Skip to main content
Top

2024 | OriginalPaper | Chapter

Coupled Planar Microwave Resonators and Transmission-Line Structures

Author : Enrique Bronchalo

Published in: Coupled Structures for Microwave Sensing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the fundamental concepts on coupled microwave structures, including coupled resonators, coupled transmission lines and coupled-line structures. Although many concepts and results here presented have a general validity in the microwave field, the chapter focuses on planar coupled structures, which are the building blocks of the sensors described in the book. The chapter introduces the fundamentals of microwave resonators (lumped and distributed) and coupled planar transmission lines, with special emphasis on coupled identical microstrip lines. Coupled resonators are addressed from the field and circuit approaches, introducing the concepts of electric and magnetic coupling, and resonance-frequency splitting. The last section of the chapter presents the coupled-line directional couplers and two-port coupled-line networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This attenuation constant, with units of nepers/second, is not to be confused with the attenuation constant of a transmission line, with units of nepers/meter, that appears later in this chapter. Although we will employ the same symbol for both, they rarely appear in the same context.
 
2
Note that the two lines share a common ground, a feature of unbalanced or single-ended planar lines like microstrip or coplanar waveguide transmission lines.
 
3
The angular frequency ωu introduced in Sect. 3.1 refers to identical uncoupled resonators (isolated from each other), while ω0, is the resonance frequency of each coupled resonator when the other one is shorted to ground (see Fig. 22). Under weak-coupling conditions, the difference between ω0 and ωu is small.
 
4
In this expression, the permittivity is supposed to be real (lossless substrate). For the general case, the different energy terms are (εEi)*Ej instead of ε; Ei*Ej.
 
5
If the coupling strength is high, or if the line width changes in the coupled region respect to the uncoupled region, the current and voltage distributions in both regions are different, and fulfill continuity conditions in the frontiers.
 
6
Using inverters as coupling networks does not suppose a serious limitation, as any lossless reciprocal two-port network can be converted into an inverter simply by adding suitable line sections at its ports [82]. Therefore, the only implication in the S parameters is a phase-shift.
 
7
In the type of couplers called forward directional couplers, a portion of the power entering through port 1 couples to port 4, while port 3 remains isolated [3]. This type of coupler, although possible, is rarely based on quasi-TEM coupled lines, being commonly based on other kinds of coupled structures, like metallic or dielectric waveguides.
 
Literature
1.
go back to reference Collin RE (2001) Foundations for microwave engineering, Wiley-IEEE Press Collin RE (2001) Foundations for microwave engineering, Wiley-IEEE Press
2.
go back to reference Hong JS, Lancaster MJ (2001) Microstrip filters for RF/Microwave applications. John Wiley & Sons, New YorkCrossRef Hong JS, Lancaster MJ (2001) Microstrip filters for RF/Microwave applications. John Wiley & Sons, New YorkCrossRef
3.
go back to reference Mongia RK, Barthia P, Hong S, Bahl IJ (2007) RF and microwave coupled-line circuits, Norwood, MA: Artech House Microwave Library Mongia RK, Barthia P, Hong S, Bahl IJ (2007) RF and microwave coupled-line circuits, Norwood, MA: Artech House Microwave Library
4.
go back to reference Pozar DM (2011) Microwave engineering. John Wiley & Sons, Hoboken, New Jersey Pozar DM (2011) Microwave engineering. John Wiley & Sons, Hoboken, New Jersey
5.
go back to reference Cameron RJ, Kudsia CM, Mansour RR (2018) Microwave filters for communication systems: fundamentals. John Wiley & Sons, Design and ApplicationsCrossRef Cameron RJ, Kudsia CM, Mansour RR (2018) Microwave filters for communication systems: fundamentals. John Wiley & Sons, Design and ApplicationsCrossRef
6.
go back to reference Shahid S, Ball JAR, Wells CG, Wen P (2011) Reflection type Q-factor measurement using standard least squares methods. IET Microw. Antennas Propag. 4(4):426–432CrossRef Shahid S, Ball JAR, Wells CG, Wen P (2011) Reflection type Q-factor measurement using standard least squares methods. IET Microw. Antennas Propag. 4(4):426–432CrossRef
7.
go back to reference Matthaei GL, Young y L, Jones EMT (1964) Microwave filters, impedance-matching networks and coupling structures, New York: McGraw-Hill Matthaei GL, Young y L, Jones EMT (1964) Microwave filters, impedance-matching networks and coupling structures, New York: McGraw-Hill
8.
go back to reference Kwok RS, Liang J-F (1999) Characterization of High-Resonators for Microwave-Filter applications. IEEE Trans Microw Theory Techn 47(1):111–114CrossRef Kwok RS, Liang J-F (1999) Characterization of High-Resonators for Microwave-Filter applications. IEEE Trans Microw Theory Techn 47(1):111–114CrossRef
9.
go back to reference Kajfez D (1994) Q-Factor. MS, Vector Fields, Oxford Kajfez D (1994) Q-Factor. MS, Vector Fields, Oxford
10.
go back to reference Sun E-Y, Chao S-H (1995) Unloaded Q measurement—The critical points method. IEEE Trans Microw Theory Techn 43(8):1983–1986CrossRef Sun E-Y, Chao S-H (1995) Unloaded Q measurement—The critical points method. IEEE Trans Microw Theory Techn 43(8):1983–1986CrossRef
11.
go back to reference Kajfez D, Hwan EJ (1984) Q-Factor measurement with network analyzer. IEEE Trans Microw Theory Techn 32(7):666–670CrossRef Kajfez D, Hwan EJ (1984) Q-Factor measurement with network analyzer. IEEE Trans Microw Theory Techn 32(7):666–670CrossRef
12.
go back to reference Leong K, Mazierska J (2002) Precise measurements of the Q factor of dielectric resonators in the transmission Mode—Accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance. IEEE Trans Microw Theory Techn 50(9):2115–2127CrossRef Leong K, Mazierska J (2002) Precise measurements of the Q factor of dielectric resonators in the transmission Mode—Accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance. IEEE Trans Microw Theory Techn 50(9):2115–2127CrossRef
13.
go back to reference Bray JR, Roy L (2004) Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels. IEE Proc Microw Antennas Propag 151(4):345–350CrossRef Bray JR, Roy L (2004) Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels. IEE Proc Microw Antennas Propag 151(4):345–350CrossRef
14.
go back to reference Gregory AP (2021) Q-factor Measurement by using a Vector Network Analyser. NPL Report MAT 58 Gregory AP (2021) Q-factor Measurement by using a Vector Network Analyser. NPL Report MAT 58
15.
go back to reference Sanada A, Takehara H, Yamamoto T, Awai I (2002) Lambda//4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide. In: 2002 IEEE MTT-S International Microwave Symposium Digest, pp. 385–388, Seattle, USA Sanada A, Takehara H, Yamamoto T, Awai I (2002) Lambda//4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide. In: 2002 IEEE MTT-S International Microwave Symposium Digest, pp. 385–388, Seattle, USA
16.
go back to reference Khanna APS, Garault Y (1983) Determination of loaded, unloaded and external quality factors of a dielectric resonator coupled to a microstrip line. IEEE Trans Microw Theory Techn 31(3):261–264CrossRef Khanna APS, Garault Y (1983) Determination of loaded, unloaded and external quality factors of a dielectric resonator coupled to a microstrip line. IEEE Trans Microw Theory Techn 31(3):261–264CrossRef
17.
go back to reference Probst S, Song FB, Bushev PA, Ustinov AV, Weides M (2015) Efficient and robust analysis of complex scattering data under noise in microwave resonators, Rev Sci Instr, 86(2), paper 024706 Probst S, Song FB, Bushev PA, Ustinov AV, Weides M (2015) Efficient and robust analysis of complex scattering data under noise in microwave resonators, Rev Sci Instr, 86(2), paper 024706
18.
go back to reference Sánchez M, Martín E, Zamarro J (1990) Unified and simplified treatment of techniques for characterizing transmission reflection, or absorption resonators. IEE Proceedings 137(4):209–212 Sánchez M, Martín E, Zamarro J (1990) Unified and simplified treatment of techniques for characterizing transmission reflection, or absorption resonators. IEE Proceedings 137(4):209–212
19.
go back to reference Kajfez D, Chebolu S, Abdul-Gaffoor MR, Kishk AA (1999) Uncertainty Analysis of the Transmission-Type Measurement of –Factor. IEEE Trans Microw Theory Techn 47(3):367–371CrossRef Kajfez D, Chebolu S, Abdul-Gaffoor MR, Kishk AA (1999) Uncertainty Analysis of the Transmission-Type Measurement of –Factor. IEEE Trans Microw Theory Techn 47(3):367–371CrossRef
20.
go back to reference Petersan P, Anlage S (1998) Measurement of resonant frequency and quality factor of microwave resonators: comparison of methods. J Appl Phys 84(6):3392–3402CrossRef Petersan P, Anlage S (1998) Measurement of resonant frequency and quality factor of microwave resonators: comparison of methods. J Appl Phys 84(6):3392–3402CrossRef
21.
go back to reference Pipes LA (1937) Matrix theory of multiconductor transmission lines. Phil Mag 24:97–100CrossRef Pipes LA (1937) Matrix theory of multiconductor transmission lines. Phil Mag 24:97–100CrossRef
22.
go back to reference Oliver BM (1954) Directional electromagnetic couplers. Proc IRE 42:1686–1692CrossRef Oliver BM (1954) Directional electromagnetic couplers. Proc IRE 42:1686–1692CrossRef
23.
go back to reference Pierce JR (1954) Coupling of modes of propagation. J Appl Phys 25(2):179–183CrossRef Pierce JR (1954) Coupling of modes of propagation. J Appl Phys 25(2):179–183CrossRef
24.
go back to reference Schelkunoff A (1955) Conversion of Maxwell’s equations into generalized telegraphist’s equations. Bell Syst Tech J 34(5):995–1043MathSciNetCrossRef Schelkunoff A (1955) Conversion of Maxwell’s equations into generalized telegraphist’s equations. Bell Syst Tech J 34(5):995–1043MathSciNetCrossRef
25.
go back to reference Adair JE, Haddad GI (1969) Coupled-mode analysis of nonuniform coupled transmission lines. IEEE Trans Microw Theory Techn 17(10):746–752CrossRef Adair JE, Haddad GI (1969) Coupled-mode analysis of nonuniform coupled transmission lines. IEEE Trans Microw Theory Techn 17(10):746–752CrossRef
26.
go back to reference Krage MK, Haddad GI (1970) Characteristics of coupled microstrip transmission Lines-I: Coupled-Mode formulation of inhomogeneous lines. IEEE Trans Microw Theory Techn 18(4):217–222CrossRef Krage MK, Haddad GI (1970) Characteristics of coupled microstrip transmission Lines-I: Coupled-Mode formulation of inhomogeneous lines. IEEE Trans Microw Theory Techn 18(4):217–222CrossRef
27.
go back to reference Marx KD (1973) Propagation modes, equivalent circuits, and characteristic terminations for multiconductor transmission lines with inhomogeneous dielectrics. IEEE Trans Microw Theory Techn 21(7):450–457CrossRef Marx KD (1973) Propagation modes, equivalent circuits, and characteristic terminations for multiconductor transmission lines with inhomogeneous dielectrics. IEEE Trans Microw Theory Techn 21(7):450–457CrossRef
28.
go back to reference Tripathi VK (1975) Asymmetric coupled transmission lines in an inhomogeneous medium. IEEE Trans Microw Theory Techn 23(9):734–739CrossRef Tripathi VK (1975) Asymmetric coupled transmission lines in an inhomogeneous medium. IEEE Trans Microw Theory Techn 23(9):734–739CrossRef
29.
go back to reference Speciale RA (1975) Even- and Odd-Mode waves for nonsymmetrical coupled lines in nonhomogeneous media. IEEE Trans Microw Theory Techn 23(11):897–908CrossRef Speciale RA (1975) Even- and Odd-Mode waves for nonsymmetrical coupled lines in nonhomogeneous media. IEEE Trans Microw Theory Techn 23(11):897–908CrossRef
30.
go back to reference Wei C, Harrington RF, Mautz JR, Sarkar TK (1984) Multiconductor transmission lines in multilayered dielectric media. IEEE Trans Microw Theory Techn 32(4):439–450CrossRef Wei C, Harrington RF, Mautz JR, Sarkar TK (1984) Multiconductor transmission lines in multilayered dielectric media. IEEE Trans Microw Theory Techn 32(4):439–450CrossRef
31.
go back to reference Bedair S, Sobhy M (1980) Approximate solution for propagation modes on lossy multiconductor transmission lines in inhomogeneous media. Electron Lett 16(24):914–915CrossRef Bedair S, Sobhy M (1980) Approximate solution for propagation modes on lossy multiconductor transmission lines in inhomogeneous media. Electron Lett 16(24):914–915CrossRef
32.
go back to reference Denlinger E (1980) Losses of microstrip lines. IEEE Trans Microw Theory Techn 28(6):513–522CrossRef Denlinger E (1980) Losses of microstrip lines. IEEE Trans Microw Theory Techn 28(6):513–522CrossRef
33.
go back to reference Garg R, Bahl I (1979) Characteristics of coupled microstriplines. IEEE Trans Microw Theory Techn 27(7):700–705CrossRef Garg R, Bahl I (1979) Characteristics of coupled microstriplines. IEEE Trans Microw Theory Techn 27(7):700–705CrossRef
34.
go back to reference Garg R, Bahl I (1980) Correction to characteristics of coupled microstriplines. IEEE Trans Microw Theory Tech 28(3):272–272CrossRef Garg R, Bahl I (1980) Correction to characteristics of coupled microstriplines. IEEE Trans Microw Theory Tech 28(3):272–272CrossRef
35.
go back to reference Getsinger WJ (1973) Dispersion of Parallel-Coupled Microstrip. IEEE Trans Microw Theory Tech 21(3):144–145CrossRef Getsinger WJ (1973) Dispersion of Parallel-Coupled Microstrip. IEEE Trans Microw Theory Tech 21(3):144–145CrossRef
36.
go back to reference Bryant TG, Weiss JA (1968) Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans Microw Theory Techn 16(12):1021–1027CrossRef Bryant TG, Weiss JA (1968) Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans Microw Theory Techn 16(12):1021–1027CrossRef
37.
go back to reference Krage MK, Haddad GI (1970) Characteristics of coupled microstrip transmission Lines-II: Evaluation of Coupled-Line Parameters. IEEE Trans Microw Theory Techn 18(4):222–228CrossRef Krage MK, Haddad GI (1970) Characteristics of coupled microstrip transmission Lines-II: Evaluation of Coupled-Line Parameters. IEEE Trans Microw Theory Techn 18(4):222–228CrossRef
38.
go back to reference Jansen RH (1978) High-Speed computation of single and coupled microstrip parameters including dispersion, High-Order modes, loss and finite strip thickness. IEEE Trans Microw Theory Techn 26(2):75–82CrossRef Jansen RH (1978) High-Speed computation of single and coupled microstrip parameters including dispersion, High-Order modes, loss and finite strip thickness. IEEE Trans Microw Theory Techn 26(2):75–82CrossRef
39.
go back to reference Hammerstad E, Jensen O (1980) Accurate Models for Microstrip Computer-Aided Design. In: 1980 IEEE MTT-S International Microwave Symposium Digest, pp 407–409., Washington, DC, USA Hammerstad E, Jensen O (1980) Accurate Models for Microstrip Computer-Aided Design. In: 1980 IEEE MTT-S International Microwave Symposium Digest, pp 407–409., Washington, DC, USA
40.
go back to reference Kal S, Bhattacharya D, Chakraborti NB (1981) Empirical relations for capacitive and inductive coupling coefficients of coupled microstrip lines. IEEE Trans Microw Theory Techn 29(4):386–388CrossRef Kal S, Bhattacharya D, Chakraborti NB (1981) Empirical relations for capacitive and inductive coupling coefficients of coupled microstrip lines. IEEE Trans Microw Theory Techn 29(4):386–388CrossRef
41.
go back to reference Kirschning M, Jansen R (1984) Accurate Wide-Range design equations for the Frequency-Dependent characteristic of parallel coupled microstrip lines. IEEE Trans Microw Theory Techn 32(1):83–90CrossRef Kirschning M, Jansen R (1984) Accurate Wide-Range design equations for the Frequency-Dependent characteristic of parallel coupled microstrip lines. IEEE Trans Microw Theory Techn 32(1):83–90CrossRef
42.
go back to reference Kirschning M, Jansen R (1985) Corrections to accurate Wide-Range design equations for the Frequency-Dependent characteristic of parallel coupled microstrip lines. IEEE IEEE Trans. Microw. Theory Techn. 33(3):288CrossRef Kirschning M, Jansen R (1985) Corrections to accurate Wide-Range design equations for the Frequency-Dependent characteristic of parallel coupled microstrip lines. IEEE IEEE Trans. Microw. Theory Techn. 33(3):288CrossRef
43.
go back to reference Tripathi VK, Chang CL (1978) Quasi-TEM parameters of non-symmetrical coupled microstrip lines. Int J Electron 45(2):215–223CrossRef Tripathi VK, Chang CL (1978) Quasi-TEM parameters of non-symmetrical coupled microstrip lines. Int J Electron 45(2):215–223CrossRef
44.
go back to reference Bedair SS (1984) Characterization of some asymmetric coupled transmission lines. IEEE Trans Microw Theory Techn 32(1):108–110CrossRef Bedair SS (1984) Characterization of some asymmetric coupled transmission lines. IEEE Trans Microw Theory Techn 32(1):108–110CrossRef
45.
go back to reference Bhat B, Koul SK (1982) Unified approach to solve a class of strip and Microstrip-Like transmission lines. IEEE Trans Microw Theory Techn 30(5):679–686CrossRef Bhat B, Koul SK (1982) Unified approach to solve a class of strip and Microstrip-Like transmission lines. IEEE Trans Microw Theory Techn 30(5):679–686CrossRef
46.
go back to reference Simons RN (2001) Coplanar waveguide circuits, components, and systems. John Wiley and Sons, New YorkCrossRef Simons RN (2001) Coplanar waveguide circuits, components, and systems. John Wiley and Sons, New YorkCrossRef
47.
go back to reference Nguyen C (1993) Dispersion characteristics of the Broadside-Coupled coplanar waveguide. IEEE Trans Microw Theory Tech 41(9):1630–1633CrossRef Nguyen C (1993) Dispersion characteristics of the Broadside-Coupled coplanar waveguide. IEEE Trans Microw Theory Tech 41(9):1630–1633CrossRef
48.
go back to reference Tyurnev V, Belyaev BA (1990) Interaction of parallel microstrip resonators (in Russian). Elektronnaya tekhnika. Ser. Elektronika SVCh 4:25–30 Tyurnev V, Belyaev BA (1990) Interaction of parallel microstrip resonators (in Russian). Elektronnaya tekhnika. Ser. Elektronika SVCh 4:25–30
49.
go back to reference Hong J-S, Lancaster MJ (1996) Couplings of microstrip square Open-Loop resonators for Cross-Coupled planar microwave filters. IEEE Trans Microw Theory Techn 44(11):2099–2019CrossRef Hong J-S, Lancaster MJ (1996) Couplings of microstrip square Open-Loop resonators for Cross-Coupled planar microwave filters. IEEE Trans Microw Theory Techn 44(11):2099–2019CrossRef
50.
go back to reference Hong JS (2000) Couplings of asynchronously tuned coupled microwave Resonators. IEE Proc Microw Antennas Propag 147(5):354–358CrossRef Hong JS (2000) Couplings of asynchronously tuned coupled microwave Resonators. IEE Proc Microw Antennas Propag 147(5):354–358CrossRef
51.
go back to reference Awai I, Zhang Y (2007) Coupling coefficient of Resonators—An intuitive way of its understanding. Electron Commun Jpn 90(9):962–968 Awai I, Zhang Y (2007) Coupling coefficient of Resonators—An intuitive way of its understanding. Electron Commun Jpn 90(9):962–968
52.
go back to reference Awai I, Zhang Y (2008) Separation of coupling coefficient between resonators into magnetic and electric components toward its application to BPF development. In 2008 China-Japan Joint Microwave Conference, pp 61–65, Shanghai, China Awai I, Zhang Y (2008) Separation of coupling coefficient between resonators into magnetic and electric components toward its application to BPF development. In 2008 China-Japan Joint Microwave Conference, pp 61–65, Shanghai, China
53.
go back to reference Awai I, Iwamura S, Kubo H, Sanada A (2006) Separation of coupling coefficient between resonators into electric and magnetic contributions. Electron Commun Jpn 89:1033–1039 Awai I, Iwamura S, Kubo H, Sanada A (2006) Separation of coupling coefficient between resonators into electric and magnetic contributions. Electron Commun Jpn 89:1033–1039
54.
go back to reference Tyurnev VV (2010) Coupling coefficients of resonators of resonators in microwave filter theory. Prog Electromagn Res B 21:47–67CrossRef Tyurnev VV (2010) Coupling coefficients of resonators of resonators in microwave filter theory. Prog Electromagn Res B 21:47–67CrossRef
55.
go back to reference Elnaggar SY, Tervo RJ, Mattar SM (2015) Energy coupled mode theory for electromagnetic resonators. IEEE Trans Microw Theory Techn 63(7):2115–2123CrossRef Elnaggar SY, Tervo RJ, Mattar SM (2015) Energy coupled mode theory for electromagnetic resonators. IEEE Trans Microw Theory Techn 63(7):2115–2123CrossRef
56.
go back to reference Elnaggar S, Tervo R, MMS (2015) General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators. J Appl Phys, 118, p 194901 Elnaggar S, Tervo R, MMS (2015) General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators. J Appl Phys, 118, p 194901
57.
go back to reference Powell DA, Hannam K, Shadrivov IV, Kivshar YS, Powell DA, Hannam K, Shadrivov IV, Kivshar YS (2011) Near-field interaction of twisted split-ring resonators. Phys Rev B, 83, paper 235420 Powell DA, Hannam K, Shadrivov IV, Kivshar YS, Powell DA, Hannam K, Shadrivov IV, Kivshar YS (2011) Near-field interaction of twisted split-ring resonators. Phys Rev B, 83, paper 235420
58.
go back to reference Wang H, Chu Q-X (2007) Generation of transmission zero through electric and magnetic mixed coupling. In 2007 International Conference on Microwave and Millimeter Wave Technology, pp 1–3, Guilin, China Wang H, Chu Q-X (2007) Generation of transmission zero through electric and magnetic mixed coupling. In 2007 International Conference on Microwave and Millimeter Wave Technology, pp 1–3, Guilin, China
59.
go back to reference Tang S-C, Yu C-H, Chiou Y-C, Kuo J-T (2009) Extraction of electric and magnetic coupling for coupled symmetric microstrip resonator bandpass filter with tunable transmission zero. In: 2009 Asia Pacific Microwave Conference, pp 206, Singapore Tang S-C, Yu C-H, Chiou Y-C, Kuo J-T (2009) Extraction of electric and magnetic coupling for coupled symmetric microstrip resonator bandpass filter with tunable transmission zero. In: 2009 Asia Pacific Microwave Conference, pp 206, Singapore
60.
go back to reference Belyaev BA, Serzhantov AM, Laletin NV (2001) Coupling factors of regular microstrip resonators. In 2001 Microwave Electronics: Measurement, Identification, Applications. Conference Proceedings. MEMIA'2001, pp 73–76, Novosibirsk, Russia Belyaev BA, Serzhantov AM, Laletin NV (2001) Coupling factors of regular microstrip resonators. In 2001 Microwave Electronics: Measurement, Identification, Applications. Conference Proceedings. MEMIA'2001, pp 73–76, Novosibirsk, Russia
61.
go back to reference Dai GL, Zhang XY, Chan C, Xue Q, Xia MY (2009) An investigation of open- and short-ended resonators and their applications to bandpass filters. IEEE Trans Microw Theory Techn 57(9):2203–2210CrossRef Dai GL, Zhang XY, Chan C, Xue Q, Xia MY (2009) An investigation of open- and short-ended resonators and their applications to bandpass filters. IEEE Trans Microw Theory Techn 57(9):2203–2210CrossRef
62.
go back to reference Sánchez-Soriano MA, Torregrosa-Penalva G, Bronchalo E (2012) Multispurious suppression in parallel-coupled line filters by means of coupling control. IET Microw. Antennas Propag. 6(11):1269–1276CrossRef Sánchez-Soriano MA, Torregrosa-Penalva G, Bronchalo E (2012) Multispurious suppression in parallel-coupled line filters by means of coupling control. IET Microw. Antennas Propag. 6(11):1269–1276CrossRef
63.
go back to reference Zarifi MH, Daneshmand M (2016) Wide dynamic range microwave planar coupled ring resonator for sensing applications. Appl Phys Lett, 108, paper 232906 Zarifi MH, Daneshmand M (2016) Wide dynamic range microwave planar coupled ring resonator for sensing applications. Appl Phys Lett, 108, paper 232906
64.
go back to reference Juan G, Potelon B, Quendo C, Bronchalo E, Sabater-Navarro J (2019) Highly-Sensitive glucose concentration sensor exploiting inter-resonators couplings. In 2019 49th European Microwave Conference (EuMC), pp 662–665, Paris, France Juan G, Potelon B, Quendo C, Bronchalo E, Sabater-Navarro J (2019) Highly-Sensitive glucose concentration sensor exploiting inter-resonators couplings. In 2019 49th European Microwave Conference (EuMC), pp 662–665, Paris, France
65.
go back to reference Herrera-Sepulveda LV, Olvera-Cervantes JL, Corona-Chavez A, Kaur T (2019) Sensor and methodology for determining dielectric constant using electrically coupled resonators. IEEE Microw Wireless Compon Lett 29(9):626–628CrossRef Herrera-Sepulveda LV, Olvera-Cervantes JL, Corona-Chavez A, Kaur T (2019) Sensor and methodology for determining dielectric constant using electrically coupled resonators. IEEE Microw Wireless Compon Lett 29(9):626–628CrossRef
66.
go back to reference Morales-Lovera HN, Olvera-Cervantes JL, Corona-Chavez A, Kaur Kataria T (2020) Dielectric anisotropy sensor using coupled resonators. IEEE Trans Microw Theory Techn, 68(4), pp 1610–1616 Morales-Lovera HN, Olvera-Cervantes JL, Corona-Chavez A, Kaur Kataria T (2020) Dielectric anisotropy sensor using coupled resonators. IEEE Trans Microw Theory Techn, 68(4), pp 1610–1616
67.
go back to reference Herrera Sepulveda LV, Olvera Cervantes J, Saavedra CE (2021) Multifrequency Coupled-Resonator sensor for dielectric characterization of liquids. IEEE Trans Instrum Meas, 70, pp 1–7 Herrera Sepulveda LV, Olvera Cervantes J, Saavedra CE (2021) Multifrequency Coupled-Resonator sensor for dielectric characterization of liquids. IEEE Trans Instrum Meas, 70, pp 1–7
68.
go back to reference Nguenouho OB, Chevalier A, Potelon B, Quendo C (2022) Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Sci Rep 12:7209CrossRef Nguenouho OB, Chevalier A, Potelon B, Quendo C (2022) Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Sci Rep 12:7209CrossRef
69.
go back to reference Luckasavitch K, Kozak R, Golovin K, ZMH (2022) Magnetically coupled planar microwave resonators for real-time saltwater ice detection. Sensors and Actuators: A. Physical, 333, paper 113245 Luckasavitch K, Kozak R, Golovin K, ZMH (2022) Magnetically coupled planar microwave resonators for real-time saltwater ice detection. Sensors and Actuators: A. Physical, 333, paper 113245
70.
go back to reference Cohn SB, Shimizu JK (1955) Strip transmission lines and components: second quarterly progress report. In: Stanford Research Institute, SRI Project 1114. Stanford Research Institute, SRI Project 1114 Cohn SB, Shimizu JK (1955) Strip transmission lines and components: second quarterly progress report. In: Stanford Research Institute, SRI Project 1114. Stanford Research Institute, SRI Project 1114
71.
go back to reference Ang K, Robertson ID (2001) Analysis and design of Impedance-Transforming planar marchand baluns. IEEE Trans Microw Theory Techn 49(2):402–406CrossRef Ang K, Robertson ID (2001) Analysis and design of Impedance-Transforming planar marchand baluns. IEEE Trans Microw Theory Techn 49(2):402–406CrossRef
72.
go back to reference Jensen T, Zhurbenko V, Krozer V, Meincke P (2007) Coupled transmission lines as impedance transformer. IEEE Trans Microw Theory Techn 55(12):2957–2965CrossRef Jensen T, Zhurbenko V, Krozer V, Meincke P (2007) Coupled transmission lines as impedance transformer. IEEE Trans Microw Theory Techn 55(12):2957–2965CrossRef
73.
go back to reference Sun S, Zhu L (2006) Capacitive-Ended interdigital coupled lines for UWB bandpass filters with improved Out-of-Band performances. IEEE Microw Wireless Compon Lett. 16(8):440–442CrossRef Sun S, Zhu L (2006) Capacitive-Ended interdigital coupled lines for UWB bandpass filters with improved Out-of-Band performances. IEEE Microw Wireless Compon Lett. 16(8):440–442CrossRef
74.
go back to reference Tsai C-M, Gupta KC (1992) A Generalized model for coupled lines and its applications to Two-Layer planar circuits. IEEE Trans Microw Theory Techn 40(12):2190–2199CrossRef Tsai C-M, Gupta KC (1992) A Generalized model for coupled lines and its applications to Two-Layer planar circuits. IEEE Trans Microw Theory Techn 40(12):2190–2199CrossRef
75.
go back to reference Cristal E (1966) Coupled-Transmission-Line directional couplers with coupled lines of unequal characteristic impedances. IEEE Trans Microw Theory Techn 14(7):337–346CrossRef Cristal E (1966) Coupled-Transmission-Line directional couplers with coupled lines of unequal characteristic impedances. IEEE Trans Microw Theory Techn 14(7):337–346CrossRef
76.
go back to reference Sheleg B, Spielman E (1974) Microstrip Broad-Band directional couplers using with dielectric ‘overlays. IEEE Trans Microw Theory Techn 22(12):1216–1220CrossRef Sheleg B, Spielman E (1974) Microstrip Broad-Band directional couplers using with dielectric ‘overlays. IEEE Trans Microw Theory Techn 22(12):1216–1220CrossRef
77.
go back to reference Su L, Itoh TT, Rivera J (1983) Design of an overlay directional coupler by a Full-Wave analysis. IEEE Trans Microw Theory Techn 31(12):1017–1022CrossRef Su L, Itoh TT, Rivera J (1983) Design of an overlay directional coupler by a Full-Wave analysis. IEEE Trans Microw Theory Techn 31(12):1017–1022CrossRef
78.
go back to reference Klein y J, Chang K (1990) Optimum dielectric overlay thickness for equal even- and odd-mode phase velocities in coupled microstrip circuits. Electron Lett., 26(5), pp 274–276 Klein y J, Chang K (1990) Optimum dielectric overlay thickness for equal even- and odd-mode phase velocities in coupled microstrip circuits. Electron Lett., 26(5), pp 274–276
79.
go back to reference Piekarz I, Sorocki J, Wincza K, Gruszczynski S (2017) Microwave sensors for dielectric sample measurement based on Coupled-Line Section. IEEE Trans Microw Theory Techn 65(5):1615–1631CrossRef Piekarz I, Sorocki J, Wincza K, Gruszczynski S (2017) Microwave sensors for dielectric sample measurement based on Coupled-Line Section. IEEE Trans Microw Theory Techn 65(5):1615–1631CrossRef
80.
go back to reference Bockelman D, Eisenstadt W (1995) Combined differential and Common-Mode scattering parameters: theory and simulation. IEEE Trans Microw Theory Techn 43(7):1530–1539CrossRef Bockelman D, Eisenstadt W (1995) Combined differential and Common-Mode scattering parameters: theory and simulation. IEEE Trans Microw Theory Techn 43(7):1530–1539CrossRef
81.
go back to reference Martín F, ZL, Hong J, Medina F (2018) Balanced microwave filters, Hoboken, NJ, USA: Wiley/IEEE Press Martín F, ZL, Hong J, Medina F (2018) Balanced microwave filters, Hoboken, NJ, USA: Wiley/IEEE Press
82.
go back to reference Levy R (1973) A generalized design technique for practical distributed reciprocal ladder networks. IEEE Trans Microw Theory Techn 21(8):519–526CrossRef Levy R (1973) A generalized design technique for practical distributed reciprocal ladder networks. IEEE Trans Microw Theory Techn 21(8):519–526CrossRef
Metadata
Title
Coupled Planar Microwave Resonators and Transmission-Line Structures
Author
Enrique Bronchalo
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53861-2_2