties, biological sciences and bioengineering, IIT Kanpur, India
60.
Zurück zum Zitat Karthik, T., Rathinamoorthy, R. Sustainable Biopolymers in Textiles: An Overview. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. 2018. Karthik, T., Rathinamoorthy, R. Sustainable Biopolymers in Textiles: An Overview. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. 2018.
62.
Zurück zum Zitat Roy, S. and Lutfar, L.B. 2012a, ‘2 - Bast fibres: jute’, in: Kozłowski, R. M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Roy, S. and Lutfar, L.B. 2012a, ‘2 - Bast fibres: jute’, in: Kozłowski, R. M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
63.
Zurück zum Zitat Lyu, P. et al., Degumming methods for bast fibers – A mini review, Industrial Crops and Products,2021;174, p. 114158CrossRef Lyu, P. et al., Degumming methods for bast fibers – A mini review, Industrial Crops and Products,2021;174, p. 114158CrossRef
64.
Zurück zum Zitat Rehman, M. et al., Ramie, a multipurpose crop: potential applications, constraints and improvement strategies, Industrial Crops and Products,2019; 137;300-307CrossRef Rehman, M. et al., Ramie, a multipurpose crop: potential applications, constraints and improvement strategies, Industrial Crops and Products,2019; 137;300-307CrossRef
65.
Zurück zum Zitat Krifa, M. and Stevens, S.S., Cotton Utilization in Conventional and Non-Conventional Textiles—A Statistical Review, Agricultural Sciences,2016; 7(10): 747-758CrossRef Krifa, M. and Stevens, S.S., Cotton Utilization in Conventional and Non-Conventional Textiles—A Statistical Review, Agricultural Sciences,2016; 7(10): 747-758CrossRef
66.
Zurück zum Zitat Salleh, K.M. et al. 2021, 2 - Cellulose and its derivatives in textiles: primitive application to current trend, in: Mondal, Md. I. H. (ed.), Fundamentals of Natural Fibres and Textiles, The Textile Institute Book Series, Woodhead Publishing, Sawston, UK. Salleh, K.M. et al. 2021, 2 - Cellulose and its derivatives in textiles: primitive application to current trend, in: Mondal, Md. I. H. (ed.), Fundamentals of Natural Fibres and Textiles, The Textile Institute Book Series, Woodhead Publishing, Sawston, UK.
67.
Zurück zum Zitat Dochia, M. et al., 2012, 2 – Cotton Fibres, in: Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Dochia, M. et al., 2012, 2 – Cotton Fibres, in: Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
68.
Zurück zum Zitat Kuffner, H. and Popescu, C., 2012, 8 - Wool fibres’, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Kuffner, H. and Popescu, C., 2012, 8 - Wool fibres’, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
69.
Zurück zum Zitat Wang, J. et al., Quantitative and sensory evaluation of odor retention on polyester/wool blends, Textile Research Journal,2019; 89(13); 2729-2738.CrossRef Wang, J. et al., Quantitative and sensory evaluation of odor retention on polyester/wool blends, Textile Research Journal,2019; 89(13); 2729-2738.CrossRef
70.
Zurück zum Zitat Erdogan, U.H., et al., 2020, 9 - Wool fibres’, in: Kozłowski, R. M. and Mackiewicz-Talarczyk, M. (eds), Handbook of Natural Fibres (Second Edition), Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Erdogan, U.H., et al., 2020, 9 - Wool fibres’, in: Kozłowski, R. M. and Mackiewicz-Talarczyk, M. (eds), Handbook of Natural Fibres (Second Edition), Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
72.
Zurück zum Zitat Padaki, N.V. et al., 2015, 1 - Advances in understanding the properties of silk, in: Basu, A. (ed.), Advances in Silk Science and Technology, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Padaki, N.V. et al., 2015, 1 - Advances in understanding the properties of silk, in: Basu, A. (ed.), Advances in Silk Science and Technology, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
73.
Zurück zum Zitat Babu, K.M., 2012, 7 - Silk fibres, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK Babu, K.M., 2012, 7 - Silk fibres, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK
74.
Zurück zum Zitat Zhang M, Jiang S, Han F, Li M, Wang N, Liu L. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate polymers. 2021 Jul 15;264:118033.CrossRef Zhang M, Jiang S, Han F, Li M, Wang N, Liu L. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate polymers. 2021 Jul 15;264:118033.CrossRef
75.
Zurück zum Zitat Aaliya B, Sunooj KV, Lackner M. Biopolymer composites: A review. International Journal of Biobased Plastics. 2021 Jan 1;3(1):40-84.CrossRef Aaliya B, Sunooj KV, Lackner M. Biopolymer composites: A review. International Journal of Biobased Plastics. 2021 Jan 1;3(1):40-84.CrossRef
76.
Zurück zum Zitat Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS applied materials & interfaces. 2020 Mar 27;12(16):19015-22.CrossRef Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS applied materials & interfaces. 2020 Mar 27;12(16):19015-22.CrossRef
77.
Zurück zum Zitat Li Q, Yuan Z, Zhang C, Hu S, Chen Z, Wu Y, Chen P, Qi H, Ye D. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure. Nano Letters. 2022 Apr 1;22(9):3516-24.CrossRefPubMed Li Q, Yuan Z, Zhang C, Hu S, Chen Z, Wu Y, Chen P, Qi H, Ye D. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure. Nano Letters. 2022 Apr 1;22(9):3516-24.CrossRefPubMed
78.
Zurück zum Zitat Peng Q, Lu Y, Li Z, Zhang J, Zong L. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydrate Polymers. 2022 Dec 1;297:119990.CrossRef Peng Q, Lu Y, Li Z, Zhang J, Zong L. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydrate Polymers. 2022 Dec 1;297:119990.CrossRef
79.
Zurück zum Zitat Bendahou D, Bendahou A, Seantier B, Grohens Y, Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Industrial Crops and Products. 2015 Mar 1;65:374-82.CrossRef Bendahou D, Bendahou A, Seantier B, Grohens Y, Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Industrial Crops and Products. 2015 Mar 1;65:374-82.CrossRef
80.
Zurück zum Zitat Chen L, Zhang H, Mao Z, Wang B, Feng X, Sui X. Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers. 2022 Jul 15;288:119409.CrossRef Chen L, Zhang H, Mao Z, Wang B, Feng X, Sui X. Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers. 2022 Jul 15;288:119409.CrossRef
81.
Zurück zum Zitat Mawardi I, Aprilia S, Faisal M, Rizal S. Investigation of thermal conductivity and physical properties of oil palm trunks/ramie fiber reinforced biopolymer hybrid composites as building bio-insulation. Materials Today: Proceedings. 2022 Jan 1;60:373-7. Mawardi I, Aprilia S, Faisal M, Rizal S. Investigation of thermal conductivity and physical properties of oil palm trunks/ramie fiber reinforced biopolymer hybrid composites as building bio-insulation. Materials Today: Proceedings. 2022 Jan 1;60:373-7.
82.
Zurück zum Zitat Taib MN, Antov P, Savov V, Fatriasari W, Madyaratri EW, Wirawan R, Osvaldová LM, Hua LS, Ghani MA, Al Edrus SS, Chen LW. Current progress of biopolymer-based flame retardant. Polymer Degradation and Stability. 2022 Sep 21:110153.CrossRef Taib MN, Antov P, Savov V, Fatriasari W, Madyaratri EW, Wirawan R, Osvaldová LM, Hua LS, Ghani MA, Al Edrus SS, Chen LW. Current progress of biopolymer-based flame retardant. Polymer Degradation and Stability. 2022 Sep 21:110153.CrossRef
Metadaten
Titel
Biopolymers in Textile-Based Insulation Materials
verfasst von
Arti A. Bagada
Monika B. Sangani
Priya V. Patel
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.