Skip to main content
Top

2024 | OriginalPaper | Chapter

Biopolymers in Textile-Based Insulation Materials

Authors : Arti A. Bagada, Monika B. Sangani, Priya V. Patel

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Textile products are currently being used as thermal barriers in a variety of industrial applications. Textile fabrics’ thermal insulating capabilities are determined by their thermal conductivity, density, thickness, and thermal emission characteristics. The influence of temperature, thermal conductivity, and material density on the behavior of textiles as insulators is one of the most important features that make textiles an appropriate insulating material. In this current era of environmental concern, manufacturers and customers are largely focused on creating and using nature-based sustainable, biocompatible, and renewable stuff. Biopolymers, or biologically generated polymer compounds, are petroleum-free textile sources for the textile industry. They have a large beneficial influence by lowering dependency on fossil fuels as well as the carbon footprint, and they may even be more cost-effective and durable than synthetic fabrics. Biopolymers are employed in specific areas based on pricing, accessibility, moisture retention, temperature resistance, physical characteristics, degrading stability, and biocompatibility. The biopolymer element of the aggregate governs the chemical contents, molecular mass, morphological traits, physical qualities, and processing technology of a bio-composite. The current chapter discusses the method of insulation given by textile materials and biopolymers, the biopolymer used for these purposes, and the many uses of biopolymers for insulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. Textile fabrics as thermal insulators. AUTEX Research Journal. 2006 Sep;6(3):148-61.CrossRef Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. Textile fabrics as thermal insulators. AUTEX Research Journal. 2006 Sep;6(3):148-61.CrossRef
2.
go back to reference Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials 2021, 14, 1241.CrossRefPubMedPubMedCentral Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials 2021, 14, 1241.CrossRefPubMedPubMedCentral
3.
go back to reference Özdil N, Marmaralı A, Kretzschmar SD. Effect of yarn properties on thermal comfort of knitted fabrics. International Journal of Thermal sciences. 2007 Dec 1;46(12):1318-22.CrossRef Özdil N, Marmaralı A, Kretzschmar SD. Effect of yarn properties on thermal comfort of knitted fabrics. International Journal of Thermal sciences. 2007 Dec 1;46(12):1318-22.CrossRef
4.
go back to reference Stanković SB, Popović D, Poparić GB. Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer testing. 2008 Feb 1;27(1):41-8.CrossRef Stanković SB, Popović D, Poparić GB. Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer testing. 2008 Feb 1;27(1):41-8.CrossRef
5.
go back to reference Rosace G, Guido E, Colleoni C, Barigozzi G. Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science. 2016 Jan 1;2016. Rosace G, Guido E, Colleoni C, Barigozzi G. Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science. 2016 Jan 1;2016.
6.
go back to reference Choudhuri PK, Majumdar PK, Sarkar B. Thermal behaviour of textiles: A review. Man-Made Text. India. 2013 Mar 1;41(3). Choudhuri PK, Majumdar PK, Sarkar B. Thermal behaviour of textiles: A review. Man-Made Text. India. 2013 Mar 1;41(3).
7.
go back to reference Thangavelu K, Subramani KB. Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry: Volume 1. 2016:109-40.CrossRef Thangavelu K, Subramani KB. Sustainable biopolymer fibers—Production, properties and applications. Sustainable Fibres for Fashion Industry: Volume 1. 2016:109-40.CrossRef
8.
go back to reference Azammi AMN, Ilyas RA, Sapuan SM, et al. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing; 2020. p. 29–93. Azammi AMN, Ilyas RA, Sapuan SM, et al. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing; 2020. p. 29–93.
9.
go back to reference Christian SJ. Natural fibre-reinforced noncementitious composites (biocomposites). In: Nonconventional and vernacular construction materials. Woodhead Publishing; 2016. p. 111–126. Christian SJ. Natural fibre-reinforced noncementitious composites (biocomposites). In: Nonconventional and vernacular construction materials. Woodhead Publishing; 2016. p. 111–126.
10.
go back to reference Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. 2020;120978. Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. 2020;120978.
11.
go back to reference George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–338.CrossRefPubMed George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–338.CrossRefPubMed
13.
go back to reference Simmler, Hans, and Samuel Brunner. “Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life.“ Energy and buildings 37.11 (2005): 1122-1131.CrossRef Simmler, Hans, and Samuel Brunner. “Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life.“ Energy and buildings 37.11 (2005): 1122-1131.CrossRef
14.
go back to reference Fundamentals of Heat and Mass Transfer, 7th Edition. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253. Fundamentals of Heat and Mass Transfer, 7th Edition. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
15.
go back to reference Heat and Mass Transfer. Yunus A. Cengel. McGraw-Hill Education, 2011. ISBN: 9780071077866. Heat and Mass Transfer. Yunus A. Cengel. McGraw-Hill Education, 2011. ISBN: 9780071077866.
16.
go back to reference Fundamentals of Heat and Mass Transfer. C. P. Kothandaraman. New Age International, 2006, ISBN: 9788122417722. Fundamentals of Heat and Mass Transfer. C. P. Kothandaraman. New Age International, 2006, ISBN: 9788122417722.
17.
go back to reference Tritt, Terry M., ed. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 2005. Tritt, Terry M., ed. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 2005.
18.
go back to reference Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science. 2016 Oct 1;61:1-28.CrossRef Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science. 2016 Oct 1;61:1-28.CrossRef
19.
go back to reference Carruthers P. Theory of thermal conductivity of solids at low temperatures. Reviews of Modern Physics. 1961 Jan 1;33(1):92.CrossRef Carruthers P. Theory of thermal conductivity of solids at low temperatures. Reviews of Modern Physics. 1961 Jan 1;33(1):92.CrossRef
20.
go back to reference Yang J. Theory of thermal conductivity. InThermal Conductivity: Theory, Properties, and Applications 2004 (pp. 1–20). Boston, MA: Springer US. Yang J. Theory of thermal conductivity. InThermal Conductivity: Theory, Properties, and Applications 2004 (pp. 1–20). Boston, MA: Springer US.
21.
go back to reference Shen Y, Wang Y, Wang F, Xu H, Li P. A Novel Heat-Proof Clothing Design Algorithm Based on Heat Conduction Theory. InData Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6 2020 (pp. 266–274). Springer Singapore. Shen Y, Wang Y, Wang F, Xu H, Li P. A Novel Heat-Proof Clothing Design Algorithm Based on Heat Conduction Theory. InData Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6 2020 (pp. 266–274). Springer Singapore.
22.
go back to reference Ruckman JE. Water vapour transfer in waterproof breathable fabrics: Part 2: under windy conditions. International Journal of Clothing Science and Technology. 1997 Mar 1;9(1):23-33.CrossRef Ruckman JE. Water vapour transfer in waterproof breathable fabrics: Part 2: under windy conditions. International Journal of Clothing Science and Technology. 1997 Mar 1;9(1):23-33.CrossRef
23.
go back to reference Das A, Alagirusamy R, Kumar P. Study of heat transfer through multilayer clothing assemblies: A theoretical prediction. AUTEX Research Journal. 2011 Jun 1;11(2):54-60.CrossRef Das A, Alagirusamy R, Kumar P. Study of heat transfer through multilayer clothing assemblies: A theoretical prediction. AUTEX Research Journal. 2011 Jun 1;11(2):54-60.CrossRef
24.
go back to reference Farnworth B. Mechanisms of heat flow through clothing insulation. Textile Research Journal. 1983 Dec;53(12):717-25.CrossRef Farnworth B. Mechanisms of heat flow through clothing insulation. Textile Research Journal. 1983 Dec;53(12):717-25.CrossRef
25.
go back to reference Parsons KC. Protective clothing: heat exchange and physiological objectives. Ergonomics. 1988 Jul 1;31(7):991-1007.CrossRefPubMed Parsons KC. Protective clothing: heat exchange and physiological objectives. Ergonomics. 1988 Jul 1;31(7):991-1007.CrossRefPubMed
26.
go back to reference Lawson LK, Crown EM, Ackerman MY, Douglas Dale J. Moisture effects in heat transfer through clothing systems for wildland firefighters. International journal of occupational safety and ergonomics. 2004 Jan 1;10(3):227-38.CrossRefPubMed Lawson LK, Crown EM, Ackerman MY, Douglas Dale J. Moisture effects in heat transfer through clothing systems for wildland firefighters. International journal of occupational safety and ergonomics. 2004 Jan 1;10(3):227-38.CrossRefPubMed
27.
go back to reference Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–306. Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–306.
28.
go back to reference Sathya, A.B.; Sivasubramanian, V.; Santhiagu, A.; Sebastian, C.; Sivashankar, R. Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. J. Polym. Environ. 2018; 26: 3995–4012.CrossRef Sathya, A.B.; Sivasubramanian, V.; Santhiagu, A.; Sebastian, C.; Sivashankar, R. Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. J. Polym. Environ. 2018; 26: 3995–4012.CrossRef
30.
go back to reference Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007; 7: 255–277.CrossRefPubMed Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007; 7: 255–277.CrossRefPubMed
31.
go back to reference Gedde, U.W.; Hedenqvist, M.S.; Hakkarainen, M.; Nilsson, F.; Das, O. Plastics and Sustainability. In Applied Polymer Science; Springer: Cham, Switzerland, 2021; pp. 489–504. Gedde, U.W.; Hedenqvist, M.S.; Hakkarainen, M.; Nilsson, F.; Das, O. Plastics and Sustainability. In Applied Polymer Science; Springer: Cham, Switzerland, 2021; pp. 489–504.
32.
go back to reference Anne, B. Environmental-Friendly Biodegradable Polymers and Composites. In Integrated Waste Management; IntechOpen: London, UK, 2011; pp. 341–364. Anne, B. Environmental-Friendly Biodegradable Polymers and Composites. In Integrated Waste Management; IntechOpen: London, UK, 2011; pp. 341–364.
33.
go back to reference Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing, and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 1455728349. Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing, and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 1455728349.
34.
go back to reference Patti, A.; Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 2022; 14: 692.CrossRefPubMedPubMedCentral Patti, A.; Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 2022; 14: 692.CrossRefPubMedPubMedCentral
35.
go back to reference Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Editor(s): Sabu Thomas, Sreeraj Gopi, Augustine Amalraj, Biopolymers and their Industrial Applications, Elsevier,2021, Pages 193–218. Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Editor(s): Sabu Thomas, Sreeraj Gopi, Augustine Amalraj, Biopolymers and their Industrial Applications, Elsevier,2021, Pages 193–218.
39.
go back to reference Lendlein A. and Sisson A. Handbook of Biodegradable Polymers. Wiley-VSH, Weinheim, Germany, 2011. Lendlein A. and Sisson A. Handbook of Biodegradable Polymers. Wiley-VSH, Weinheim, Germany, 2011.
40.
go back to reference Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential-A critical literature survey. Microbiol. Biotechnol., 2009; 2: 186−201.CrossRef Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential-A critical literature survey. Microbiol. Biotechnol., 2009; 2: 186−201.CrossRef
41.
go back to reference D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. 2005;44: 3358e3393. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. 2005;44: 3358e3393.
42.
go back to reference J.-L. Wertz, J.P. Mercier, O. Be´due´, Cellulose Science and Technology, EPFL Press, 2010 J.-L. Wertz, J.P. Mercier, O. Be´due´, Cellulose Science and Technology, EPFL Press, 2010
43.
go back to reference E. Sukara, R. Meliawati, Potential values of bacterial cellulose for industrial applications, Jurnal Selulosa 2014;4: 7e16. E. Sukara, R. Meliawati, Potential values of bacterial cellulose for industrial applications, Jurnal Selulosa 2014;4: 7e16.
44.
go back to reference K. Stana-Kleinschek, V. Ribitsch V, Surface properties of textile cellulose as a function of processing steps, in: H.J. Jacobasch (Ed.), Interfaces, Surfactants and Colloids in Engineering, Progress in Colloid & Polymer Science, 1996; 101: pp. 157e165. K. Stana-Kleinschek, V. Ribitsch V, Surface properties of textile cellulose as a function of processing steps, in: H.J. Jacobasch (Ed.), Interfaces, Surfactants and Colloids in Engineering, Progress in Colloid & Polymer Science, 1996; 101: pp. 157e165.
45.
go back to reference C. Woodings, Regenerated Cellulose Fibres, Elsevier, 2001 C. Woodings, Regenerated Cellulose Fibres, Elsevier, 2001
46.
go back to reference R.C. Law, 5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromol. Symp. 2004; 208: 255e266 R.C. Law, 5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromol. Symp. 2004; 208: 255e266
47.
go back to reference S. Tridico, Natural animal textile fibres: structure, characteristics and identification, in: Identification of Textile Fibers, Elsevier, 2009; pp. 27e67. S. Tridico, Natural animal textile fibres: structure, characteristics and identification, in: Identification of Textile Fibers, Elsevier, 2009; pp. 27e67.
48.
go back to reference S.C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B.B. Mandal, N. Bhardwaj, M. Botlagunta, B.C. Dash, C. Acharya, A.K. Ghosh, Nonmulberry silk biopolymers, Biopolymers 2012;97: 455e467. S.C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B.B. Mandal, N. Bhardwaj, M. Botlagunta, B.C. Dash, C. Acharya, A.K. Ghosh, Nonmulberry silk biopolymers, Biopolymers 2012;97: 455e467.
49.
go back to reference Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Biopolymers and their Industrial Applications, Elsevier, 2021, Pages 193–218, ISBN 9780128192405. Arash Jahandideh, Mojdeh Ashkani, Nasrin Moini, Chapter 8 - Biopolymers in textile industries, Biopolymers and their Industrial Applications, Elsevier, 2021, Pages 193–218, ISBN 9780128192405.
51.
go back to reference Ganesh S, Samala MMR, Balaraman M, Jonnalagadda RR, Method of addition of acetonitrile influences the structure and stability of collagen. Process Biochem. 2014; 49:210–216CrossRef Ganesh S, Samala MMR, Balaraman M, Jonnalagadda RR, Method of addition of acetonitrile influences the structure and stability of collagen. Process Biochem. 2014; 49:210–216CrossRef
52.
go back to reference Hardy JG, Romer LM, Schiebel TR.Polymeric materials based on silk proteins. Polymer,2008; 49:4309–4327CrossRef Hardy JG, Romer LM, Schiebel TR.Polymeric materials based on silk proteins. Polymer,2008; 49:4309–4327CrossRef
53.
go back to reference Heim M, Keerl D, Schiebel T. Spider silk from soluble protein to extraordinary fiber. Angew Chem Int Ed.2009; 48:3584–3596 Heim M, Keerl D, Schiebel T. Spider silk from soluble protein to extraordinary fiber. Angew Chem Int Ed.2009; 48:3584–3596
54.
go back to reference Singha K, Maity S, Singha M, Spinning and applications of spider silk. Front Sci,2012; 2 (5):92–100CrossRef Singha K, Maity S, Singha M, Spinning and applications of spider silk. Front Sci,2012; 2 (5):92–100CrossRef
55.
go back to reference Kang S (2014), Biomimetics: engineering spider silk. University of Southern California, Los Angeles, XV (III) Kang S (2014), Biomimetics: engineering spider silk. University of Southern California, Los Angeles, XV (III)
56.
go back to reference Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY,Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in strong fiber. PNAS.2010; 107(32):14059–14063 Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY,Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in strong fiber. PNAS.2010; 107(32):14059–14063
57.
go back to reference Gole RS, Kumar P (2012) Spider silk: investigation of spinning process, web material and its properties, biological sciences and bioengineering, IIT Kanpur, India Gole RS, Kumar P (2012) Spider silk: investigation of spinning process, web material and its properties, biological sciences and bioengineering, IIT Kanpur, India
60.
go back to reference Karthik, T., Rathinamoorthy, R. Sustainable Biopolymers in Textiles: An Overview. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. 2018. Karthik, T., Rathinamoorthy, R. Sustainable Biopolymers in Textiles: An Overview. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. 2018.
62.
go back to reference Roy, S. and Lutfar, L.B. 2012a, ‘2 - Bast fibres: jute’, in: Kozłowski, R. M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Roy, S. and Lutfar, L.B. 2012a, ‘2 - Bast fibres: jute’, in: Kozłowski, R. M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
63.
go back to reference Lyu, P. et al., Degumming methods for bast fibers – A mini review, Industrial Crops and Products,2021;174, p. 114158CrossRef Lyu, P. et al., Degumming methods for bast fibers – A mini review, Industrial Crops and Products,2021;174, p. 114158CrossRef
64.
go back to reference Rehman, M. et al., Ramie, a multipurpose crop: potential applications, constraints and improvement strategies, Industrial Crops and Products,2019; 137;300-307CrossRef Rehman, M. et al., Ramie, a multipurpose crop: potential applications, constraints and improvement strategies, Industrial Crops and Products,2019; 137;300-307CrossRef
65.
go back to reference Krifa, M. and Stevens, S.S., Cotton Utilization in Conventional and Non-Conventional Textiles—A Statistical Review, Agricultural Sciences,2016; 7(10): 747-758CrossRef Krifa, M. and Stevens, S.S., Cotton Utilization in Conventional and Non-Conventional Textiles—A Statistical Review, Agricultural Sciences,2016; 7(10): 747-758CrossRef
66.
go back to reference Salleh, K.M. et al. 2021, 2 - Cellulose and its derivatives in textiles: primitive application to current trend, in: Mondal, Md. I. H. (ed.), Fundamentals of Natural Fibres and Textiles, The Textile Institute Book Series, Woodhead Publishing, Sawston, UK. Salleh, K.M. et al. 2021, 2 - Cellulose and its derivatives in textiles: primitive application to current trend, in: Mondal, Md. I. H. (ed.), Fundamentals of Natural Fibres and Textiles, The Textile Institute Book Series, Woodhead Publishing, Sawston, UK.
67.
go back to reference Dochia, M. et al., 2012, 2 – Cotton Fibres, in: Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Dochia, M. et al., 2012, 2 – Cotton Fibres, in: Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
68.
go back to reference Kuffner, H. and Popescu, C., 2012, 8 - Wool fibres’, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Kuffner, H. and Popescu, C., 2012, 8 - Wool fibres’, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres 1, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
69.
go back to reference Wang, J. et al., Quantitative and sensory evaluation of odor retention on polyester/wool blends, Textile Research Journal,2019; 89(13); 2729-2738.CrossRef Wang, J. et al., Quantitative and sensory evaluation of odor retention on polyester/wool blends, Textile Research Journal,2019; 89(13); 2729-2738.CrossRef
70.
go back to reference Erdogan, U.H., et al., 2020, 9 - Wool fibres’, in: Kozłowski, R. M. and Mackiewicz-Talarczyk, M. (eds), Handbook of Natural Fibres (Second Edition), Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Erdogan, U.H., et al., 2020, 9 - Wool fibres’, in: Kozłowski, R. M. and Mackiewicz-Talarczyk, M. (eds), Handbook of Natural Fibres (Second Edition), Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
72.
go back to reference Padaki, N.V. et al., 2015, 1 - Advances in understanding the properties of silk, in: Basu, A. (ed.), Advances in Silk Science and Technology, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK. Padaki, N.V. et al., 2015, 1 - Advances in understanding the properties of silk, in: Basu, A. (ed.), Advances in Silk Science and Technology, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK.
73.
go back to reference Babu, K.M., 2012, 7 - Silk fibres, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK Babu, K.M., 2012, 7 - Silk fibres, in: Kozłowski, R.M. (ed.), Handbook of Natural Fibres, Woodhead Publishing Series in Textiles, Woodhead Publishing, Sawston, UK
74.
go back to reference Zhang M, Jiang S, Han F, Li M, Wang N, Liu L. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate polymers. 2021 Jul 15;264:118033.CrossRef Zhang M, Jiang S, Han F, Li M, Wang N, Liu L. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate polymers. 2021 Jul 15;264:118033.CrossRef
75.
go back to reference Aaliya B, Sunooj KV, Lackner M. Biopolymer composites: A review. International Journal of Biobased Plastics. 2021 Jan 1;3(1):40-84.CrossRef Aaliya B, Sunooj KV, Lackner M. Biopolymer composites: A review. International Journal of Biobased Plastics. 2021 Jan 1;3(1):40-84.CrossRef
76.
go back to reference Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS applied materials & interfaces. 2020 Mar 27;12(16):19015-22.CrossRef Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS applied materials & interfaces. 2020 Mar 27;12(16):19015-22.CrossRef
77.
go back to reference Li Q, Yuan Z, Zhang C, Hu S, Chen Z, Wu Y, Chen P, Qi H, Ye D. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure. Nano Letters. 2022 Apr 1;22(9):3516-24.CrossRefPubMed Li Q, Yuan Z, Zhang C, Hu S, Chen Z, Wu Y, Chen P, Qi H, Ye D. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure. Nano Letters. 2022 Apr 1;22(9):3516-24.CrossRefPubMed
78.
go back to reference Peng Q, Lu Y, Li Z, Zhang J, Zong L. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydrate Polymers. 2022 Dec 1;297:119990.CrossRef Peng Q, Lu Y, Li Z, Zhang J, Zong L. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydrate Polymers. 2022 Dec 1;297:119990.CrossRef
79.
go back to reference Bendahou D, Bendahou A, Seantier B, Grohens Y, Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Industrial Crops and Products. 2015 Mar 1;65:374-82.CrossRef Bendahou D, Bendahou A, Seantier B, Grohens Y, Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Industrial Crops and Products. 2015 Mar 1;65:374-82.CrossRef
80.
go back to reference Chen L, Zhang H, Mao Z, Wang B, Feng X, Sui X. Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers. 2022 Jul 15;288:119409.CrossRef Chen L, Zhang H, Mao Z, Wang B, Feng X, Sui X. Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers. 2022 Jul 15;288:119409.CrossRef
81.
go back to reference Mawardi I, Aprilia S, Faisal M, Rizal S. Investigation of thermal conductivity and physical properties of oil palm trunks/ramie fiber reinforced biopolymer hybrid composites as building bio-insulation. Materials Today: Proceedings. 2022 Jan 1;60:373-7. Mawardi I, Aprilia S, Faisal M, Rizal S. Investigation of thermal conductivity and physical properties of oil palm trunks/ramie fiber reinforced biopolymer hybrid composites as building bio-insulation. Materials Today: Proceedings. 2022 Jan 1;60:373-7.
82.
go back to reference Taib MN, Antov P, Savov V, Fatriasari W, Madyaratri EW, Wirawan R, Osvaldová LM, Hua LS, Ghani MA, Al Edrus SS, Chen LW. Current progress of biopolymer-based flame retardant. Polymer Degradation and Stability. 2022 Sep 21:110153.CrossRef Taib MN, Antov P, Savov V, Fatriasari W, Madyaratri EW, Wirawan R, Osvaldová LM, Hua LS, Ghani MA, Al Edrus SS, Chen LW. Current progress of biopolymer-based flame retardant. Polymer Degradation and Stability. 2022 Sep 21:110153.CrossRef
Metadata
Title
Biopolymers in Textile-Based Insulation Materials
Authors
Arti A. Bagada
Monika B. Sangani
Priya V. Patel
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_8

Premium Partners