Skip to main content
Erschienen in: Measurement Techniques 2/2023

06.06.2023 | THERMOPHYSICAL MEASUREMENTS

Entropy Production Under Unsteady-State Thermal Conditions with a Temperature Gradient

verfasst von: A. V. Kostanovskiy, M. E. Kostanovskaya

Erschienen in: Measurement Techniques | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the behavior of entropy production per unit volume for an unsteady-state thermal regime with a temperature gradient in the bodies of a simple shape (unbounded plate, sphere, and unbounded cylinder) is investigated to further understand the aspects of the linear regime of thermodynamics under complex heat exchange conditions. The change in the production of entropy per unit volume of the simple-shaped bodies under the specified conditions is investigated. The known analytical solutions to the one-dimensional problems of heating these bodies under boundary conditions of type 2, obtained in the approximation of constant properties, are used. The total value of entropy production per unit volume is calculated as the sum of the time-constant steady-state component owing to the temperature difference and the unsteadystate component determined in the absence of a temperature gradient. The contribution of the temperature drop across the plate thickness to the total value of entropy production per unit volume is estimated through the product of the force and the corresponding heat flux, and this estimate is extended to the cases of a sphere and cylinder towing to the equality of the temperature drop in all three bodies. The unsteady-state component of entropy production per unit volume is calculated using the logarithm of the ratio of two instantaneous temperatures divided by the difference between the corresponding time values. The unsteadystate component of entropy production per unit volume is demonstrated to correspond to the extremum principle as the Fourier number increases. A comparison of the unsteady-state components of entropy production per unit volume of the plate, sphere, and cylinder shows that the extremum principle is more pronounced for the sphere. The results enable to expand the understanding of the theory of the linear mode of thermodynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat A. V. Luikov, Theory of Thermal Conductivity, Vysshaja Shkola Publ., Moscow (1967). A. V. Luikov, Theory of Thermal Conductivity, Vysshaja Shkola Publ., Moscow (1967).
6.
Zurück zum Zitat V. A. Kirillin, V. V. Sichev, and A. E. Sheindlin, Technisheskaya Termodinamika, Energiya Publ., Moscow (1963). V. A. Kirillin, V. V. Sichev, and A. E. Sheindlin, Technisheskaya Termodinamika, Energiya Publ., Moscow (1963).
7.
Zurück zum Zitat V. S. Chirkin, Thermophysical Properties of Nuclear Engineering Materials, reference book, Atomisdat Publ., Moscow (1963). V. S. Chirkin, Thermophysical Properties of Nuclear Engineering Materials, reference book, Atomisdat Publ., Moscow (1963).
8.
Zurück zum Zitat L. S. Dubrovinsky and S. K. Saxena, A Thermal Characteristic of Melting in Laser Heating at High Pressure, High Temp. – High Press., 31, No. 4, 335–391 (1999). L. S. Dubrovinsky and S. K. Saxena, A Thermal Characteristic of Melting in Laser Heating at High Pressure, High Temp.High Press., 31, No. 4, 335–391 (1999).
9.
Zurück zum Zitat A. V. Kostanovskii and M. E. Kostanovskaya, Determination of the Melting Temperature for High-Temperature Materials by the Thermogram Method under Laser Heating, High Temp., 36, No. 6, 397–902 (1993). A. V. Kostanovskii and M. E. Kostanovskaya, Determination of the Melting Temperature for High-Temperature Materials by the Thermogram Method under Laser Heating, High Temp., 36, No. 6, 397–902 (1993).
12.
Zurück zum Zitat V. Cerbaud, N. Shcherbakova, and S. D. Cunha, Chem. Eng. Res. Des., 154, 316–330 (2020), https://doi.org/10.1016Zj.cherd.2019.10.037. V. Cerbaud, N. Shcherbakova, and S. D. Cunha, Chem. Eng. Res. Des., 154, 316–330 (2020), https://​doi.​org/​10.​1016Zj.​cherd.​2019.​10.​037.​
Metadaten
Titel
Entropy Production Under Unsteady-State Thermal Conditions with a Temperature Gradient
verfasst von
A. V. Kostanovskiy
M. E. Kostanovskaya
Publikationsdatum
06.06.2023
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 2/2023
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-023-02197-7

Weitere Artikel der Ausgabe 2/2023

Measurement Techniques 2/2023 Zur Ausgabe