Skip to main content
Erschienen in: Measurement Techniques 2/2023

02.06.2023

Development of Methods and Instruments for Thermal Conductivity Measurements of Standard Rock Samples for Petrophysical Studies

verfasst von: B. V. Grigorev, S. G. Nikulin, D. A. Vazhenin, D. V. Vakhnina

Erschienen in: Measurement Techniques | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article presents the problem of low reliability and accuracy during the determination of the thermal conductivity of small-sized rock samples using existing measuring instruments. A laboratory unit was developed for measuring the thermal conductivity of standard rock samples used for petrophysical studies with a diameter of no more than 30 mm. The unit was tested on small-sized samples. The laboratory unit was analyzed to find and understand any potential issues related to its design, manufacture, or operation. An algorithm was created for the automated collection and processing of qualitative data. The key factors likely to be detrimental to the accuracy and reliability of the measurements were identified and addressed. These include unshielded thermocouples, unwanted changes in potential between the hot and cold junctions of the thermocouple due to the uneven melting of the water–ice mixture in a Dewar vessel, suboptimally designed shape and dimensions of the object of study, and the nonequilibrium ratio of the input and output thermal energy. The unit was calibrated on reference samples of pure tin and LS59 brass with known values of thermal conductivity. The thermal conductivity of a rock sample with a height of 4.28 mm and a diameter of 30 mm was determined with an error of no more than ±5.6%. This study can be a guide for assessing the thermal conductivity of small rock samples in the range of 0.3–70.0 W/(m·K) in the temperature range of 20°C–60°C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
GOST 7076-99. Construction Materials and Products. Method for Determining Thermal Conductivity and Thermal Resistance under Stationary Thermal Conditions.
 
2
GOST R 54853-2011. Buildings and Constructions. Method for Determining the Resistance to Heat Transfer of Enclosing Structures Using a Heat Meter.
 
3
GOST 8.558-2009. State System for Ensuring Uniform Measurement. State Verifi cation Scheme for Temperature Measuring Instruments.
 
4
RMG 29-2013. State System for Ensuring Uniform Measurement. Metrology. Basic Terms and Defi nitions.
 
Literatur
1.
Zurück zum Zitat A. A. Kislicyn, Fundamentals of Thermal Physics: Lectures and Seminars, Izd. TyumGU, Tyumen (2002). A. A. Kislicyn, Fundamentals of Thermal Physics: Lectures and Seminars, Izd. TyumGU, Tyumen (2002).
2.
Zurück zum Zitat A. A. Lipaev, R. G. Minniahmetov, I. I. Mannanov, O. M. Mirsatov, and R. B. Abasheev, Laboratory Installation for the Study of Thermal Properties of Rocks of Oil and Bitumen Deposits, Vest. Udmurtsk. Univ., Ser. Biologija, Nauki o Zemle, No. 11, 211–220 (2005). A. A. Lipaev, R. G. Minniahmetov, I. I. Mannanov, O. M. Mirsatov, and R. B. Abasheev, Laboratory Installation for the Study of Thermal Properties of Rocks of Oil and Bitumen Deposits, Vest. Udmurtsk. Univ., Ser. Biologija, Nauki o Zemle, No. 11, 211–220 (2005).
3.
Zurück zum Zitat S. V. Novikov, Thermal Properties of Terrigenous Reservoirs and Saturating Fluids, Ph.D. thesis in Engineering, MGRI, Moscow (2009). S. V. Novikov, Thermal Properties of Terrigenous Reservoirs and Saturating Fluids, Ph.D. thesis in Engineering, MGRI, Moscow (2009).
5.
Zurück zum Zitat M. V. Anisimov and V. S. Rekunov, Experimental Determination of the Thermal Conductivity Coefficient of Ultrathin Liquid Composite Heat-Insulating Coatings, Izv. Tomsk. Politekh. Univ., Inzhiniring georesursov, 326, No. 9, 15–22 (2015). M. V. Anisimov and V. S. Rekunov, Experimental Determination of the Thermal Conductivity Coefficient of Ultrathin Liquid Composite Heat-Insulating Coatings, Izv. Tomsk. Politekh. Univ., Inzhiniring georesursov, 326, No. 9, 15–22 (2015).
7.
Zurück zum Zitat V. M. Jurov, S. A. Guchenko, and V. Ch. Laurinas, Coefficient of Thermal Conductivity of Nanostructures, Innovatsionn. Nauka, No. 5, 10–14 (2019). V. M. Jurov, S. A. Guchenko, and V. Ch. Laurinas, Coefficient of Thermal Conductivity of Nanostructures, Innovatsionn. Nauka, No. 5, 10–14 (2019).
8.
Zurück zum Zitat A. G. Sosnovskij and N. I. Stoljarova, Temperature Measurement, Izd. Standartov, Moscow (1970). A. G. Sosnovskij and N. I. Stoljarova, Temperature Measurement, Izd. Standartov, Moscow (1970).
9.
Zurück zum Zitat V. G. Avramenko, O. V. Lebedev, O. N. Budadin, and E. V. Abramova, Correct Way of the Heat Flux Definition, Kontrol. Diagnostika, No. 8, 23–27 (2007). V. G. Avramenko, O. V. Lebedev, O. N. Budadin, and E. V. Abramova, Correct Way of the Heat Flux Definition, Kontrol. Diagnostika, No. 8, 23–27 (2007).
10.
Zurück zum Zitat D. P. Volkov, V. A. Korablev, and Ju. P. Zarichnjak, Guidelines for Laboratory Work on the Course Thermophysical Properties of Substances, SPbGU ITMO, St. Petersburg (2006). D. P. Volkov, V. A. Korablev, and Ju. P. Zarichnjak, Guidelines for Laboratory Work on the Course Thermophysical Properties of Substances, SPbGU ITMO, St. Petersburg (2006).
11.
Zurück zum Zitat A. G. Korotkih, Thermal Conductivity of Materials, tutorial, Tomskiy Politekhnicheskiy Universitet, Tomsk (2011). A. G. Korotkih, Thermal Conductivity of Materials, tutorial, Tomskiy Politekhnicheskiy Universitet, Tomsk (2011).
12.
Zurück zum Zitat B. V. Grigor’ev, S. G. Nikulin, and E. V. Zajtsev, Fundamentals of Mathematical Processing of the Results of Physical and Technical Measurements, Izd. TyumGU, Tyumen (2018). B. V. Grigor’ev, S. G. Nikulin, and E. V. Zajtsev, Fundamentals of Mathematical Processing of the Results of Physical and Technical Measurements, Izd. TyumGU, Tyumen (2018).
Metadaten
Titel
Development of Methods and Instruments for Thermal Conductivity Measurements of Standard Rock Samples for Petrophysical Studies
verfasst von
B. V. Grigorev
S. G. Nikulin
D. A. Vazhenin
D. V. Vakhnina
Publikationsdatum
02.06.2023
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 2/2023
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-023-02198-6

Weitere Artikel der Ausgabe 2/2023

Measurement Techniques 2/2023 Zur Ausgabe