Skip to main content
Top
Published in:
Cover of the book

2024 | OriginalPaper | Chapter

Planar Microwave Sensors

Author : Ferran Martín

Published in: Coupled Structures for Microwave Sensing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this introductory chapter to planar microwave sensors, the main sensing approaches and working principles are presented, and some representative illustrative prototype examples are reported. Some strategies devoted to sensor performance optimization (manly the sensitivity) are discussed, excluding those strategies based on coupled structures, which are the subject of the subsequent chapters in the book. The chapter also highlights how machine learning can be applied to improve sensor robustness and selectivity. Finally, a section is devoted to outline those aspects of coupled structures that make them useful for sensing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For example, optical sensors exhibit very high sensitivity and selectivity for the detection of many types of biological analytes, such as toxins, drugs, antibodies, proteins, viruses, etc.
 
2
In order to enhance the sensitivity of the sensor to temperature or humidity, functional materials exhibiting a strong dependence of the permittivity with those variables can be used. Examples of such materials are polyvinyl alcohol (PVA), with a dielectric constant very sensitive to humidity, or polyamide, a material that exhibits a temperature dependent dielectric constant. This aspect will be further considered in Sect. 2.1.4.
 
3
Obviously, there are several commercial techniques for the diagnosis of cancer, e.g., magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), or ultrasounds, among others, but these techniques are, in general, very expensive, and, in some cases, annoying for the patients.
 
4
Nevertheless, other binary classification schemes of planar microwave sensors are also included in Sect. 1.
 
5
By sensor imbalance, we mean potential differences between the sensors constituting the differential sensor pair, typically caused by fabrication related tolerances. Such imbalances might generate a non-negligible output (differential) signal, despite the fact that the input differential signal is null. Thus, the accuracy in the manufacturing process is critically important in differential-mode sensors.
 
6
For broadband characterization of materials, non-resonant sensors should be used. However, it should be clarified that artificial lines, such as slow-wave, CRLH, or EIW transmission lines, inherently exhibit a limited transmission band. Therefore, such artificial lines are not useful to retrieve the dielectric characteristics of materials over broad bands.
 
7
The presence of the MUT in contact or in proximity to the sensing line modifies the characteristic impedance and the complex propagation constant of the line, which in turn affects the reflection and transmission coefficient of such line.
 
8
Note that the output dynamic range is determined by the input dynamic range and by the sensor sensitivity, or variation of the resonance frequency of the sensing resonator with the dielectric constant of the MUT.
 
9
At laboratory level, a signal generator or a VNA is typically used for the generation of the interrogation signal of the sensor.
 
10
By semi-infinite we mean a MUT of sufficient thickness and transverse dimensions to guarantee that the electromagnetic field generated by the DB-DGS does not reach the boundaries of the MUT. The semi-infinite MUT approximation is not a general requirement for sensing, but a requisite of the analytical method reported in [122].
 
11
For DI water, a mechanical holder (acting as a pool or container) was fabricated by means of a 3D printer and attached to the ground plane of the sensing structure (see further details in [122]).
 
12
The divider/combiner configuration, similar to the cascaded configuration, prevents from inter-resonator coupling, since the resonant elements are significantly separated. However, in the divider/combiner frequency-splitting sensor, the notches appear, in general, as consequence of an interfering phenomenon. Namely, at the resonance frequency of the resonator of one of the branches, signal propagation through that branch is precluded. However, signal propagation is not necessarily reflected back to the source, since it can be transmitted, or partially transmitted, through the other (parallel) branch. Thus, in general, the notches are not given by the resonance frequencies of the resonators (except for the symmetric case), but by those frequencies where the signals propagating at both branches destructively interfere at the output T-junction. This mode of operation (signal interference) also degrades sensor sensitivity at small perturbations [141]. However, if the line section between the T-junctions and the plane of the resonators is conveniently chosen, a short at the resonance frequency of the resonators when they are loaded with the REF sample is generated at the input and output T-junctions, and under these circumstances, sensitivity degradation is circumvented, as it is demonstrated in [141]. If the sensing resonant elements are CSRRs or SIRs, the line section between the T-junctions and the plane of the resonators should be a half-wavelength [or θ1 = π, see Fig. 9b]. By contrast, the electrical length of such line sections should be θ1 = π/2 (i.e., a quarter-wavelength) for SRRs. The difference is explained by the fact that CSRRs and SIRs generate a short at resonance, whereas SRRs open the line when they resonate.
 
13
Nevertheless, frequency-splitting sensors based on bandpass structures are also possible [146]. In this case, the resonances manifest as peaks in the frequency response of the sensor.
 
14
It is assumed that these sensors do not exploit electromagnetic symmetry properties, contrarily to those of the preceding paragraph.
 
15
The encoder period, p, determines the spatial resolution of the encoder.
 
16
It should be mentioned that in [174], rather than implementing the complete system sketched in Fig. 19, the envelope functions at each output arm of the splitter for each frequency (f0,1 = 4.550 GHz, f0,2 = 5.160 GHz, f0,3 = 5.885 GHz, and f0,4 = 6.540 GHz) were inferred independently, as a first proof-of-concept.
 
17
Exceptions are certain electromagnetic encoders (quasi-absolute or absolute), which require several harmonic signals for encoder reading, as explained. Nevertheless, a single VCO, managed by a microcontroller, suffices, at least in most cases, for the generation of such signals. This does not represent a significant increase of the cost of the associated electronics.
 
18
However, most phase-variation sensors do not exploit the broadband potentiality of non-resonant sensors.
 
19
In this prototype, the sensing resonator is cascaded to a single inverter stage, as a means to enhance the sensitivity. The admittance of this inverter was set in [78] to a small value, particularly, Y1 = 1/150 S (corresponding to a high inverter impedance of Z1 = 150 Ω) for the reasons that will be later justified in this subsection.
 
20
Namely, resonant elements implemented by means of two metallic layers, such as the broadside-coupled split ring resonator (BC-SRR), or the microstrip step-impedance shut stub (SISS) resonator, both exhibiting a broadside capacitance, are excluded in the present analysis.
 
21
Despite the fact that losses are neglected, the Q-factor is finite.
 
22
Note that, for the lossless case,  α = 0 and (22) rewrites as (17).
 
23
It has been assumed that the characteristic impedance, Zs, is a real number, a reasonable approximation, despite the presence of losses, necessary to avoid an excessive complex formulation.
 
24
A slot resonator, as the one depicted in Fig. 21, is described by a parallel resonant tank. A step-impedance resonator (SIR) is an example of a semi-lumped resonator that can be described by means of a series resonant tank.
 
25
The higher the ratio between the thickness of the substrate and the width of the slots (of the resonant elements or CPW line), the closer the electric field distribution to a mirror image with regard to the plane of the sensing element [121].
 
26
MUT losses have direct impact on the magnitude of the notch, or peak, of the frequency response of the sensor.
 
27
Nevertheless, it should be clarified that substrate, conductor, and radiation losses might also contribute to the overall losses of the sensing resonant element.
 
28
Note that β has been used to designate the phase constant in previous sections. Nevertheless, in this section, β is identified with the resonator transfer function, following the nomenclature of the original source [292].
 
29
Note that the circuit becomes unstable if  = 1 (Barkhausen stability criterion).
 
30
It has been shown that the magnitude of the transmission coefficient at resonance, or notch depth, in any of the individual (single-ended) sensors of the differential pair strongly depends on the electrolyte content, and this has been attributed to the high sensitivity of the loss tangent with the concentration of electrolytes. A strong variation in the notch depth of the MUT sensor in comparison with the notch depth of the REF sensor (loaded with DI water) is expected to cause an important variation in the cross-mode transmission coefficient (magnitude) in the vicinity of resonance.
 
31
Note that the period is given by p = r·θ, where r is the encoder radius. Thus, in compact rotary encoders, i.e., with small radius, good resolution (θ small) necessarily requires a small period.
 
32
It has been previously indicated that differential measurements can alleviate the effects of cross-sensitivities against ambient factors. Nevertheless, if the variations of temperature, humidity, or pressure are severe, differential sensing does not provide a definite solution to this issue.
 
33
Although not explicitly mentioned, it is assumed that a frequency-variation sensor is under consideration.
 
Literature
1.
go back to reference Liao Y, Deschamps F, de Freitas Rocha Loures E, Pierin-Ramos LF (2017) Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. Int J Prod Res 55(12):3609–3629 Liao Y, Deschamps F, de Freitas Rocha Loures E, Pierin-Ramos LF (2017) Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. Int J Prod Res 55(12):3609–3629
2.
go back to reference Vaidyaa S, Ambadb P, Bhosle S (2018) Industry 4.0—a glimpse. Procedia Manuf 20:233–238CrossRef Vaidyaa S, Ambadb P, Bhosle S (2018) Industry 4.0—a glimpse. Procedia Manuf 20:233–238CrossRef
3.
go back to reference Popkova EG, Ragulina YV, Bogoviz (2019) Industry 4.0: industrial revolution of the 21st century, Springer Popkova EG, Ragulina YV, Bogoviz (2019) Industry 4.0: industrial revolution of the 21st century, Springer
4.
go back to reference Galar-Pascual D, Daponte P, Kumar U (2019) Handbook of industry 4.0 and SMART systems. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA Galar-Pascual D, Daponte P, Kumar U (2019) Handbook of industry 4.0 and SMART systems. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA
5.
go back to reference Wollschlaeger M, Sauter T, Jasperneite J (2017) The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag 11:17–27 Wollschlaeger M, Sauter T, Jasperneite J (2017) The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag 11:17–27
6.
go back to reference Yan L, Zhang Y, Yang LT, Ning H (2008) The Internet of things: from RFID to the next-generation pervasive networked systems: wireless networks and mobile communications. Auerbach Publications, Taylor & Francis Group, Boca Raton, FL, USA Yan L, Zhang Y, Yang LT, Ning H (2008) The Internet of things: from RFID to the next-generation pervasive networked systems: wireless networks and mobile communications. Auerbach Publications, Taylor & Francis Group, Boca Raton, FL, USA
7.
go back to reference Tsiatsis V, Karnouskos S, Holler J, Boyle D, Mulligan C (2018) Internet of things: technologies and applications for a new age of intelligence, 2nd edn. Academic Press Tsiatsis V, Karnouskos S, Holler J, Boyle D, Mulligan C (2018) Internet of things: technologies and applications for a new age of intelligence, 2nd edn. Academic Press
8.
go back to reference Davies J, Fortuna C (eds) (2020) The internet of things: from data to insight. John Wiley, Hoboken, NJ, USA Davies J, Fortuna C (eds) (2020) The internet of things: from data to insight. John Wiley, Hoboken, NJ, USA
9.
go back to reference Hassan QF (2018) Internet of things A to Z: technologies and applications. John Wiley, Hoboken, NJ, USACrossRef Hassan QF (2018) Internet of things A to Z: technologies and applications. John Wiley, Hoboken, NJ, USACrossRef
10.
go back to reference Yang LT, Di Martino B, Zhang Q (2017) Internet of everything. Mob Inf Syst 2017:3. Article ID 8035421 Yang LT, Di Martino B, Zhang Q (2017) Internet of everything. Mob Inf Syst 2017:3. Article ID 8035421
11.
go back to reference Sharma L (ed) (2021) Towards smart world: homes to cities using internet of things. Chapman and Hall/CRC Press, Taylor and Francis Group, Boca Raton, FL, USA Sharma L (ed) (2021) Towards smart world: homes to cities using internet of things. Chapman and Hall/CRC Press, Taylor and Francis Group, Boca Raton, FL, USA
12.
go back to reference Kalansuriya P, Bhattacharyya R, Sarma S, Karmakar N (2012) Towards chipless RFID-based sensing for pervasive surface crack detection. In: 2012 IEEE international conference on RFID-technologies and applications (RFID-TA), Nice, France, Nov 2012, pp 46–51 Kalansuriya P, Bhattacharyya R, Sarma S, Karmakar N (2012) Towards chipless RFID-based sensing for pervasive surface crack detection. In: 2012 IEEE international conference on RFID-technologies and applications (RFID-TA), Nice, France, Nov 2012, pp 46–51
13.
go back to reference Dey S, Kalansuriya P, Karmakar NC (2014) Chipless RFID based high resolution crack sensing through SWB technology. In: 2014 IEEE international microwave and RF conference (IMaRC), Bangalore, India, Dec 2014, pp 330–333 Dey S, Kalansuriya P, Karmakar NC (2014) Chipless RFID based high resolution crack sensing through SWB technology. In: 2014 IEEE international microwave and RF conference (IMaRC), Bangalore, India, Dec 2014, pp 330–333
14.
go back to reference Ramos A, Girbau D, Lazaro A, Villarino R (2015) Wireless concrete mixture composition sensor based on time-coded UWB RFID. IEEE Microw Wireless Compon Lett 25(10):681–683CrossRef Ramos A, Girbau D, Lazaro A, Villarino R (2015) Wireless concrete mixture composition sensor based on time-coded UWB RFID. IEEE Microw Wireless Compon Lett 25(10):681–683CrossRef
15.
go back to reference Ramos A, Lazaro A, Girbau D (2015) Time-coded chipless sensors to detect quality of materials in civil engineering. In: 2015 9th European conference on antennas and propagation (EuCAP), Lisbon, Portugal, Apr 2015 Ramos A, Lazaro A, Girbau D (2015) Time-coded chipless sensors to detect quality of materials in civil engineering. In: 2015 9th European conference on antennas and propagation (EuCAP), Lisbon, Portugal, Apr 2015
16.
go back to reference DiGiampaolo E, DiCarlofelice A, Gregori A (2017) An RFID-enabled wireless strain gauge sensor for static and dynamic structural monitoring. IEEE Sensors J 17(2):286–294CrossRef DiGiampaolo E, DiCarlofelice A, Gregori A (2017) An RFID-enabled wireless strain gauge sensor for static and dynamic structural monitoring. IEEE Sensors J 17(2):286–294CrossRef
17.
go back to reference Caizzone S, DiGiampaolo E (2015) Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sensors J 15(12):6767–6774CrossRef Caizzone S, DiGiampaolo E (2015) Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sensors J 15(12):6767–6774CrossRef
18.
go back to reference Lázaro A, Villarino R, Costa F, Genovesi S, Gentile A, Buoncristiani L, Girbau D (2018) Chipless dielectric constant sensor for structural health testing. IEEE Sensors J 18(13):5576–5585CrossRef Lázaro A, Villarino R, Costa F, Genovesi S, Gentile A, Buoncristiani L, Girbau D (2018) Chipless dielectric constant sensor for structural health testing. IEEE Sensors J 18(13):5576–5585CrossRef
19.
go back to reference Marindra AMJ, Tian GY (2018) Chipless RFID sensor tag for metal crack detection and characterization. IEEE Trans Microw Theory Techn 66(5):2452–2462CrossRef Marindra AMJ, Tian GY (2018) Chipless RFID sensor tag for metal crack detection and characterization. IEEE Trans Microw Theory Techn 66(5):2452–2462CrossRef
20.
go back to reference Marindra AMJ, Tian GY (2019) Multiresonance chipless RFID sensor tag for metal defect characterization using principal component analysis. IEEE Sensors J 19(18):8037–8046CrossRef Marindra AMJ, Tian GY (2019) Multiresonance chipless RFID sensor tag for metal defect characterization using principal component analysis. IEEE Sensors J 19(18):8037–8046CrossRef
21.
go back to reference Li MM, Wan GC, Yang M, Tong MS (2019) A chipless RFID sensor for metal crack detection based on notch characteristics. In: 2019 photonics & electromagnetics research symposium—fall (PIERS—Fall), Xiamen, China, Dec 2019, pp 217–221 Li MM, Wan GC, Yang M, Tong MS (2019) A chipless RFID sensor for metal crack detection based on notch characteristics. In: 2019 photonics & electromagnetics research symposium—fall (PIERS—Fall), Xiamen, China, Dec 2019, pp 217–221
22.
go back to reference Min SH, Kim HJ, Quan YJ, Kim HS, Lyu JH, Lee GY, Ahn SH (2020) Stretchable chipless RFID multi-strain sensors using direct printing of aerosolised nanocomposite. Sens Act A: Phys 313:112224 Min SH, Kim HJ, Quan YJ, Kim HS, Lyu JH, Lee GY, Ahn SH (2020) Stretchable chipless RFID multi-strain sensors using direct printing of aerosolised nanocomposite. Sens Act A: Phys 313:112224
23.
go back to reference Marindra AMJ, Tian GY (2020) Chipless RFID sensor for corrosion characterization based on frequency selective surface and feature fusion. Smart Mater Struct 29:125010 Marindra AMJ, Tian GY (2020) Chipless RFID sensor for corrosion characterization based on frequency selective surface and feature fusion. Smart Mater Struct 29:125010
24.
go back to reference Deif S, Daneshmand M (2020) Multiresonant chipless RFID array system for coating defect detection and corrosion prediction. IEEE Tran Ind Electron 67(10):8868–8877CrossRef Deif S, Daneshmand M (2020) Multiresonant chipless RFID array system for coating defect detection and corrosion prediction. IEEE Tran Ind Electron 67(10):8868–8877CrossRef
25.
go back to reference Wan G, Kang W, Wang C, Li W, Li M, Xie L, Chen L (2020) Separating strain sensor based on dual-resonant circular patch antenna with chipless RFID tag. Smart Mater Struct 30:015007 Wan G, Kang W, Wang C, Li W, Li M, Xie L, Chen L (2020) Separating strain sensor based on dual-resonant circular patch antenna with chipless RFID tag. Smart Mater Struct 30:015007
26.
go back to reference Javed N, Azam MA, Amin Y (2021) Chipless RFID multisensor for temperature sensing and crack monitoring in an IoT environment. IEEE Sensors Lett 5(6):6001404 Javed N, Azam MA, Amin Y (2021) Chipless RFID multisensor for temperature sensing and crack monitoring in an IoT environment. IEEE Sensors Lett 5(6):6001404
27.
go back to reference Dey S, Bhattacharyya R, Sarma SE, Karmakar NC (2021) A novel “smart skin” sensor for chipless RFID-based structural health monitoring applications. IEEE Internet Things J 8(5):3955–3971CrossRef Dey S, Bhattacharyya R, Sarma SE, Karmakar NC (2021) A novel “smart skin” sensor for chipless RFID-based structural health monitoring applications. IEEE Internet Things J 8(5):3955–3971CrossRef
28.
go back to reference Chambon H, Nicolay P, Floer C, Benjeddou A (2021) A package-less SAW RFID sensor concept for structural health monitoring. Mech Adv Mater Struct 28:648–655CrossRef Chambon H, Nicolay P, Floer C, Benjeddou A (2021) A package-less SAW RFID sensor concept for structural health monitoring. Mech Adv Mater Struct 28:648–655CrossRef
29.
go back to reference Mc Gee K, Anandarajah P, Collins D (2021) Proof of concept novel configurable chipless RFID strain sensor. Sensors 21:6224 Mc Gee K, Anandarajah P, Collins D (2021) Proof of concept novel configurable chipless RFID strain sensor. Sensors 21:6224
30.
go back to reference Pittella E, Schiavoni R, Monti G, Masciullo A, Scarpetta M, Cataldo A, Piuzzi E (2022) Split ring resonator network and diffused sensing element embedded in a concrete beam for structural health monitoring. Sensors 22(17):6398 Pittella E, Schiavoni R, Monti G, Masciullo A, Scarpetta M, Cataldo A, Piuzzi E (2022) Split ring resonator network and diffused sensing element embedded in a concrete beam for structural health monitoring. Sensors 22(17):6398
31.
32.
go back to reference A. Rida, L. Yang, and M. Tentzeris, RFID-enabled Sensor Design and Applications, Artech House, Norwood, MA, USA, 2010. A. Rida, L. Yang, and M. Tentzeris, RFID-enabled Sensor Design and Applications, Artech House, Norwood, MA, USA, 2010.
33.
go back to reference Marrocco G (2010) Pervasive electromagnetics: sensing paradigms by passive RFID technology. IEEE Wireless Commun 17(6):10–17CrossRef Marrocco G (2010) Pervasive electromagnetics: sensing paradigms by passive RFID technology. IEEE Wireless Commun 17(6):10–17CrossRef
34.
go back to reference Roselli L (ed) (2014) Green RFID systems. Cambridge University Press, Cambridge, United Kingdom Roselli L (ed) (2014) Green RFID systems. Cambridge University Press, Cambridge, United Kingdom
35.
go back to reference Perret E (2014) Radio frequency identification and sensors: from RFID to chipless RFID. Wiley, Hoboken, NJ, USACrossRef Perret E (2014) Radio frequency identification and sensors: from RFID to chipless RFID. Wiley, Hoboken, NJ, USACrossRef
36.
go back to reference Dey S, Saha JK, Karmakar NC (2015) Smart sensing: chipless RFID solutions for the internet of everything. IEEE Microw Mag 16(10):26–39CrossRef Dey S, Saha JK, Karmakar NC (2015) Smart sensing: chipless RFID solutions for the internet of everything. IEEE Microw Mag 16(10):26–39CrossRef
37.
go back to reference Forouzandeh M, Karmakar NC (2015) Chipless RFID tags and sensors: a review on time-domain techniques. Wirel. Power Transf. 2(2):62–77CrossRef Forouzandeh M, Karmakar NC (2015) Chipless RFID tags and sensors: a review on time-domain techniques. Wirel. Power Transf. 2(2):62–77CrossRef
38.
go back to reference Karmakar NC, Amin EM, Saha JK (2016) Chipless RFID sensors. Wiley, Hoboken, NJ, USACrossRef Karmakar NC, Amin EM, Saha JK (2016) Chipless RFID sensors. Wiley, Hoboken, NJ, USACrossRef
39.
go back to reference Ramos A, Lazaro A, Girbau D, Villarino R (2016) RFID and wireless sensors using ultra-wideband technology. ISTE Press/Elsevier, London, UK Ramos A, Lazaro A, Girbau D, Villarino R (2016) RFID and wireless sensors using ultra-wideband technology. ISTE Press/Elsevier, London, UK
40.
go back to reference Cui L, Zhang Z, Gao N, Meng Z, Li Z (2019) Radio frequency identification and sensing techniques and their applications—a review of the state-of-the-art. Sensors 19:4012 Cui L, Zhang Z, Gao N, Meng Z, Li Z (2019) Radio frequency identification and sensing techniques and their applications—a review of the state-of-the-art. Sensors 19:4012
41.
go back to reference Costa F, Genovesi S, Borgese M, Michel A, Dicandia FA, Manara G (2021) A review of RFID sensors, the new frontier of Internet of Things. Sensors 21:3138 Costa F, Genovesi S, Borgese M, Michel A, Dicandia FA, Manara G (2021) A review of RFID sensors, the new frontier of Internet of Things. Sensors 21:3138
42.
go back to reference Martín F, Herrojo C, Mata-Contreras J, Paredes F (2020) Time-Domain Signature Barcodes for Chipless-RFID and Sensing Applications. Springer, Cham, SwitzerlandCrossRef Martín F, Herrojo C, Mata-Contreras J, Paredes F (2020) Time-Domain Signature Barcodes for Chipless-RFID and Sensing Applications. Springer, Cham, SwitzerlandCrossRef
43.
go back to reference Khalid N, Mirzavand R, Iyer AK (2021) A survey on battery-less RFID-based wireless sensors. Micromachines 12:819 Khalid N, Mirzavand R, Iyer AK (2021) A survey on battery-less RFID-based wireless sensors. Micromachines 12:819
44.
go back to reference Martín F, Vélez P, Muñoz-Enano J, Su L (2022) Planar microwave sensors. Wiley/IEEE Press, Hoboken, NJ, USACrossRef Martín F, Vélez P, Muñoz-Enano J, Su L (2022) Planar microwave sensors. Wiley/IEEE Press, Hoboken, NJ, USACrossRef
45.
go back to reference Kent G (1988) An evanescent-mode tester for ceramic dielectric substrates. IEEE Trans Microw Theory Techn 36(10):1451–1454CrossRef Kent G (1988) An evanescent-mode tester for ceramic dielectric substrates. IEEE Trans Microw Theory Techn 36(10):1451–1454CrossRef
46.
go back to reference Kent G (1996) Nondestructive permittivity measurement of substrates. IEEE Trans Instrum Meas 45(1):102–106CrossRef Kent G (1996) Nondestructive permittivity measurement of substrates. IEEE Trans Instrum Meas 45(1):102–106CrossRef
47.
go back to reference Janezic MD, Baker-Jarvis J (1999) Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements. IEEE Trans Microw Theory Techn 47(10):2014–2020CrossRef Janezic MD, Baker-Jarvis J (1999) Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements. IEEE Trans Microw Theory Techn 47(10):2014–2020CrossRef
48.
go back to reference Janezic MD (2003) Nondestructive relative permittivity and loss tangent measurements using a split-cylinder resonator, Ph.D. Thesis, University of Colorado at Boulder Janezic MD (2003) Nondestructive relative permittivity and loss tangent measurements using a split-cylinder resonator, Ph.D. Thesis, University of Colorado at Boulder
49.
go back to reference Janezic MD, Kuester EF, Baker-Jarvis J (2004) Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator. In: IEEE MTT-S international microwave symposium digest, Fort Worth, TX, USA, Jun 2004, pp 1817–1820 Janezic MD, Kuester EF, Baker-Jarvis J (2004) Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator. In: IEEE MTT-S international microwave symposium digest, Fort Worth, TX, USA, Jun 2004, pp 1817–1820
50.
go back to reference Amin EM, Bhuiyan MS, Karmakar NC, Winther-Jensen B (2014) Development of a low cost printable chipless RFID humidity sensor. IEEE Sensors J 14(1):140–149CrossRef Amin EM, Bhuiyan MS, Karmakar NC, Winther-Jensen B (2014) Development of a low cost printable chipless RFID humidity sensor. IEEE Sensors J 14(1):140–149CrossRef
51.
go back to reference WM Abdulkawi, Sheta AFA (2020) Chipless RFID sensors based on multistate coupled line resonators. Sens Act A Phys 309:112025 WM Abdulkawi, Sheta AFA (2020) Chipless RFID sensors based on multistate coupled line resonators. Sens Act A Phys 309:112025
52.
go back to reference Yeo J, Lee JI, Kwon Y (2021) Humidity-sensing chipless RFID tag with enhanced sensitivity using an interdigital capacitor structure. Sensors 21:6550 Yeo J, Lee JI, Kwon Y (2021) Humidity-sensing chipless RFID tag with enhanced sensitivity using an interdigital capacitor structure. Sensors 21:6550
53.
go back to reference Yilmaz T, Foster R, Hao Y (2010) Detecting vital signs with wearable wireless sensors. Sensors 10(12):10837–10862CrossRef Yilmaz T, Foster R, Hao Y (2010) Detecting vital signs with wearable wireless sensors. Sensors 10(12):10837–10862CrossRef
54.
go back to reference Elgeziry M, Costa F, Tognetti A, Genovesi S (2022) Wearable textile-based sensor tag for breath rate measurement. IEEE Sensors J 22(23):22610–22619CrossRef Elgeziry M, Costa F, Tognetti A, Genovesi S (2022) Wearable textile-based sensor tag for breath rate measurement. IEEE Sensors J 22(23):22610–22619CrossRef
55.
go back to reference Puentes M, Maasch M, Schubler M, Jakoby R (2012) Frequency multiplexed 2-dimensional sensor array based on split-ring resonators for organic tissue analysis. IEEE Trans Microw Theory Techn 60(6):1720–1727CrossRef Puentes M, Maasch M, Schubler M, Jakoby R (2012) Frequency multiplexed 2-dimensional sensor array based on split-ring resonators for organic tissue analysis. IEEE Trans Microw Theory Techn 60(6):1720–1727CrossRef
56.
go back to reference Puentes M, Maasch M, Schüssler M, Damm C, Jakoby R (2014) Analysis of resonant particles in a coplanar microwave sensor array for thermal ablation of organic tissue. In: 2014 IEEE MTT-S international microwave symposium (IMS’2014), Tampa, FL, USA Puentes M, Maasch M, Schüssler M, Damm C, Jakoby R (2014) Analysis of resonant particles in a coplanar microwave sensor array for thermal ablation of organic tissue. In: 2014 IEEE MTT-S international microwave symposium (IMS’2014), Tampa, FL, USA
57.
go back to reference Jol HM (ed) (2009) Ground penetrating radar theory and applications. Elsevier, Amsterdam, The Netherlands Jol HM (ed) (2009) Ground penetrating radar theory and applications. Elsevier, Amsterdam, The Netherlands
58.
go back to reference Zhao W, Forte E, Pipan M, Tian G (2013) Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J Appl Geophys 97:107–117CrossRef Zhao W, Forte E, Pipan M, Tian G (2013) Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J Appl Geophys 97:107–117CrossRef
59.
go back to reference Benedetto A, Pajewski L (2015) Civil engineering applications of ground penetrating radar. Springer Benedetto A, Pajewski L (2015) Civil engineering applications of ground penetrating radar. Springer
60.
go back to reference Rothwell EJ, Frasch JL, Ellison SM, Chahal P, Ouedraogo RO (2016) Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials. Prog Electromagn Res 157:31–47CrossRef Rothwell EJ, Frasch JL, Ellison SM, Chahal P, Ouedraogo RO (2016) Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials. Prog Electromagn Res 157:31–47CrossRef
61.
go back to reference Costa F, Borgese M, Degiorgi M, Monorchio A (2017) Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices. Electronics 6(4):95 Costa F, Borgese M, Degiorgi M, Monorchio A (2017) Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices. Electronics 6(4):95
62.
go back to reference Komarov SA, Komarov AS, Barber DG, Lemes MJL, Rysgaard S (2016) Open-ended coaxial probe technique for dielectric spectroscopy of artificially grown sea ice. IEEE Trans Geosci Remote Sens 54(8):4941–4951CrossRef Komarov SA, Komarov AS, Barber DG, Lemes MJL, Rysgaard S (2016) Open-ended coaxial probe technique for dielectric spectroscopy of artificially grown sea ice. IEEE Trans Geosci Remote Sens 54(8):4941–4951CrossRef
63.
go back to reference La Gioia A, Porter E, Merunka I, Shahzad A, Salahuddin S, Jones M, O’Halloran M (2018) Open-ended coaxial probe technique for dielectric measurement of biological tissues: challenges and common practices. Diagnostics 8:40 La Gioia A, Porter E, Merunka I, Shahzad A, Salahuddin S, Jones M, O’Halloran M (2018) Open-ended coaxial probe technique for dielectric measurement of biological tissues: challenges and common practices. Diagnostics 8:40
64.
go back to reference Guihard V, Taillade F, Balayssac JP, Steck B, Sanahuja J, Deby F (2020) Permittivity measurement of cementitious materials with an open-ended coaxial probe. Constr Build Mater 230:116946 Guihard V, Taillade F, Balayssac JP, Steck B, Sanahuja J, Deby F (2020) Permittivity measurement of cementitious materials with an open-ended coaxial probe. Constr Build Mater 230:116946
65.
go back to reference Aydinalp C, Joof S, Yilmaz T (2021) Towards non-invasive diagnosis of skin cancer: sensing depth investigation of open-ended coaxial probes. Sensors 21:1319 Aydinalp C, Joof S, Yilmaz T (2021) Towards non-invasive diagnosis of skin cancer: sensing depth investigation of open-ended coaxial probes. Sensors 21:1319
66.
go back to reference Keysight Technologies (2020) N1501A Dielectric Probe Kit: 10 MHz to 50 GHz. Technical Overview Keysight Technologies (2020) N1501A Dielectric Probe Kit: 10 MHz to 50 GHz. Technical Overview
67.
go back to reference Su L, Huang X, Guo W, Wu H (2020) A Flexible Microwave Sensor Based on Complementary Spiral Resonator for Material Dielectric Characterization. IEEE Sensors J 20(4):1893–1903CrossRef Su L, Huang X, Guo W, Wu H (2020) A Flexible Microwave Sensor Based on Complementary Spiral Resonator for Material Dielectric Characterization. IEEE Sensors J 20(4):1893–1903CrossRef
68.
go back to reference Elsheikh D, Eldamak AR (2021) Microwave textile sensors for breast cancer detection. In: Proc. 38th nat. radio sci. conf. (NRSC), Mansoura, Egypt, Jul 2021, pp 288–294 Elsheikh D, Eldamak AR (2021) Microwave textile sensors for breast cancer detection. In: Proc. 38th nat. radio sci. conf. (NRSC), Mansoura, Egypt, Jul 2021, pp 288–294
69.
go back to reference Martínez-Estrada M, Gil I, Fernández-García R (2021) An alternative method to develop embroidery textile strain sensors. Textiles 1(3):504–512CrossRef Martínez-Estrada M, Gil I, Fernández-García R (2021) An alternative method to develop embroidery textile strain sensors. Textiles 1(3):504–512CrossRef
70.
go back to reference Nejad HR, Punjiya MP, Sonkusale S (2017) Washable thread based strain sensor for smart textile. In: Proc. 19th int. conf. solid-state sens., actuators microsyst. (TRANSDUCERS), Kaohsiung, Taiwan, Jun 2017, pp 1183–1186 Nejad HR, Punjiya MP, Sonkusale S (2017) Washable thread based strain sensor for smart textile. In: Proc. 19th int. conf. solid-state sens., actuators microsyst. (TRANSDUCERS), Kaohsiung, Taiwan, Jun 2017, pp 1183–1186
71.
go back to reference Vélez P, Martín F, Fernández-García R, Gil I (2022) Embroidered Textile Frequency-Splitting Sensor Based on Stepped-Impedance Resonators. IEEE Sensors J 22(9):8596–8603CrossRef Vélez P, Martín F, Fernández-García R, Gil I (2022) Embroidered Textile Frequency-Splitting Sensor Based on Stepped-Impedance Resonators. IEEE Sensors J 22(9):8596–8603CrossRef
72.
go back to reference Moras M, Martínez-Domingo C, Escudé R, Herrojo C, Paredes F, Terés L, Martín F, Ramon E (2021) Programmable organic chipless RFID tags inkjet printed on paper substrates. Applied Sciences 11(17):7832 Moras M, Martínez-Domingo C, Escudé R, Herrojo C, Paredes F, Terés L, Martín F, Ramon E (2021) Programmable organic chipless RFID tags inkjet printed on paper substrates. Applied Sciences 11(17):7832
73.
go back to reference Grenier K, Dubuc D, Poleni P, Kumemura M, Toshiyoshi H, Fujii T, Fujita H (2009) New broadband and contact less RF, microfluidic sensor dedicated to bioengineering”, 2009 IEEE MTT-S International Microwave Symposium Digest Boston, MA, USA, pp 1329–1332 Grenier K, Dubuc D, Poleni P, Kumemura M, Toshiyoshi H, Fujii T, Fujita H (2009) New broadband and contact less RF, microfluidic sensor dedicated to bioengineering”, 2009 IEEE MTT-S International Microwave Symposium Digest Boston, MA, USA, pp 1329–1332
74.
go back to reference Vélez P, Su L, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2017) Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sensors J 17(20):6589–6598CrossRef Vélez P, Su L, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2017) Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sensors J 17(20):6589–6598CrossRef
75.
go back to reference Ebrahimi A, Scott J, Ghorbani K (2019) Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Trans Microw Theory Techn 67(10):4269–4277CrossRef Ebrahimi A, Scott J, Ghorbani K (2019) Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Trans Microw Theory Techn 67(10):4269–4277CrossRef
76.
go back to reference Chuma EL, Iano Y, Fontgalland G, Bravo Roger LL (2018) Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sensors J 18(24):9978–9983 Chuma EL, Iano Y, Fontgalland G, Bravo Roger LL (2018) Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sensors J 18(24):9978–9983
77.
go back to reference Su L, Mata-Contreras J, Vélez P, Fernández-Prieto A, Martín F (2018) Analytical method to estimate the complex permittivity of oil samples. Sensors 18:984CrossRef Su L, Mata-Contreras J, Vélez P, Fernández-Prieto A, Martín F (2018) Analytical method to estimate the complex permittivity of oil samples. Sensors 18:984CrossRef
78.
go back to reference Muñoz-Enano J, Vélez P, Casacuberta P, Su L, Martín F (2023) Characterization of the quality of edible oils subjected to industrial frying processes through high sensitivity microwave sensors. In: 53rd European microwave conference, Berlin, Germany, pp 17–22 Muñoz-Enano J, Vélez P, Casacuberta P, Su L, Martín F (2023) Characterization of the quality of edible oils subjected to industrial frying processes through high sensitivity microwave sensors. In: 53rd European microwave conference, Berlin, Germany, pp 17–22
79.
go back to reference Woodhouse IH (2006) Introduction to microwave remote sensing. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA Woodhouse IH (2006) Introduction to microwave remote sensing. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA
80.
go back to reference Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn. John Wiley, Hoboken, NJ, USA Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn. John Wiley, Hoboken, NJ, USA
81.
go back to reference Thenkabail PS (2015) Remote sensing handbook. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA Thenkabail PS (2015) Remote sensing handbook. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA
82.
go back to reference Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press
83.
go back to reference Zarifi MH, Daneshmand M (2016) Liquid sensing in aquatic environment using high quality planar microwave resonator. Sens Actuators, B Chem 225:517–521CrossRef Zarifi MH, Daneshmand M (2016) Liquid sensing in aquatic environment using high quality planar microwave resonator. Sens Actuators, B Chem 225:517–521CrossRef
84.
go back to reference Wei Z, Huang J, Li J, Xu G, Ju Z, Liu X, Ni X (2018) A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids. Sensors 18(11):4005 Wei Z, Huang J, Li J, Xu G, Ju Z, Liu X, Ni X (2018) A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids. Sensors 18(11):4005
85.
go back to reference Javed A, Arif A, Zubair M, Mehmood MQ, Riaz K (2020) A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids. IEEE Sensors J 20(19):11326–11334CrossRef Javed A, Arif A, Zubair M, Mehmood MQ, Riaz K (2020) A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids. IEEE Sensors J 20(19):11326–11334CrossRef
86.
go back to reference Martín F, Medina F (2023) Balanced microwave transmission lines, circuits, and sensors. IEEE J Microw 3(1):398–440CrossRef Martín F, Medina F (2023) Balanced microwave transmission lines, circuits, and sensors. IEEE J Microw 3(1):398–440CrossRef
87.
go back to reference Naqui J, Damm C, Wiens A, Jakoby R, Su L, Mata-Contreras J, Martín F (2016) Transmission Lines Loaded with Pairs of Stepped Impedance Resonators: Modeling and Application to Differential Permittivity Measurements. IEEE Trans Microw Theory Techn 64(11):3864–3877CrossRef Naqui J, Damm C, Wiens A, Jakoby R, Su L, Mata-Contreras J, Martín F (2016) Transmission Lines Loaded with Pairs of Stepped Impedance Resonators: Modeling and Application to Differential Permittivity Measurements. IEEE Trans Microw Theory Techn 64(11):3864–3877CrossRef
88.
go back to reference Kozak R, Khorsand K, Zarifi T, Golovin K, Zarifi MH (2021) Patch antenna sensor for wireless ice and frost detection. Sci Rep 11:13707 Kozak R, Khorsand K, Zarifi T, Golovin K, Zarifi MH (2021) Patch antenna sensor for wireless ice and frost detection. Sci Rep 11:13707
89.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) An analytical method to implement high sensitivity transmission line differential sensors for dielectric constant measurements. IEEE Sensors J 20:178–184CrossRef Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) An analytical method to implement high sensitivity transmission line differential sensors for dielectric constant measurements. IEEE Sensors J 20:178–184CrossRef
90.
go back to reference Ebrahimi A, Coromina J, Muñoz-Enano J, Vélez P, Scott J, Ghorbani K, Martín F (2021) Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line. IEEE Trans Circ Syst I: Reg Pap 68(7):2787–2799 Ebrahimi A, Coromina J, Muñoz-Enano J, Vélez P, Scott J, Ghorbani K, Martín F (2021) Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line. IEEE Trans Circ Syst I: Reg Pap 68(7):2787–2799
91.
go back to reference Damm C, Schüßler M, Puentes M, Maune H, Maasch M, Jakoby R (2009) Artificial transmission lines for high sensitive microwave sensors. In: 2009 IEEE sensors Christchurch, New Zeland, pp 755–758 Damm C, Schüßler M, Puentes M, Maune H, Maasch M, Jakoby R (2009) Artificial transmission lines for high sensitive microwave sensors. In: 2009 IEEE sensors Christchurch, New Zeland, pp 755–758
92.
go back to reference Gil M, Vélez P, Aznar F, Muñoz-Enano J, Martín F (2020) Differential sensor based on electro-inductive wave (EIW) transmission lines for dielectric constant measurements and defect detection. IEEE Trans Ant Propag 68:1876–1886CrossRef Gil M, Vélez P, Aznar F, Muñoz-Enano J, Martín F (2020) Differential sensor based on electro-inductive wave (EIW) transmission lines for dielectric constant measurements and defect detection. IEEE Trans Ant Propag 68:1876–1886CrossRef
93.
go back to reference Kremer F, Schönhals A (eds) (2003) Broadband Dielectric spectroscopy. Springer Kremer F, Schönhals A (eds) (2003) Broadband Dielectric spectroscopy. Springer
94.
go back to reference Grenier K et al (2013) Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans Microw Theory Techn 61(5):2023–2030CrossRef Grenier K et al (2013) Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans Microw Theory Techn 61(5):2023–2030CrossRef
95.
go back to reference Vélez P, Muñoz-Enano J, Ebrahimi A, Herrojo C, Paredes F, Scott J, Ghorbani K, Martín F (2021) Single-frequency amplitude-modulation sensor for dielectric characterization of solids and microfluidics. IEEE Sensors J 21(10):12189–12201 Vélez P, Muñoz-Enano J, Ebrahimi A, Herrojo C, Paredes F, Scott J, Ghorbani K, Martín F (2021) Single-frequency amplitude-modulation sensor for dielectric characterization of solids and microfluidics. IEEE Sensors J 21(10):12189–12201
96.
go back to reference Elgeziry M, Paredes F, Vélez P, Costa F, Genovesi S, Martín F (2022) A method to retrieve the output variables in reflective-mode phase-variation sensors. In: 52nd European microwave conference, Milan, Italy, pp 20–25 Elgeziry M, Paredes F, Vélez P, Costa F, Genovesi S, Martín F (2022) A method to retrieve the output variables in reflective-mode phase-variation sensors. In: 52nd European microwave conference, Milan, Italy, pp 20–25
97.
go back to reference Vélez P, Paredes F, Casacuberta P, Elgeziry M, Su L, Muñoz-Enano J, Costa F, Genovesi S, Martín F (2023) Portable reflective-mode phase-variation microwave sensor based on a rat-race coupler pair and gain/phase detector for dielectric characterization. IEEE Sensors J 23(6):5745–5756 Vélez P, Paredes F, Casacuberta P, Elgeziry M, Su L, Muñoz-Enano J, Costa F, Genovesi S, Martín F (2023) Portable reflective-mode phase-variation microwave sensor based on a rat-race coupler pair and gain/phase detector for dielectric characterization. IEEE Sensors J 23(6):5745–5756
98.
go back to reference Puentes M, Weiss C, Schussler M, Jakoby R (2011) Sensor array based on split ring resonators for analysis of organic tissues. In: IEEE MTT-S int. microw. symp. dig., Baltimore, MD, USA Puentes M, Weiss C, Schussler M, Jakoby R (2011) Sensor array based on split ring resonators for analysis of organic tissues. In: IEEE MTT-S int. microw. symp. dig., Baltimore, MD, USA
99.
go back to reference Mandel C, Kubina B, Schüßler M, Jakoby R (2011) Passive chipless wireless sensor for two-dimensional displacement measurement. In: 41st European microwave conference, Manchester, UK, pp 79–82 Mandel C, Kubina B, Schüßler M, Jakoby R (2011) Passive chipless wireless sensor for two-dimensional displacement measurement. In: 41st European microwave conference, Manchester, UK, pp 79–82
100.
go back to reference Ebrahimi A, Withayachumnankul W, Al-Sarawi S, Abbott D (2014) High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors J 14(5):1345–1351CrossRef Ebrahimi A, Withayachumnankul W, Al-Sarawi S, Abbott D (2014) High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors J 14(5):1345–1351CrossRef
101.
go back to reference Schueler M, Mandel C, Puentes M, Jakoby R (2012) Metamaterial inspired microwave sensors. IEEE Microw Mag 13(2):57–68CrossRef Schueler M, Mandel C, Puentes M, Jakoby R (2012) Metamaterial inspired microwave sensors. IEEE Microw Mag 13(2):57–68CrossRef
102.
go back to reference Boybay MS, Ramahi OM (2012) Material characterization using complementary split-ring resonators. IEEE Trans Instrum Meas 61(11):3039–3046CrossRef Boybay MS, Ramahi OM (2012) Material characterization using complementary split-ring resonators. IEEE Trans Instrum Meas 61(11):3039–3046CrossRef
103.
go back to reference Lee CS, Yang CL (2014) Complementary split-ring resonators for measuring dielectric constants and loss tangents. IEEE Microw Wireless Compon Lett 24(8):563–565CrossRef Lee CS, Yang CL (2014) Complementary split-ring resonators for measuring dielectric constants and loss tangents. IEEE Microw Wireless Compon Lett 24(8):563–565CrossRef
104.
go back to reference Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, Fumeaux C, Abbott D (2013) Metamaterial-based microfluidic sensor for dielectric characterization. Sens Actuators A 189:233–237CrossRef Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, Fumeaux C, Abbott D (2013) Metamaterial-based microfluidic sensor for dielectric characterization. Sens Actuators A 189:233–237CrossRef
105.
go back to reference Salim A, Lim S (2016) Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor. Sensors 16:1802 Salim A, Lim S (2016) Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor. Sensors 16:1802
106.
go back to reference Yang CL, Lee CS, Chen KW, Chen KZ (2016) Noncontact measurement of complex permittivity and thickness by using planar resonators. IEEE Trans Microw Theory Techn 64(1):247–257CrossRef Yang CL, Lee CS, Chen KW, Chen KZ (2016) Noncontact measurement of complex permittivity and thickness by using planar resonators. IEEE Trans Microw Theory Techn 64(1):247–257CrossRef
107.
go back to reference Su L, Mata-Contreras J, Velez P, Martin F (2017) Estimation of the complex permittivity of liquids by means of complementary Split ring resonator (CSRR) loaded transmission lines. In: IEEE MTT-S int. microw. Workshop series on advanced materials and processes (IMWS-AMP 2017), Pavia, Italy, pp 20–22 Su L, Mata-Contreras J, Velez P, Martin F (2017) Estimation of the complex permittivity of liquids by means of complementary Split ring resonator (CSRR) loaded transmission lines. In: IEEE MTT-S int. microw. Workshop series on advanced materials and processes (IMWS-AMP 2017), Pavia, Italy, pp 20–22
108.
go back to reference Jha AK, Delmonte N, Lamecki A, Mrozowski M, Bozzi M (2019) Design of microwave-based angular displacement sensor. IEEE Microw Wireless Compon Lett 29(4):306–308CrossRef Jha AK, Delmonte N, Lamecki A, Mrozowski M, Bozzi M (2019) Design of microwave-based angular displacement sensor. IEEE Microw Wireless Compon Lett 29(4):306–308CrossRef
109.
go back to reference Galindo-Romera G, Javier Herraiz-Martinez F, Gil M, Martinez-Martinez JJ, Segovia-Vargas D (2016) Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization. IEEE Sensors J 16(10):3587–3596 Galindo-Romera G, Javier Herraiz-Martinez F, Gil M, Martinez-Martinez JJ, Segovia-Vargas D (2016) Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization. IEEE Sensors J 16(10):3587–3596
110.
go back to reference Abdolrazzaghi M, Zarifi MH, Daneshmand M (2016) Sensitivity enhancement of split ring resonator based liquid sensors. In: 2016 IEEE Sensors, Orlando, FL, USA Abdolrazzaghi M, Zarifi MH, Daneshmand M (2016) Sensitivity enhancement of split ring resonator based liquid sensors. In: 2016 IEEE Sensors, Orlando, FL, USA
111.
go back to reference Abdolrazzaghi M, Zarifi MH, Pedrycz W, Daneshmand M (2016) Robust ultra-high resolution microwave planar sensor using fuzzy neural network approach. IEEE Sens J 17:323–332CrossRef Abdolrazzaghi M, Zarifi MH, Pedrycz W, Daneshmand M (2016) Robust ultra-high resolution microwave planar sensor using fuzzy neural network approach. IEEE Sens J 17:323–332CrossRef
112.
go back to reference Zarifi MH, Daneshmand M (2017) Monitoring solid particle deposition in lossy medium using planar resonator sensor. IEEE Sens J 17:7981–7989CrossRef Zarifi MH, Daneshmand M (2017) Monitoring solid particle deposition in lossy medium using planar resonator sensor. IEEE Sens J 17:7981–7989CrossRef
113.
go back to reference Zarifi MH, Deif S, Abdolrazzaghi M, Chen B, Ramsawak D, Amyotte M, Vahabisani N, Hashisho Z, Chen W, Daneshmand M (2017) A microwave ring resonator sensor for early detection of breaches in pipeline coatings. IEEE Trans Ind Electron 65:1626–1635CrossRef Zarifi MH, Deif S, Abdolrazzaghi M, Chen B, Ramsawak D, Amyotte M, Vahabisani N, Hashisho Z, Chen W, Daneshmand M (2017) A microwave ring resonator sensor for early detection of breaches in pipeline coatings. IEEE Trans Ind Electron 65:1626–1635CrossRef
114.
go back to reference Abdolrazzaghi M, Daneshmand M, Iyer AK (2018) Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans Microw Theory Tech 66:1843–1855CrossRef Abdolrazzaghi M, Daneshmand M, Iyer AK (2018) Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans Microw Theory Tech 66:1843–1855CrossRef
115.
go back to reference Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Bahar AAM (2017) High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection,” IEEE Sensors J., vol. 17, no. 9, pp. 2766–2775, May 2017. Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Bahar AAM (2017) High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection,” IEEE Sensors J., vol. 17, no. 9, pp. 2766–2775, May 2017.
116.
go back to reference Jankovic N, Radonic V (2017) A microwave microfluidic sensor based on a dual-mode resonator for dual-sensing applications. Sensors 17(12):2713 Jankovic N, Radonic V (2017) A microwave microfluidic sensor based on a dual-mode resonator for dual-sensing applications. Sensors 17(12):2713
117.
go back to reference Zhou H, Hu D, Yang C, Chen C, Ji J, Chen M, Chen Y, Yang Y, Mu X (2018) Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor. Sci Rep 8(1):14801 Zhou H, Hu D, Yang C, Chen C, Ji J, Chen M, Chen Y, Yang Y, Mu X (2018) Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor. Sci Rep 8(1):14801
118.
go back to reference Ansari MAH, Jha AK, Akhter Z, Akhtar MJ (2018) Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials. IEEE Sensors J 18(16):6596–6606CrossRef Ansari MAH, Jha AK, Akhter Z, Akhtar MJ (2018) Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials. IEEE Sensors J 18(16):6596–6606CrossRef
119.
go back to reference Lobato-Morales H, Choi JH, Lee H, Medina-Monroy JL (2019) Compact dielectric-permittivity sensors of liquid samples based on substrate integrated-waveguide with negative-order-resonance. IEEE Sensors J 19(19):8694–8699CrossRef Lobato-Morales H, Choi JH, Lee H, Medina-Monroy JL (2019) Compact dielectric-permittivity sensors of liquid samples based on substrate integrated-waveguide with negative-order-resonance. IEEE Sensors J 19(19):8694–8699CrossRef
120.
go back to reference Khanna Y, Awasthi YK (2020) Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J Electron Mater 49(1):385–394CrossRef Khanna Y, Awasthi YK (2020) Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J Electron Mater 49(1):385–394CrossRef
121.
go back to reference Muñoz-Enano J, Martel J, Vélez P, Medina F, Su L, Martín F (2021) Parametric analysis of the edge capacitance of uniform slots and application to frequency-variation permittivity sensors. Appl Sci 11(15):7000 Muñoz-Enano J, Martel J, Vélez P, Medina F, Su L, Martín F (2021) Parametric analysis of the edge capacitance of uniform slots and application to frequency-variation permittivity sensors. Appl Sci 11(15):7000
122.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Martín F (2022) Frequency variation sensors for permittivity measurements based on dumbbell-shaped defect ground structures (DB-DGS): analytical method and sensitivity analysis. IEEE Sensors J 22(10):9378–9386CrossRef Muñoz-Enano J, Vélez P, Gil M, Martín F (2022) Frequency variation sensors for permittivity measurements based on dumbbell-shaped defect ground structures (DB-DGS): analytical method and sensitivity analysis. IEEE Sensors J 22(10):9378–9386CrossRef
123.
go back to reference Hosseini N, Baghelani M (2021) Selective real-time non-contact multi-variable water-alcohol-sugar concentration analysis during fermentation process using microwave split-ring resonator based sensor. Sens Act A: Phys 325:112695 Hosseini N, Baghelani M (2021) Selective real-time non-contact multi-variable water-alcohol-sugar concentration analysis during fermentation process using microwave split-ring resonator based sensor. Sens Act A: Phys 325:112695
124.
go back to reference Albishi AM, Mirjahanmardi SH, Ali AM, Nayyeri V, Wasly SM, Ramahi OM (2019) Intelligent sensing using multiple sensors for material characterization. Sensors 19(21):4766 Albishi AM, Mirjahanmardi SH, Ali AM, Nayyeri V, Wasly SM, Ramahi OM (2019) Intelligent sensing using multiple sensors for material characterization. Sensors 19(21):4766
125.
go back to reference Abduljabar AA, Hamzah H, Porch A (2021) Multi-resonators, microwave microfluidic sensor for liquid characterization. Microw Opt Technol Lett 63:1042–1047CrossRef Abduljabar AA, Hamzah H, Porch A (2021) Multi-resonators, microwave microfluidic sensor for liquid characterization. Microw Opt Technol Lett 63:1042–1047CrossRef
126.
go back to reference Nuñez-Flores A, Castillo-Araníbar P, García-Lampérez A, Segovia-Vargas D (2018) Design and Implementation of a submersible split ring resonator based sensor for pisco concentration measurements. In: 2018 IEEE MTT-S Latin America microwave conference (LAMC 2018), Arequipa, Peru Nuñez-Flores A, Castillo-Araníbar P, García-Lampérez A, Segovia-Vargas D (2018) Design and Implementation of a submersible split ring resonator based sensor for pisco concentration measurements. In: 2018 IEEE MTT-S Latin America microwave conference (LAMC 2018), Arequipa, Peru
127.
go back to reference Chakyar SP, Simon SK, Bindu C, Andrews J, Joseph VP (2017) Complex permittivity measurement using metamaterial split ring resonators. J Appl Phys 121:054101 Chakyar SP, Simon SK, Bindu C, Andrews J, Joseph VP (2017) Complex permittivity measurement using metamaterial split ring resonators. J Appl Phys 121:054101
128.
go back to reference Torun H, Cagri Top F, Dundar G, Yalcinkaya AD (2014) An antenna-coupled split-ring resonator for biosensing. J Appl Phys 116:124701 Torun H, Cagri Top F, Dundar G, Yalcinkaya AD (2014) An antenna-coupled split-ring resonator for biosensing. J Appl Phys 116:124701
129.
go back to reference Verma A, Bhushan S, Tripathi PN, Goswami M, Singh BR (2017) A defected ground split ring resonator for an ultra-fast, selective sensing of glucose content in blood plasma. J Electromagn Waves Appl 31(10):1049–1061CrossRef Verma A, Bhushan S, Tripathi PN, Goswami M, Singh BR (2017) A defected ground split ring resonator for an ultra-fast, selective sensing of glucose content in blood plasma. J Electromagn Waves Appl 31(10):1049–1061CrossRef
130.
go back to reference Asad M, Neyadi SA, Aidaros OA, Khalil M, Hussein M (2016) Single port bio-sensor design using metamaterial split ring resonator. In: 2016 5th international conference on electronic devices, systems and applications (ICEDSA), Ras AI Khaimah, United Arab Emirates Asad M, Neyadi SA, Aidaros OA, Khalil M, Hussein M (2016) Single port bio-sensor design using metamaterial split ring resonator. In: 2016 5th international conference on electronic devices, systems and applications (ICEDSA), Ras AI Khaimah, United Arab Emirates
131.
go back to reference Reyes-Vera E, Acevedo-Osorio G, Arias-Correa M, Senior DE (2019) A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization. Sensors 19:1936 Reyes-Vera E, Acevedo-Osorio G, Arias-Correa M, Senior DE (2019) A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization. Sensors 19:1936
132.
go back to reference Islam M, Ashraf F, Alam T, Misran N, Mat K (2018) A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application. Sensors 18(9):2959 Islam M, Ashraf F, Alam T, Misran N, Mat K (2018) A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application. Sensors 18(9):2959
133.
go back to reference Sujith R, Augustine R (2018) CPW fed antenna for nearfield sensor applications. In: 2018 IEEE conference on antenna measurements & applications (CAMA), Vasteras, Sweden Sujith R, Augustine R (2018) CPW fed antenna for nearfield sensor applications. In: 2018 IEEE conference on antenna measurements & applications (CAMA), Vasteras, Sweden
134.
go back to reference Elwi TA (2018) Metamaterial based a printed monopole antenna for sensing applications. Int J RF Microw Comput Aided Eng 28(7):e21470 Elwi TA (2018) Metamaterial based a printed monopole antenna for sensing applications. Int J RF Microw Comput Aided Eng 28(7):e21470
135.
go back to reference Morshidi WHW, Zaharudin Z, Khan S, Nordin AN, Shaikh FA, Adam I, Kader KA (2018) Inter-digital sensor for non-invasive blood glucose monitoring. In: 2018 IEEE international conference on innovative research and development (ICIRD), Bangkok, Thailand, May 2018 Morshidi WHW, Zaharudin Z, Khan S, Nordin AN, Shaikh FA, Adam I, Kader KA (2018) Inter-digital sensor for non-invasive blood glucose monitoring. In: 2018 IEEE international conference on innovative research and development (ICIRD), Bangkok, Thailand, May 2018
136.
go back to reference Lu F, Wang H, Guo Y, Tan Q, Zhang W, Xiong J (2018) Microwave backscatter-based wireless temperature sensor fabricated by an alumina-backed Au slot radiation patch. Sensors 18:242 Lu F, Wang H, Guo Y, Tan Q, Zhang W, Xiong J (2018) Microwave backscatter-based wireless temperature sensor fabricated by an alumina-backed Au slot radiation patch. Sensors 18:242
137.
go back to reference Muñoz-Enano J, Vélez P, Herrojo C, Gil M, Martín F (2019) On the sensitivity of microwave sensors based on slot resonators and frequency variation. In: 2019 int. conf. electromagn. advan. applications (ICEAA), Granada, Spain, Sept 2019, pp 112–115 Muñoz-Enano J, Vélez P, Herrojo C, Gil M, Martín F (2019) On the sensitivity of microwave sensors based on slot resonators and frequency variation. In: 2019 int. conf. electromagn. advan. applications (ICEAA), Granada, Spain, Sept 2019, pp 112–115
138.
go back to reference Su L, Naqui J, Mata-Contreras J, Martín F (2015) Modeling metamaterial transmission lines loaded with pairs of coupled split-ring resonators. IEEE Ant Wireless Propag Lett 14:68–71CrossRef Su L, Naqui J, Mata-Contreras J, Martín F (2015) Modeling metamaterial transmission lines loaded with pairs of coupled split-ring resonators. IEEE Ant Wireless Propag Lett 14:68–71CrossRef
139.
go back to reference Su L, Naqui J, Mata-Contreras J, Martín F (2016) Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split ring resonators (CSRRs). IEEE Ant Wireless Propag Lett 15:154–157CrossRef Su L, Naqui J, Mata-Contreras J, Martín F (2016) Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split ring resonators (CSRRs). IEEE Ant Wireless Propag Lett 15:154–157CrossRef
140.
go back to reference Naqui J, Damm C, Wiens A, Jakoby R, Su L, Martín F (2014) “Transmission lines loaded with pairs of magnetically coupled stepped impedance resonators (SIRs): Modeling and application to microwave sensors. In: 2014 IEEE MTT-S int. microw. symp. (IMS2014), Tampa, FL, USA Naqui J, Damm C, Wiens A, Jakoby R, Su L, Martín F (2014) “Transmission lines loaded with pairs of magnetically coupled stepped impedance resonators (SIRs): Modeling and application to microwave sensors. In: 2014 IEEE MTT-S int. microw. symp. (IMS2014), Tampa, FL, USA
141.
go back to reference Su L, Mata-Contreras J, Naqui J, Martín F (2016) Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): modeling and optimization for differential sensing applications. IEEE Trans Microw Theory Techn 64(12):4362–4370CrossRef Su L, Mata-Contreras J, Naqui J, Martín F (2016) Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): modeling and optimization for differential sensing applications. IEEE Trans Microw Theory Techn 64(12):4362–4370CrossRef
142.
go back to reference Su L, Mata-Contreras J, Martín F (2016) Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications. Sensors 16(12):2195 Su L, Mata-Contreras J, Martín F (2016) Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications. Sensors 16(12):2195
143.
go back to reference Su L, Naqui J, Mata-Contreras J, Martín F (2016) Cascaded splitter/combiner microstrip sections loaded with complementary split ring resonators (CSRRs): modeling, analysis and applications. In: 2016 IEEE MTT-S int. microw. symp. (IMS16), San Francisco, CA, USA Su L, Naqui J, Mata-Contreras J, Martín F (2016) Cascaded splitter/combiner microstrip sections loaded with complementary split ring resonators (CSRRs): modeling, analysis and applications. In: 2016 IEEE MTT-S int. microw. symp. (IMS16), San Francisco, CA, USA
144.
go back to reference Ebrahimi A, Beziuk G, Scott J, Ghorbani K (2020) Microwave differential frequency splitting sensor using magnetic-LC resonators. Sensors 20:1066CrossRef Ebrahimi A, Beziuk G, Scott J, Ghorbani K (2020) Microwave differential frequency splitting sensor using magnetic-LC resonators. Sensors 20:1066CrossRef
145.
go back to reference Ebrahimi A, Scott J, Ghorbani K (2018) Differential sensors using microstrip lines loaded with two split-ring resonators. IEEE Sens J 18:5786–5793CrossRef Ebrahimi A, Scott J, Ghorbani K (2018) Differential sensors using microstrip lines loaded with two split-ring resonators. IEEE Sens J 18:5786–5793CrossRef
146.
go back to reference Zarifi MH, Farsinezhad S, Wiltshire BD, Abdorrazaghi M, Mahdi N, Kar P, Daneshmand M, Shankar K (2016) Effect of phosphonate monolayer adsorbate on the microwave photoresponse of TiO2 nanotube membranes mounted on a planar double ring resonator. Nanotechnology 27:375201 Zarifi MH, Farsinezhad S, Wiltshire BD, Abdorrazaghi M, Mahdi N, Kar P, Daneshmand M, Shankar K (2016) Effect of phosphonate monolayer adsorbate on the microwave photoresponse of TiO2 nanotube membranes mounted on a planar double ring resonator. Nanotechnology 27:375201
147.
go back to reference Horestani AK, Naqui J, Shaterian Z, Abbott D, Fumeaux C, Martín F (2014) Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens Act A 210:18–24CrossRef Horestani AK, Naqui J, Shaterian Z, Abbott D, Fumeaux C, Martín F (2014) Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens Act A 210:18–24CrossRef
148.
go back to reference Weiner O (1912) Die theorie des Mischkorpers fur das Feld der statonare Stromung i. die mittelwertsatze fur kraft, polarisation und energie. In: Der Abhandlungen der Mathematisch-Physischen Klasse der Konigl. Sachsischen Gesellschaft der Wissenschaften, vol 32, pp 509–604 Weiner O (1912) Die theorie des Mischkorpers fur das Feld der statonare Stromung i. die mittelwertsatze fur kraft, polarisation und energie. In: Der Abhandlungen der Mathematisch-Physischen Klasse der Konigl. Sachsischen Gesellschaft der Wissenschaften, vol 32, pp 509–604
149.
go back to reference Naqui J, Durán-Sindreu M, Martín F (2011) Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sensors 11:7545–7553CrossRef Naqui J, Durán-Sindreu M, Martín F (2011) Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sensors 11:7545–7553CrossRef
150.
go back to reference Naqui J, Durán-Sindreu M, Martín F (2012) Alignment and position sensors based on split ring resonators. Sensors 12:11790–11797CrossRef Naqui J, Durán-Sindreu M, Martín F (2012) Alignment and position sensors based on split ring resonators. Sensors 12:11790–11797CrossRef
151.
go back to reference Karami-Horestani A, Fumeaux C, Al-Sarawi SF, Abbott D (2013) Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sensors J 13(4):1153–1160CrossRef Karami-Horestani A, Fumeaux C, Al-Sarawi SF, Abbott D (2013) Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sensors J 13(4):1153–1160CrossRef
152.
go back to reference Horestani AK, Naqui J, Abbott D, Fumeaux C, Martín F (2014) Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators. Electron Lett 50(8):620–622CrossRef Horestani AK, Naqui J, Abbott D, Fumeaux C, Martín F (2014) Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators. Electron Lett 50(8):620–622CrossRef
153.
go back to reference Horestani AK, Abbott D, Fumeaux C (2013) Rotation sensor based on horn-shaped split ring resonator. IEEE Sens J 13:3014–3015CrossRef Horestani AK, Abbott D, Fumeaux C (2013) Rotation sensor based on horn-shaped split ring resonator. IEEE Sens J 13:3014–3015CrossRef
154.
go back to reference Naqui J, Durán-Sindreu M, Martín F (2013) Transmission lines loaded with bisymmetric resonators and applications. In: IEEE MTT-S int. microw. symp. dig., Seattle, WA, USA Naqui J, Durán-Sindreu M, Martín F (2013) Transmission lines loaded with bisymmetric resonators and applications. In: IEEE MTT-S int. microw. symp. dig., Seattle, WA, USA
155.
go back to reference Naqui J, Martín F (2013) Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Trans Microw Theory Techn 61(12):4700–4713CrossRef Naqui J, Martín F (2013) Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Trans Microw Theory Techn 61(12):4700–4713CrossRef
156.
go back to reference Naqui J, Martín F (2014) Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines. IEEE Sensors J 14:939–940CrossRef Naqui J, Martín F (2014) Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines. IEEE Sensors J 14:939–940CrossRef
157.
go back to reference Naqui J, Coromina J, Karami-Horestani A, Fumeaux C, Martín F (2015) Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonator (S-SRR). Sensors 15:9628–9650CrossRef Naqui J, Coromina J, Karami-Horestani A, Fumeaux C, Martín F (2015) Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonator (S-SRR). Sensors 15:9628–9650CrossRef
158.
go back to reference Naqui J (2016) Symmetry properties in transmission lines loaded with electrically small resonators: circuit modeling and applications. Springer, Heidelberg, GermanyCrossRef Naqui J (2016) Symmetry properties in transmission lines loaded with electrically small resonators: circuit modeling and applications. Springer, Heidelberg, GermanyCrossRef
159.
go back to reference Naqui J, Martín F (2016) Application of broadside-coupled split ring resonator (BC-SRR) loaded transmission lines to the design of rotary encoders for space applications. In: 2016 IEEE MTT-S int. microw. symp. (IMS’16), San Francisco, CA, USA Naqui J, Martín F (2016) Application of broadside-coupled split ring resonator (BC-SRR) loaded transmission lines to the design of rotary encoders for space applications. In: 2016 IEEE MTT-S int. microw. symp. (IMS’16), San Francisco, CA, USA
160.
go back to reference Herrojo C, Muela F, Mata-Contreras J, Paredes F, Martín F (2019) High-density microwave encoders for motion control and near-field chipless-RFID. IEEE Sensors J 19:3673–3682CrossRef Herrojo C, Muela F, Mata-Contreras J, Paredes F, Martín F (2019) High-density microwave encoders for motion control and near-field chipless-RFID. IEEE Sensors J 19:3673–3682CrossRef
161.
go back to reference Paredes F, C. Herrojo, and F. Martín, “Microwave encoders with synchronous reading and direction detection for motion control applications. In: 2020 IEEE-MTT-S int. microw. symp. (IMS’20), Los Angeles, CA, USA Paredes F, C. Herrojo, and F. Martín, “Microwave encoders with synchronous reading and direction detection for motion control applications. In: 2020 IEEE-MTT-S int. microw. symp. (IMS’20), Los Angeles, CA, USA
162.
go back to reference Herrojo C, Vélez P, Paredes F, Mata-Contreras J, Martín F (2019) All-dielectric electromagnetic encoders based on permittivity contrast for displacement/velocity sensors and chipless-RFID tags. In: 2019 IEEE-MTT-S Int. Microw. Symp. (IMS'19), Boston, MA, USA Herrojo C, Vélez P, Paredes F, Mata-Contreras J, Martín F (2019) All-dielectric electromagnetic encoders based on permittivity contrast for displacement/velocity sensors and chipless-RFID tags. In: 2019 IEEE-MTT-S Int. Microw. Symp. (IMS'19), Boston, MA, USA
163.
go back to reference Mata-Contreras J, Herrojo C, Martín F (2017) Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications. IEEE Trans Microw Theory Techn 65(11):4450–4460CrossRef Mata-Contreras J, Herrojo C, Martín F (2017) Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications. IEEE Trans Microw Theory Techn 65(11):4450–4460CrossRef
164.
go back to reference Mata-Contreras J, Herrojo C, Martín F (2018) Detecting the rotation direction in contactless angular velocity sensors implemented with rotors loaded with multiple chains of split ring resonators (SRRs). IEEE Sensors J 18(17):7055–7065CrossRef Mata-Contreras J, Herrojo C, Martín F (2018) Detecting the rotation direction in contactless angular velocity sensors implemented with rotors loaded with multiple chains of split ring resonators (SRRs). IEEE Sensors J 18(17):7055–7065CrossRef
165.
go back to reference Herrojo C, Paredes F, Mata-Contreras J, Ramon E, Núñez A, Martín F (2019) Time-domain signature barcodes: near-field chipless-RFID systems with high data capacity. IEEE Microw Mag 20(12):87–101CrossRef Herrojo C, Paredes F, Mata-Contreras J, Ramon E, Núñez A, Martín F (2019) Time-domain signature barcodes: near-field chipless-RFID systems with high data capacity. IEEE Microw Mag 20(12):87–101CrossRef
166.
go back to reference Mata-Contreras J, Herrojo C, Martín F (2018) Electromagnetic rotary encoders based on split ring resonators (SRR) loaded microstrip lines. In: 2018 IEEE MTT-S int. microw. symp. (IMS’18), Philadelphia, Pennsylvania, USA Mata-Contreras J, Herrojo C, Martín F (2018) Electromagnetic rotary encoders based on split ring resonators (SRR) loaded microstrip lines. In: 2018 IEEE MTT-S int. microw. symp. (IMS’18), Philadelphia, Pennsylvania, USA
167.
go back to reference Herrojo C, Paredes F, Martín F (2019) Double-stub loaded microstrip line reader for very high data density microwave encoders. IEEE Trans Microw Theory Techn 67(9):3527–3536CrossRef Herrojo C, Paredes F, Martín F (2019) Double-stub loaded microstrip line reader for very high data density microwave encoders. IEEE Trans Microw Theory Techn 67(9):3527–3536CrossRef
168.
go back to reference Herrojo C, Paredes F, Martín F (2020) 3D-printed high data-density electromagnetic encoders based on permittivity contrast for motion control and chipless-RFID. IEEE Trans Microw Theory Techn 68(5):1839–1850CrossRef Herrojo C, Paredes F, Martín F (2020) 3D-printed high data-density electromagnetic encoders based on permittivity contrast for motion control and chipless-RFID. IEEE Trans Microw Theory Techn 68(5):1839–1850CrossRef
169.
go back to reference Paredes F, Herrojo C, Mata-Contreras J, Martín F (2018) Near-field chipless-RFID sensing and identification system with switching reading. Sensors 18:1148CrossRef Paredes F, Herrojo C, Mata-Contreras J, Martín F (2018) Near-field chipless-RFID sensing and identification system with switching reading. Sensors 18:1148CrossRef
170.
go back to reference Paredes F, Herrojo C, Martín F (2021) Position sensors for industrial applications based on electromagnetic encoders. Sensors 21:2738 (28 pages) Paredes F, Herrojo C, Martín F (2021) Position sensors for industrial applications based on electromagnetic encoders. Sensors 21:2738 (28 pages)
171.
go back to reference Paredes F, Herrojo C, Moya A, Berenguel-Alonso M, Gonzalez D, Bruguera J, Delgado-Simao C, Martín F (2022) Electromagnetic encoders screen-printed on rubber belts for absolute measurement of position and velocity. Sensors 22:2044 Paredes F, Herrojo C, Moya A, Berenguel-Alonso M, Gonzalez D, Bruguera J, Delgado-Simao C, Martín F (2022) Electromagnetic encoders screen-printed on rubber belts for absolute measurement of position and velocity. Sensors 22:2044
172.
go back to reference Paredes F, Karami-Horestani A, Martín F (2022) Strategies to enhance the data density in synchronous electromagnetic encoders. Sensors 22:4356 Paredes F, Karami-Horestani A, Martín F (2022) Strategies to enhance the data density in synchronous electromagnetic encoders. Sensors 22:4356
173.
go back to reference Karami-Horestani A, Paredes F, Martín F (2022) Frequency-coded and programmable synchronous electromagnètic encoders based on linear strips. IEEE Sensors Lett 6(8):1–4, Art no. 3501704 Karami-Horestani A, Paredes F, Martín F (2022) Frequency-coded and programmable synchronous electromagnètic encoders based on linear strips. IEEE Sensors Lett 6(8):1–4, Art no. 3501704
174.
go back to reference Karami-Horestani A, Paredes F, Martín F (2022) Near-field chipless-RFID system based on hybrid time/frequency domain encoding and power splitter reader. In: 52nd European Microwave Conference. Milan, Italy, pp 20–25 Karami-Horestani A, Paredes F, Martín F (2022) Near-field chipless-RFID system based on hybrid time/frequency domain encoding and power splitter reader. In: 52nd European Microwave Conference. Milan, Italy, pp 20–25
175.
go back to reference Karami-Horestani A, Paredes F, Martín F (2022) High data density absolute electromagnètic encoders based on hybrid time/frequency domain encoding. IEEE Sensors J 22(24):23866–23876CrossRef Karami-Horestani A, Paredes F, Martín F (2022) High data density absolute electromagnètic encoders based on hybrid time/frequency domain encoding. IEEE Sensors J 22(24):23866–23876CrossRef
176.
go back to reference Paredes F, Karami-Horestani A, Martín F (2023) Enhancing the bit density in linear electromagnetic encoders for chipless-RFID and motion sensing applications. In: European conference on antennas and propagation (EuCAP 2023), Florence, Italy, Mar. 27–31 Paredes F, Karami-Horestani A, Martín F (2023) Enhancing the bit density in linear electromagnetic encoders for chipless-RFID and motion sensing applications. In: European conference on antennas and propagation (EuCAP 2023), Florence, Italy, Mar. 27–31
177.
go back to reference de Bruijn NG (1975) Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once, T.H.-Report 75-WSK-06, Technological University Eindhoven de Bruijn NG (1975) Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once, T.H.-Report 75-WSK-06, Technological University Eindhoven
178.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Mata-Contreras J, Martín F (2020) Differential-mode to common-mode conversion detector based on rat-race couplers: analysis and application to microwave sensors and comparators. IEEE Trans Microw Theory Techn 68:1312–1325CrossRef Muñoz-Enano J, Vélez P, Gil M, Mata-Contreras J, Martín F (2020) Differential-mode to common-mode conversion detector based on rat-race couplers: analysis and application to microwave sensors and comparators. IEEE Trans Microw Theory Techn 68:1312–1325CrossRef
179.
go back to reference Muñoz-Enano J, Vélez P, Su L, Gil M, Casacuberta P, Martín F (2021) On the sensitivity of reflective-mode phase variation sensors based on open-ended stepped-impedance transmission lines: theoretical analysis and experimental validation. IEEE Trans Microw Theory Techn 69(1):308–324CrossRef Muñoz-Enano J, Vélez P, Su L, Gil M, Casacuberta P, Martín F (2021) On the sensitivity of reflective-mode phase variation sensors based on open-ended stepped-impedance transmission lines: theoretical analysis and experimental validation. IEEE Trans Microw Theory Techn 69(1):308–324CrossRef
180.
go back to reference Su L, Muñoz-Enano J, Velez P, Casacuberta P, Gil M, Martin F (2021) Highly sensitive phase variation sensors based on step-impedance coplanar waveguide (CPW) transmission lines. IEEE Sensors J 21(3):2864–2872CrossRef Su L, Muñoz-Enano J, Velez P, Casacuberta P, Gil M, Martin F (2021) Highly sensitive phase variation sensors based on step-impedance coplanar waveguide (CPW) transmission lines. IEEE Sensors J 21(3):2864–2872CrossRef
181.
go back to reference Casacuberta P, Muñoz-Enano J, Vélez P, Su L, Gil M, Martín F (2020) Highly sensitive reflective-mode detectors and dielectric constant sensors based on open-ended stepped-impedance transmission lines. Sensors 20:6236 Casacuberta P, Muñoz-Enano J, Vélez P, Su L, Gil M, Martín F (2020) Highly sensitive reflective-mode detectors and dielectric constant sensors based on open-ended stepped-impedance transmission lines. Sensors 20:6236
182.
go back to reference Su L, Muñoz-Enano J, Vélez P, Gil M, Casacuberta P, Martín F (2021) Highly sensitive reflective-mode phase-variation permittivity sensor based on a coplanar waveguide (CPW) terminated with an open complementary split ring resonator (OCSRR). IEEE Access 9:27928–27944CrossRef Su L, Muñoz-Enano J, Vélez P, Gil M, Casacuberta P, Martín F (2021) Highly sensitive reflective-mode phase-variation permittivity sensor based on a coplanar waveguide (CPW) terminated with an open complementary split ring resonator (OCSRR). IEEE Access 9:27928–27944CrossRef
183.
go back to reference Casacuberta P, Vélez P, Muñoz-Enano J, Su L, Gil M, Ebrahimi A, Martín F (2022) Circuit analysis of a Coplanar waveguide (CPW) terminated with a step-impedance resonator (SIR) for highly sensitive one-port permittivity sensing. IEEE Access 10:62597–62612CrossRef Casacuberta P, Vélez P, Muñoz-Enano J, Su L, Gil M, Ebrahimi A, Martín F (2022) Circuit analysis of a Coplanar waveguide (CPW) terminated with a step-impedance resonator (SIR) for highly sensitive one-port permittivity sensing. IEEE Access 10:62597–62612CrossRef
184.
go back to reference Muñoz-Enano J, Vélez P, Casacuberta P, Su L, Martín F, Reflective-mode phase-variation microwave sensor based on a step-impedance microstrip line terminated with a slot resonator for solid and liquid characterization. IEEE Trans Microw Theory Techn. https://doi.org/10.1109/TMTT.2023.3315832 Muñoz-Enano J, Vélez P, Casacuberta P, Su L, Martín F, Reflective-mode phase-variation microwave sensor based on a step-impedance microstrip line terminated with a slot resonator for solid and liquid characterization. IEEE Trans Microw Theory Techn. https://​doi.​org/​10.​1109/​TMTT.​2023.​3315832
185.
go back to reference Su L, Muñoz-Enano J, Vélez P, Casacuberta P, Gil M, Martín F (2021) Phase-Variation Microwave Sensor for Permittivity Measurements Based on a High-Impedance Half-Wavelength Transmission Line. IEEE Sensors J 21(9):10647–10656CrossRef Su L, Muñoz-Enano J, Vélez P, Casacuberta P, Gil M, Martín F (2021) Phase-Variation Microwave Sensor for Permittivity Measurements Based on a High-Impedance Half-Wavelength Transmission Line. IEEE Sensors J 21(9):10647–10656CrossRef
186.
go back to reference Jha AK, Lamecki A, Mrozowski M, Bozzi M (2020) A highly sensitive planar microwave sensor for detecting direction and angle of rotation. IEEE Trans Microw Theory Techn 68(4):1598–1609CrossRef Jha AK, Lamecki A, Mrozowski M, Bozzi M (2020) A highly sensitive planar microwave sensor for detecting direction and angle of rotation. IEEE Trans Microw Theory Techn 68(4):1598–1609CrossRef
187.
go back to reference Horestani AK, Shaterian Z, Martín F (2020) Rotation sensor based on the cross-polarized excitation of split ring resonators (SRRs). IEEE Sensors J 20:9706–9714CrossRef Horestani AK, Shaterian Z, Martín F (2020) Rotation sensor based on the cross-polarized excitation of split ring resonators (SRRs). IEEE Sensors J 20:9706–9714CrossRef
188.
go back to reference Muñoz-Enano J, Vélez P, Su L, Gil M, Martín F (2020) A reflective-mode phase-variation displacement sensor. IEEE Access 8:189565–189575CrossRef Muñoz-Enano J, Vélez P, Su L, Gil M, Martín F (2020) A reflective-mode phase-variation displacement sensor. IEEE Access 8:189565–189575CrossRef
189.
go back to reference Mehrjoo Z, Ebrahimi A, Beziuk G, Martín F, Ghorbani K (2023) Microwave rotation sensor based on reflection phase in transmission lines terminated with lumped resonators. IEEE Sensors J 23(7):6571–6580CrossRef Mehrjoo Z, Ebrahimi A, Beziuk G, Martín F, Ghorbani K (2023) Microwave rotation sensor based on reflection phase in transmission lines terminated with lumped resonators. IEEE Sensors J 23(7):6571–6580CrossRef
190.
go back to reference Ferrández-Pastor FJ, García-Chamizo JM, Nieto-Hidalgo M (2017) Electromagnetic differential measuring method: application in microstrip sensors developing. Sensors 17(7):1650 Ferrández-Pastor FJ, García-Chamizo JM, Nieto-Hidalgo M (2017) Electromagnetic differential measuring method: application in microstrip sensors developing. Sensors 17(7):1650
191.
go back to reference Vélez P, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2018) Highly-sensitive microwave sensors based on open complementary split ring resonators (OCSRRs) for dielectric characterization and solute concentration measurements in liquids. IEEE Access 6:48324–48338CrossRef Vélez P, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2018) Highly-sensitive microwave sensors based on open complementary split ring resonators (OCSRRs) for dielectric characterization and solute concentration measurements in liquids. IEEE Access 6:48324–48338CrossRef
192.
go back to reference Vélez P, Muñoz-Enano J, Gil M, Mata-Contreras J, Martín F (2019) Differential microfluidic sensors based on dumbbell-shaped defect ground structures in microstrip technology: analysis, optimization, and applications. Sensors 19(14):3189 Vélez P, Muñoz-Enano J, Gil M, Mata-Contreras J, Martín F (2019) Differential microfluidic sensors based on dumbbell-shaped defect ground structures in microstrip technology: analysis, optimization, and applications. Sensors 19(14):3189
193.
go back to reference Vélez P, Muñoz-Enano J, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2019) Split ring resonator (SRR) based microwave fluidic sensor for electrolyte concentration measurements. IEEE Sensors J 19(7):2562–2569CrossRef Vélez P, Muñoz-Enano J, Grenier K, Mata-Contreras J, Dubuc D, Martín F (2019) Split ring resonator (SRR) based microwave fluidic sensor for electrolyte concentration measurements. IEEE Sensors J 19(7):2562–2569CrossRef
194.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Jose-Cunilleras E, Bassols A, Martín F (2020) Characterization of electrolyte content in urine samples through a differential microfluidic sensor based on dumbbell-shaped defect ground structures. Int J Microw Wireless Technol 12(9):817–824CrossRef Muñoz-Enano J, Vélez P, Gil M, Jose-Cunilleras E, Bassols A, Martín F (2020) Characterization of electrolyte content in urine samples through a differential microfluidic sensor based on dumbbell-shaped defect ground structures. Int J Microw Wireless Technol 12(9):817–824CrossRef
195.
go back to reference Ebrahimi A, Tovar-López FJ, Scott J, Ghorbani K (2020) Differential microwave sensor for characterization of glycerol-water solutions. Sensors Actuators B Chem 321:128561 Ebrahimi A, Tovar-López FJ, Scott J, Ghorbani K (2020) Differential microwave sensor for characterization of glycerol-water solutions. Sensors Actuators B Chem 321:128561
196.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) Microfluidic reflective-mode differential sensor based on open split ring resonators (OSRRs). Int J Microw Wireless Technol 12:588–597CrossRef Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) Microfluidic reflective-mode differential sensor based on open split ring resonators (OSRRs). Int J Microw Wireless Technol 12:588–597CrossRef
197.
go back to reference Ebrahimi A, Scott J, Ghorbani K (2018) Transmission lines terminated with LC resonators for differential permittivity sensing. IEEE Microwave Wirel Compon Lett 28(12):1149–1151CrossRef Ebrahimi A, Scott J, Ghorbani K (2018) Transmission lines terminated with LC resonators for differential permittivity sensing. IEEE Microwave Wirel Compon Lett 28(12):1149–1151CrossRef
198.
go back to reference Hallil H, Bahoumina P, Pieper K, Lachaud JL, Rebière D, Abdelghani A, Frigui K, Bila S, Baillargeat D, Zhang Q, Coquet P, Pichonat E, Happy H, Dejous C (2019) Differential passive microwave planar resonator-based sensor for chemical particle detection in polluted environments. IEEE Sens J 19(4):1346–1353CrossRef Hallil H, Bahoumina P, Pieper K, Lachaud JL, Rebière D, Abdelghani A, Frigui K, Bila S, Baillargeat D, Zhang Q, Coquet P, Pichonat E, Happy H, Dejous C (2019) Differential passive microwave planar resonator-based sensor for chemical particle detection in polluted environments. IEEE Sens J 19(4):1346–1353CrossRef
199.
go back to reference Vélez P, Muñoz-Enano J, Martín F (2019) Differential sensing based on quasi-microstrip-mode to slot-mode conversion. IEEE Microw Wireless Compon Lett 29:690–692CrossRef Vélez P, Muñoz-Enano J, Martín F (2019) Differential sensing based on quasi-microstrip-mode to slot-mode conversion. IEEE Microw Wireless Compon Lett 29:690–692CrossRef
200.
go back to reference Camli B, Altinagac E, Kizil H, Torun H, Dundar G, Yalcinkaya AD (2020) Gold-on-glass microwave split-ring resonators with PDMS microchannels for differential measurement in microfluidic sensing. Biomicrofluidics14(5) Camli B, Altinagac E, Kizil H, Torun H, Dundar G, Yalcinkaya AD (2020) Gold-on-glass microwave split-ring resonators with PDMS microchannels for differential measurement in microfluidic sensing. Biomicrofluidics14(5)
201.
go back to reference Gan HY, Zhao WS, Liu Q, Wang DW, Dong L, Wang G, Yin WY (2020) Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator (MCSRR) structure. IEEE Sensors J 20(11):5876–5884CrossRef Gan HY, Zhao WS, Liu Q, Wang DW, Dong L, Wang G, Yin WY (2020) Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator (MCSRR) structure. IEEE Sensors J 20(11):5876–5884CrossRef
202.
go back to reference Jain MC, Nadaraja AV, Vizcaino BM, Roberts DJ, Zarifi MH (2020) Differential microwave resonator sensor reveals glucose-dependent growth profile of E. coli on solid agar. IEEE Microw Wireless Compon Lett 30(5):531−534, May 2020 Jain MC, Nadaraja AV, Vizcaino BM, Roberts DJ, Zarifi MH (2020) Differential microwave resonator sensor reveals glucose-dependent growth profile of E. coli on solid agar. IEEE Microw Wireless Compon Lett 30(5):531−534, May 2020
203.
go back to reference Mohammadi S, Zarifi MH (2021) Differential microwave resonator sensor for real-time monitoring of volatile organic compounds. IEEE Sensors J 21(5):6105–6114CrossRef Mohammadi S, Zarifi MH (2021) Differential microwave resonator sensor for real-time monitoring of volatile organic compounds. IEEE Sensors J 21(5):6105–6114CrossRef
204.
go back to reference Herrojo C, Vélez P, Muñoz-Enano J, Su L, Casacuberta P, Gil M, Martín F (2021) Highly sensitive defect detectors and comparators exploiting port imbalance in rat-race couplers loaded with step-impedance open-ended transmission lines. IEEE Sensors J 21:26731–26745CrossRef Herrojo C, Vélez P, Muñoz-Enano J, Su L, Casacuberta P, Gil M, Martín F (2021) Highly sensitive defect detectors and comparators exploiting port imbalance in rat-race couplers loaded with step-impedance open-ended transmission lines. IEEE Sensors J 21:26731–26745CrossRef
205.
go back to reference Martín F, Zhu L, Hong J, Medina F (2018) Balanced microwave filters. Wiley/IEEE Press, Hoboken, NJ, USACrossRef Martín F, Zhu L, Hong J, Medina F (2018) Balanced microwave filters. Wiley/IEEE Press, Hoboken, NJ, USACrossRef
206.
go back to reference Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) Planar microwave resonant sensors: a review and recent developments. Appl Sci 10:2615 (29 pages) Muñoz-Enano J, Vélez P, Gil M, Martín F (2020) Planar microwave resonant sensors: a review and recent developments. Appl Sci 10:2615 (29 pages)
207.
go back to reference Abdolrazzaghi M, Nayyeri V, Martín F (2022) Techniques to improve the performance of planar microwave sensors: a review and recent developments. Sensors 22:6946 Abdolrazzaghi M, Nayyeri V, Martín F (2022) Techniques to improve the performance of planar microwave sensors: a review and recent developments. Sensors 22:6946
208.
go back to reference Ahn D, Park JS, Kim CS, Kim J, Qian Y, Itoh T (2001) A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans Microw Theory Techn 49:86–93CrossRef Ahn D, Park JS, Kim CS, Kim J, Qian Y, Itoh T (2001) A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans Microw Theory Techn 49:86–93CrossRef
209.
go back to reference Baena JD, Bonache J, Martín F, Marqués R, Falcone F, Lopetegi T, Laso MAG, García J, Gil I, Flores-Portillo M, Sorolla M (2005) Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans Microw Theory Techn 53:1451–1461CrossRef Baena JD, Bonache J, Martín F, Marqués R, Falcone F, Lopetegi T, Laso MAG, García J, Gil I, Flores-Portillo M, Sorolla M (2005) Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans Microw Theory Techn 53:1451–1461CrossRef
210.
go back to reference Su L, Muñoz-Enano J, Vélez P, Martel J, Medina F, Martín F (2021) On the modelling of microstrip lines loaded with dumbbell defect-ground-structure (DB-DGS) and folded DB-DGS resonators. IEEE Access 9:150878–150888CrossRef Su L, Muñoz-Enano J, Vélez P, Martel J, Medina F, Martín F (2021) On the modelling of microstrip lines loaded with dumbbell defect-ground-structure (DB-DGS) and folded DB-DGS resonators. IEEE Access 9:150878–150888CrossRef
211.
go back to reference Muñoz-Enano J, Vélez P, Su L, Gil M, Casacuberta P, Martín F (2022) On the capacitance of slotted metamaterial resonators for frequency-variation permittivity sensing. In: 51st European Microwave Conference, London, UK, Apr 2022 Muñoz-Enano J, Vélez P, Su L, Gil M, Casacuberta P, Martín F (2022) On the capacitance of slotted metamaterial resonators for frequency-variation permittivity sensing. In: 51st European Microwave Conference, London, UK, Apr 2022
212.
go back to reference Sharafadinzadeh N, Abdolrazzaghi M, Daneshmand M (2020) Investigation on planar microwave sensors with enhanced sensitivity from microfluidic integration. Sens Actuators A Phys 301:111752 Sharafadinzadeh N, Abdolrazzaghi M, Daneshmand M (2020) Investigation on planar microwave sensors with enhanced sensitivity from microfluidic integration. Sens Actuators A Phys 301:111752
213.
go back to reference Massoni E, Siciliano G, Bozzi M, Perregrini L (2018) Enhanced cavity sensor in SIW technology for material characterization. IEEE Microw Wireless Compon Lett 28(10):948–950CrossRef Massoni E, Siciliano G, Bozzi M, Perregrini L (2018) Enhanced cavity sensor in SIW technology for material characterization. IEEE Microw Wireless Compon Lett 28(10):948–950CrossRef
214.
go back to reference Amin EM, Saha JK, Karmakar NC (2014) Smart sensing materials for low-cost chipless RFID sensor. IEEE Sensors J 14:2198–2207CrossRef Amin EM, Saha JK, Karmakar NC (2014) Smart sensing materials for low-cost chipless RFID sensor. IEEE Sensors J 14:2198–2207CrossRef
215.
go back to reference Gee KM, Anandarajah P, Collins D (2019) A review of chipless remote sensing solutions based on RFID technology. Sensors 19:4829 Gee KM, Anandarajah P, Collins D (2019) A review of chipless remote sensing solutions based on RFID technology. Sensors 19:4829
216.
go back to reference Mulloni V, Donelli M (2020) Chipless RFID sensors for the Internet of Things: challenges and opportunities. Sensors 20:2135 Mulloni V, Donelli M (2020) Chipless RFID sensors for the Internet of Things: challenges and opportunities. Sensors 20:2135
217.
go back to reference Harsányi G (2000) Polymer films in sensor applications: A review of present uses and future possibilities. Sens Rev 20:98–105CrossRef Harsányi G (2000) Polymer films in sensor applications: A review of present uses and future possibilities. Sens Rev 20:98–105CrossRef
218.
go back to reference Pawlikowski G (2009) Effects of polymer material variations on high frequency dielectric properties. MRS Online Proc Libr (OPL) 1156:D02–D05 Pawlikowski G (2009) Effects of polymer material variations on high frequency dielectric properties. MRS Online Proc Libr (OPL) 1156:D02–D05
219.
go back to reference Kao KC (2004) Dielectric phenomena in solids, 1st edn. Academic Press, San Diego, CA, USA Kao KC (2004) Dielectric phenomena in solids, 1st edn. Academic Press, San Diego, CA, USA
220.
go back to reference Amin EM, Karmakar NC (2011) Development of a chipless RFID temperature sensor using cascaded spiral resonators. In: 2011 IEEE sensors, Limerick, Ireland, Oct 2011, pp 554–557 Amin EM, Karmakar NC (2011) Development of a chipless RFID temperature sensor using cascaded spiral resonators. In: 2011 IEEE sensors, Limerick, Ireland, Oct 2011, pp 554–557
221.
go back to reference Chen YT, Kao HL (2006) Humidity sensors made on polyvinyl-alcohol film coated SAW devices. Electron Lett 42:948 Chen YT, Kao HL (2006) Humidity sensors made on polyvinyl-alcohol film coated SAW devices. Electron Lett 42:948
222.
go back to reference Amin EM, Karmakar NC, Winther-Jensen B (2013) Polyvinyl-Alcohol (PVA)-based RF humidity sensor in microwave frequency. Prog Electromagn Res B 54:149–166CrossRef Amin EM, Karmakar NC, Winther-Jensen B (2013) Polyvinyl-Alcohol (PVA)-based RF humidity sensor in microwave frequency. Prog Electromagn Res B 54:149–166CrossRef
223.
go back to reference Amin EM, Bhuiyan S, Karmakar NC, Winther-Jensen B (2013) A novel EM barcode for humidity sensing. In: 2013 IEEE international conference on RFID (RFID), Penang, Malaysia, Apr–May 2013, pp 82–87 Amin EM, Bhuiyan S, Karmakar NC, Winther-Jensen B (2013) A novel EM barcode for humidity sensing. In: 2013 IEEE international conference on RFID (RFID), Penang, Malaysia, Apr–May 2013, pp 82–87
224.
go back to reference Abdolrazzaghi M, Hariri F, Chu M, Naguib H, Daneshmand M (2019) Relative humidity sensing using PANI/PVA integrated with feedback oscillator circuit. In: Proc. 2019 IEEE sensors, montreal, QC, Canada, 27–30 Oct 2019, pp 1–4 Abdolrazzaghi M, Hariri F, Chu M, Naguib H, Daneshmand M (2019) Relative humidity sensing using PANI/PVA integrated with feedback oscillator circuit. In: Proc. 2019 IEEE sensors, montreal, QC, Canada, 27–30 Oct 2019, pp 1–4
225.
go back to reference Virtanen J, Ukkonen L, Björninen T, Sydänheimo L (2010) Printed humidity sensor for UHF RFID systems. In: 2010 IEEE sensors applications symposium (SAS), Limerick, Ireland, Feb 2010, pp 269–272 Virtanen J, Ukkonen L, Björninen T, Sydänheimo L (2010) Printed humidity sensor for UHF RFID systems. In: 2010 IEEE sensors applications symposium (SAS), Limerick, Ireland, Feb 2010, pp 269–272
226.
go back to reference Virtanen J, Ukkonen L, Bjorninen T, Elsherbeni AZ, Sydänheimo L (2011) Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans Instrum Measur 60(8):2768–2777CrossRef Virtanen J, Ukkonen L, Bjorninen T, Elsherbeni AZ, Sydänheimo L (2011) Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans Instrum Measur 60(8):2768–2777CrossRef
227.
go back to reference Reddy ASG, Narakathu BB, Atashbar MZ, Rebros M, Rebrosova E, Joyce MK (2011) Fully printed flexible humidity sensor. Procedia Eng 25:120–123CrossRef Reddy ASG, Narakathu BB, Atashbar MZ, Rebros M, Rebrosova E, Joyce MK (2011) Fully printed flexible humidity sensor. Procedia Eng 25:120–123CrossRef
228.
go back to reference Potyrailo RA, Surman C (2013) A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sens Act B: Chem 185:587–593CrossRef Potyrailo RA, Surman C (2013) A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sens Act B: Chem 185:587–593CrossRef
229.
go back to reference Manzari S, Occhiuzzi C, Nawale S, Catini A, di Natale C, Marrocco G (2012) Polymer-doped UHF RFID tag for wireless-sensing of humidity. In: 2012 IEEE international conference on RFID (RFID), Orlando, FL, USA, Apr 2012, pp 124–129 Manzari S, Occhiuzzi C, Nawale S, Catini A, di Natale C, Marrocco G (2012) Polymer-doped UHF RFID tag for wireless-sensing of humidity. In: 2012 IEEE international conference on RFID (RFID), Orlando, FL, USA, Apr 2012, pp 124–129
230.
go back to reference Bali C, Brandlmaier A, Ganster A, Raab O, Zapf J, Hübler A (2016) Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT: PSS. Mater Today Proc 3:739–745CrossRef Bali C, Brandlmaier A, Ganster A, Raab O, Zapf J, Hübler A (2016) Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT: PSS. Mater Today Proc 3:739–745CrossRef
231.
go back to reference Zhang HD, Tang CC, Long YZ, Zhang JC, Huang R, Li JJ, Gu CZ (2014) High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Act A: Phys 219:123–127CrossRef Zhang HD, Tang CC, Long YZ, Zhang JC, Huang R, Li JJ, Gu CZ (2014) High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Act A: Phys 219:123–127CrossRef
232.
go back to reference Eyebe GA, Bideau B, Boubekeur N, Loranger E, Domingue F (2017) Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sens Act B: Chem 245:484–492CrossRef Eyebe GA, Bideau B, Boubekeur N, Loranger E, Domingue F (2017) Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sens Act B: Chem 245:484–492CrossRef
233.
go back to reference Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Act B: Chem 150:308–313CrossRef Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Act B: Chem 150:308–313CrossRef
234.
go back to reference Potyrail RA, Morris AWG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. ACS Anal Chem 79:45–51CrossRef Potyrail RA, Morris AWG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. ACS Anal Chem 79:45–51CrossRef
235.
go back to reference Alimenti F, Mariotti C, Palazzi V, Virili M, Orecchini G, Mezzanotte P, Roselli L (2015) Communication and sensing circuits on cellulose. J Low Power Electron Appl 5:151–164CrossRef Alimenti F, Mariotti C, Palazzi V, Virili M, Orecchini G, Mezzanotte P, Roselli L (2015) Communication and sensing circuits on cellulose. J Low Power Electron Appl 5:151–164CrossRef
236.
go back to reference Fan J, Zhang S, Li F, Shi J (2020) Cellulose-based sensors for metal ions detection. Cellulose 27:5477–5507CrossRef Fan J, Zhang S, Li F, Shi J (2020) Cellulose-based sensors for metal ions detection. Cellulose 27:5477–5507CrossRef
237.
go back to reference Sun YF, Liu SB, Meng FL, Liu JY, Jin Z, Kong LT, Liu JH (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631CrossRef Sun YF, Liu SB, Meng FL, Liu JY, Jin Z, Kong LT, Liu JH (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631CrossRef
238.
go back to reference Viter R, Iatsunskyi I (2019) Metal oxide nanostructures in sensing. In: Micro and nano technologies, nanomaterials design for sensing applications, Elsevier, pp 41–91 Viter R, Iatsunskyi I (2019) Metal oxide nanostructures in sensing. In: Micro and nano technologies, nanomaterials design for sensing applications, Elsevier, pp 41–91
239.
go back to reference Ghafouri T, Tahmasebi R, Manavizadeh N, Nadimi E (2019) Gas sensing properties of silicon nanowires with different cross-sectional shapes toward ammonia: a first-principles study. J Nanoparticle Res 21:157 Ghafouri T, Tahmasebi R, Manavizadeh N, Nadimi E (2019) Gas sensing properties of silicon nanowires with different cross-sectional shapes toward ammonia: a first-principles study. J Nanoparticle Res 21:157
240.
go back to reference Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105CrossRef Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105CrossRef
241.
go back to reference Camilli L, Passacantando M (2018) Advances on sensors based on carbon nanotubes. Chemosensors 6:62CrossRef Camilli L, Passacantando M (2018) Advances on sensors based on carbon nanotubes. Chemosensors 6:62CrossRef
242.
go back to reference Guerin H, Le Poche H, Pohle R, Fernández-Bolaños M, Dijon J, Ionescu AM (2013) Carbon nanotube resistors as gas sensors: towards selective analyte detection with various metal-nanotube interfaces. In: European solid-state device research conference, Bucharest, Romania, Sep 2013, pp 326–329 Guerin H, Le Poche H, Pohle R, Fernández-Bolaños M, Dijon J, Ionescu AM (2013) Carbon nanotube resistors as gas sensors: towards selective analyte detection with various metal-nanotube interfaces. In: European solid-state device research conference, Bucharest, Romania, Sep 2013, pp 326–329
243.
go back to reference Balachandran MD, Shrestha S, Agarwal M, Lvov Y, Varahramyan K (2008) SnO2 capacitive sensor integrated with microstrip patch antenna for passive wireless detection of ethylene gas. Elect Lett 44:464–466CrossRef Balachandran MD, Shrestha S, Agarwal M, Lvov Y, Varahramyan K (2008) SnO2 capacitive sensor integrated with microstrip patch antenna for passive wireless detection of ethylene gas. Elect Lett 44:464–466CrossRef
244.
go back to reference Nair RS, Perret E, Tedjini S, Baron T (2013) A group-delay-based chipless RFID humidity tag sensor using silicon nanowires. IEEE Ant Wireless Propag Lett 12:729–732CrossRef Nair RS, Perret E, Tedjini S, Baron T (2013) A group-delay-based chipless RFID humidity tag sensor using silicon nanowires. IEEE Ant Wireless Propag Lett 12:729–732CrossRef
245.
go back to reference Nair R, Perret E, Tedjini S, Barron T (2012) A humidity sensor for passive chipless RFID applications. In: 2012 IEEE International conference on RFID-technologies and applications (RFID-TA), Nice, France, Nov 2012, pp 29–33 Nair R, Perret E, Tedjini S, Barron T (2012) A humidity sensor for passive chipless RFID applications. In: 2012 IEEE International conference on RFID-technologies and applications (RFID-TA), Nice, France, Nov 2012, pp 29–33
246.
go back to reference Vena A, Perret E, Tedjini S, Kaddour D, Potie A, Barron T (2012) A compact chipless RFID tag with environment sensing capability. In: 2012 IEEE/MTT-S int. microw. symp. digest, Montreal, QC, Canada Vena A, Perret E, Tedjini S, Kaddour D, Potie A, Barron T (2012) A compact chipless RFID tag with environment sensing capability. In: 2012 IEEE/MTT-S int. microw. symp. digest, Montreal, QC, Canada
247.
go back to reference Ahoulou S, Perret E, Nedelec JM (2021) Functionalization and characterization of silicon nanowires for sensing applications: a review. Nanomaterials 11:999 Ahoulou S, Perret E, Nedelec JM (2021) Functionalization and characterization of silicon nanowires for sensing applications: a review. Nanomaterials 11:999
248.
go back to reference Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Ant Wirel Propag Lett 8:653–656CrossRef Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Ant Wirel Propag Lett 8:653–656CrossRef
249.
go back to reference Yang L, Staiculescu D, Zhang R, Wong CP, Tentzeris MM (2009) A novel “green” fully-integrated ultrasensitive RFID-enabled gas sensor utilizing inkjet-printed antennas and carbon nanotubes. In: 2009 IEEE antennas and propagation society international symposium, North Charleston, SC, USA Yang L, Staiculescu D, Zhang R, Wong CP, Tentzeris MM (2009) A novel “green” fully-integrated ultrasensitive RFID-enabled gas sensor utilizing inkjet-printed antennas and carbon nanotubes. In: 2009 IEEE antennas and propagation society international symposium, North Charleston, SC, USA
250.
go back to reference Occhiuzzi C, Rida A, Marrocco G, Tentzeris MM (2011) Passive ammonia sensor: RFID tag integrating carbon nanotubes. In: 2011 IEEE international symposium on antennas and propagation (APSURSI), Spokane, WA, USA, pp 1413–1416 Occhiuzzi C, Rida A, Marrocco G, Tentzeris MM (2011) Passive ammonia sensor: RFID tag integrating carbon nanotubes. In: 2011 IEEE international symposium on antennas and propagation (APSURSI), Spokane, WA, USA, pp 1413–1416
251.
go back to reference Occhiuzzi C, Rida A, Marrocco G, Tentzeris MM (2011) CNT-based RFID passive gas sensor. In: 2011 IEEE MTT-S int. microw. symp., Baltimore, MD, USA Occhiuzzi C, Rida A, Marrocco G, Tentzeris MM (2011) CNT-based RFID passive gas sensor. In: 2011 IEEE MTT-S int. microw. symp., Baltimore, MD, USA
252.
go back to reference Occhiuzzi C, Rida A, Marrocco G, Tentzeris M (2011) RFID passive gas sensor integrating carbon nanotubes. IEEE Trans Microw Theory Techn 59(10):2674–2684CrossRef Occhiuzzi C, Rida A, Marrocco G, Tentzeris M (2011) RFID passive gas sensor integrating carbon nanotubes. IEEE Trans Microw Theory Techn 59(10):2674–2684CrossRef
253.
go back to reference Baccarelli R, Orecchini G, Alimenti F, Roselli L (2012) Feasibility study of a fully organic, CNT based, harmonic RFID gas sensor. In: 2012 IEEE international conference on RFID-technologies and applications (RFID-TA 2012), Nice, France, Nov 2012, pp 419–422 Baccarelli R, Orecchini G, Alimenti F, Roselli L (2012) Feasibility study of a fully organic, CNT based, harmonic RFID gas sensor. In: 2012 IEEE international conference on RFID-technologies and applications (RFID-TA 2012), Nice, France, Nov 2012, pp 419–422
254.
go back to reference Vena A, Sydänheimo L, Tentzeris MM, Ukkonen L (2013) A novel inkjet printed carbon nanotube-based chipless RFID sensor for gas detection. In: 2013 European microwave conference, Nuremberg, Germany, Oct 2013, pp 9–12 Vena A, Sydänheimo L, Tentzeris MM, Ukkonen L (2013) A novel inkjet printed carbon nanotube-based chipless RFID sensor for gas detection. In: 2013 European microwave conference, Nuremberg, Germany, Oct 2013, pp 9–12
255.
go back to reference Gou P, Kraut ND, Feigel IM, Bai H, Morga GJ, Chen Y, Tang Y, Bocan K, Stachel J, Berger L, Mickle M, Sejdic E, Star A (2014) Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep 4:4468 Gou P, Kraut ND, Feigel IM, Bai H, Morga GJ, Chen Y, Tang Y, Bocan K, Stachel J, Berger L, Mickle M, Sejdic E, Star A (2014) Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep 4:4468
256.
go back to reference Gammoudi I, Aissa B, Nedil M, Abdallah MM (2015) CNT-RFID passive tag antenna for gas sensing in underground mine. In: 2015 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting, Vancouver, BC, Canada, Jul 2015, pp 1758–1759 Gammoudi I, Aissa B, Nedil M, Abdallah MM (2015) CNT-RFID passive tag antenna for gas sensing in underground mine. In: 2015 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting, Vancouver, BC, Canada, Jul 2015, pp 1758–1759
257.
go back to reference Kutty AA, Björninen T, Sydänheimo L, Ukkonen L (2016) A novel carbon nanotube loaded passive UHF RFID sensor tag with built-in reference for wireless gas sensing. In: 2016 IEEE MTT-S Int. Microw. Symp. (IMS’16), San Francisco, CA, USA Kutty AA, Björninen T, Sydänheimo L, Ukkonen L (2016) A novel carbon nanotube loaded passive UHF RFID sensor tag with built-in reference for wireless gas sensing. In: 2016 IEEE MTT-S Int. Microw. Symp. (IMS’16), San Francisco, CA, USA
258.
go back to reference Le NN, Fribourg-Blanc E, Phan HCT, Dang DMT, Dang CM (2018) A RFID-based wireless NH3 gas detector using spin coated carbon nanotubes as sensitive layer. Int J Nanotechnol 15(1–3):3–13CrossRef Le NN, Fribourg-Blanc E, Phan HCT, Dang DMT, Dang CM (2018) A RFID-based wireless NH3 gas detector using spin coated carbon nanotubes as sensitive layer. Int J Nanotechnol 15(1–3):3–13CrossRef
259.
go back to reference Javed N, Azam MA, Qazi I, Amin Y, Tenhunen H (2021) A novel multi-parameter chipless RFID sensor for green networks. AEU-Int J Electron Commun 128:153512 Javed N, Azam MA, Qazi I, Amin Y, Tenhunen H (2021) A novel multi-parameter chipless RFID sensor for green networks. AEU-Int J Electron Commun 128:153512
260.
go back to reference Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens 2009:1–24CrossRef Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens 2009:1–24CrossRef
261.
go back to reference Novoselov KS, Geim GK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim GK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669CrossRef
262.
go back to reference Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sens Act A: Phys 270:177–194CrossRef Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sens Act A: Phys 270:177–194CrossRef
263.
go back to reference Lee JS, Oh J, Jun J, Jang J (2015) Wireless hydrogen smart sensor based on pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9:7783–7790CrossRef Lee JS, Oh J, Jun J, Jang J (2015) Wireless hydrogen smart sensor based on pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9:7783–7790CrossRef
264.
go back to reference Caccami MC, Mulla MYS, Occhiuzzi C, Di Natale C, Marrocco G (2018) Design and experimentation of a batteryless on-skin RFID graphene-oxide sensor for the monitoring and discrimination of breath anomalies. IEEE Sensors J 18(21):8893–8901CrossRef Caccami MC, Mulla MYS, Occhiuzzi C, Di Natale C, Marrocco G (2018) Design and experimentation of a batteryless on-skin RFID graphene-oxide sensor for the monitoring and discrimination of breath anomalies. IEEE Sensors J 18(21):8893–8901CrossRef
265.
go back to reference Caccami MC, Miozzi C, Mulla MYS, Di Natale C, Marrocco G (2017) An epidermal graphene oxide-based RFID sensor for the wireless analysis of human breath. In: 2017 IEEE international conference on RFID technology & application (RFID-TA), Warsaw, Poland, Sept 2017, pp 191–195 Caccami MC, Miozzi C, Mulla MYS, Di Natale C, Marrocco G (2017) An epidermal graphene oxide-based RFID sensor for the wireless analysis of human breath. In: 2017 IEEE international conference on RFID technology & application (RFID-TA), Warsaw, Poland, Sept 2017, pp 191–195
266.
go back to reference Huang X, Leng T, Georgiou T, Abraham J, Nair RR, Novoselov KS, Hu Z (2018) Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing. Sci Rep 8(1):1–7 Huang X, Leng T, Georgiou T, Abraham J, Nair RR, Novoselov KS, Hu Z (2018) Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing. Sci Rep 8(1):1–7
267.
go back to reference Lee HJ (2021) Recent progress in radio-frequency sensing platforms with graphene/graphene oxide for wireless health care system. Appl Sci 11(5):2291 Lee HJ (2021) Recent progress in radio-frequency sensing platforms with graphene/graphene oxide for wireless health care system. Appl Sci 11(5):2291
268.
go back to reference Costa F, Genovesi S, Monorchio A (2016) Normalization-free chipless RFIDs by using dual-polarized interrogation. IEEE Trans Microw Theory Techn 64(1):310–318CrossRef Costa F, Genovesi S, Monorchio A (2016) Normalization-free chipless RFIDs by using dual-polarized interrogation. IEEE Trans Microw Theory Techn 64(1):310–318CrossRef
269.
go back to reference Singh R, Singh E, Singh Nalwa H (2017) Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv 7:48597–48630 Singh R, Singh E, Singh Nalwa H (2017) Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv 7:48597–48630
270.
go back to reference Mezzanotte P, Palazzi V, Alimenti F, Roselli L (2021) Innovative RFID sensors for Internet of Things applications. IEEE J Microw 1(1):55–65CrossRef Mezzanotte P, Palazzi V, Alimenti F, Roselli L (2021) Innovative RFID sensors for Internet of Things applications. IEEE J Microw 1(1):55–65CrossRef
271.
go back to reference Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Techn 42(12):2536–2544CrossRef Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Techn 42(12):2536–2544CrossRef
272.
go back to reference Bandler JW, Biernacki RM, Chen SH, Hemmers RH, Madsen K (1995) Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans Microw Theory Techn 41(12):2874–2882CrossRef Bandler JW, Biernacki RM, Chen SH, Hemmers RH, Madsen K (1995) Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans Microw Theory Techn 41(12):2874–2882CrossRef
273.
go back to reference Koziel S, Cheng QS, Bandler JW (2008) Space mapping. IEEE Microw Mag 9(6):105–122CrossRef Koziel S, Cheng QS, Bandler JW (2008) Space mapping. IEEE Microw Mag 9(6):105–122CrossRef
274.
go back to reference Rayas-Sánchez JE, Koziel S, Bandler JW (2021) Advanced RF and microwave design optimization: a journey and a vision of future trends. IEEE J Microw 1(1):481–493CrossRef Rayas-Sánchez JE, Koziel S, Bandler JW (2021) Advanced RF and microwave design optimization: a journey and a vision of future trends. IEEE J Microw 1(1):481–493CrossRef
275.
go back to reference Haji-Ahmadi MJ, Nayyeri V, Soleimani M, Ramahi OM (2017) Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction. Sci Rep 7:11437 Haji-Ahmadi MJ, Nayyeri V, Soleimani M, Ramahi OM (2017) Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction. Sci Rep 7:11437
276.
go back to reference Han X, Xu H, Chang Y, Lin M, Wenyuan Z, Wu X, Wei X (2020) Multiple diffuse coding metasurface of independent polarization for RCS reduction. IEEE Access 8:162313–162321CrossRef Han X, Xu H, Chang Y, Lin M, Wenyuan Z, Wu X, Wei X (2020) Multiple diffuse coding metasurface of independent polarization for RCS reduction. IEEE Access 8:162313–162321CrossRef
277.
go back to reference Shan H, Jiang K, Xing J, Jiang T (2022) BPSO and Staggered triangle layout optimization for wideband RCS reduction of pixelate checkerboard metasurface. IEEE Trans Microw Theory Tech 70:3406–3414CrossRef Shan H, Jiang K, Xing J, Jiang T (2022) BPSO and Staggered triangle layout optimization for wideband RCS reduction of pixelate checkerboard metasurface. IEEE Trans Microw Theory Tech 70:3406–3414CrossRef
278.
go back to reference Kern DJ, Werner DH, Monorchio A, Lanuzza L, Wilhelm MJ (2005) The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans Antennas Propag 53:8–17CrossRef Kern DJ, Werner DH, Monorchio A, Lanuzza L, Wilhelm MJ (2005) The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans Antennas Propag 53:8–17CrossRef
279.
go back to reference Bayraktar Z, Gregory MD, Wang X, Werner DH (2012) A versatile design strategy for thin composite planar double-sided high-impedance surfaces. IEEE Trans Antennas Propag 60:2770–2780MathSciNetCrossRef Bayraktar Z, Gregory MD, Wang X, Werner DH (2012) A versatile design strategy for thin composite planar double-sided high-impedance surfaces. IEEE Trans Antennas Propag 60:2770–2780MathSciNetCrossRef
280.
go back to reference Ghaderi B, Nayyeri V, Soleimani M, Ramahi OM (2018) Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting. Sci Rep 8:13227 Ghaderi B, Nayyeri V, Soleimani M, Ramahi OM (2018) Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting. Sci Rep 8:13227
281.
go back to reference Ghadimi A, Nayyeri V, Khanjarian M, Soleimani M, Ramahi OM (2020) Design and simulation of a wideband, wide-angle and polarization-insensitive microwave absorber based on pattern optimization of resistive films. J Phys D: Appl Phys 54:055102 Ghadimi A, Nayyeri V, Khanjarian M, Soleimani M, Ramahi OM (2020) Design and simulation of a wideband, wide-angle and polarization-insensitive microwave absorber based on pattern optimization of resistive films. J Phys D: Appl Phys 54:055102
282.
go back to reference Ghadimi A, Nayyeri V, Khanjarian M, Soleimani M, Ramahi OM (2020) A systematic approach for mutual coupling reduction between microstrip antennas using pixelization and binary optimization. IEEE Antennas Wirel Propag Lett 19:2048–2052CrossRef Ghadimi A, Nayyeri V, Khanjarian M, Soleimani M, Ramahi OM (2020) A systematic approach for mutual coupling reduction between microstrip antennas using pixelization and binary optimization. IEEE Antennas Wirel Propag Lett 19:2048–2052CrossRef
283.
go back to reference Borgese M, Costa F, Genovesi S, Monorchio A, Manara G (2018) Optimal design of miniaturized reflecting metasurfaces for ultra-wideband and angularly stable polarization conversion. Sci Rep 8:7651 Borgese M, Costa F, Genovesi S, Monorchio A, Manara G (2018) Optimal design of miniaturized reflecting metasurfaces for ultra-wideband and angularly stable polarization conversion. Sci Rep 8:7651
284.
go back to reference Hojjati A, Soleimani M, Nayyeri V, Ramahi OM (2021) Ternary optimization for designing metasurfaces. Sci Rep 11:17110 Hojjati A, Soleimani M, Nayyeri V, Ramahi OM (2021) Ternary optimization for designing metasurfaces. Sci Rep 11:17110
285.
go back to reference Genovesi S, Mittra R, Monorchio A, Manara G (2006) Particle swarm optimization for the design of frequency selective surfaces. IEEE Antennas Wirel Propag Lett 5:277–279CrossRef Genovesi S, Mittra R, Monorchio A, Manara G (2006) Particle swarm optimization for the design of frequency selective surfaces. IEEE Antennas Wirel Propag Lett 5:277–279CrossRef
286.
go back to reference Saadat-Safa M, Nayyeri V, Ghadimi A, Soleimani M, Ramahi OM (2018) A pixelated microwave near-field sensor for precise characterization of dielectric materials. Sci Rep 9:13310 Saadat-Safa M, Nayyeri V, Ghadimi A, Soleimani M, Ramahi OM (2018) A pixelated microwave near-field sensor for precise characterization of dielectric materials. Sci Rep 9:13310
287.
go back to reference Wadhwani K, Hussaini S, Mazumder A, Syed A (2022) Solvent-Based optimization of CSRR and IDC RF bio-sensors. IEEE Sensors J 22:5651–5661CrossRef Wadhwani K, Hussaini S, Mazumder A, Syed A (2022) Solvent-Based optimization of CSRR and IDC RF bio-sensors. IEEE Sensors J 22:5651–5661CrossRef
288.
go back to reference Wang BX, Zhao WS, Wang DW, Wang J, Li W, Liu J (2021) Optimal design of planar microwave microfluidic sensors based on deep reinforcement learning. IEEE Sensors J 21:27441–27449CrossRef Wang BX, Zhao WS, Wang DW, Wang J, Li W, Liu J (2021) Optimal design of planar microwave microfluidic sensors based on deep reinforcement learning. IEEE Sensors J 21:27441–27449CrossRef
289.
go back to reference Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55:556–567CrossRef Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55:556–567CrossRef
290.
go back to reference Jun X, Chang H (2009) The discrete binary version of the improved particle swarm optimization algorithm. In: Proc. 2009 IEEE int. conf. management and service science, Beijing, China, 20–22 September 2009, pp 1–6 Jun X, Chang H (2009) The discrete binary version of the improved particle swarm optimization algorithm. In: Proc. 2009 IEEE int. conf. management and service science, Beijing, China, 20–22 September 2009, pp 1–6
291.
go back to reference Abdolrazzaghi M, Daneshmand M (2020) Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis. IEEE Trans Circuits Syst I Regul Pap 67:4382–4395CrossRef Abdolrazzaghi M, Daneshmand M (2020) Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis. IEEE Trans Circuits Syst I Regul Pap 67:4382–4395CrossRef
292.
go back to reference Abdolrazzaghi M, Katchinskiy N, Elezzabi AY, Light PE, Daneshmand M (2021) Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors J 21(17):18742–18755CrossRef Abdolrazzaghi M, Katchinskiy N, Elezzabi AY, Light PE, Daneshmand M (2021) Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors J 21(17):18742–18755CrossRef
293.
go back to reference Abdolrazzaghi M, Daneshmand M (2017) Dual active resonator for dispersion coefficient measurement of asphaltene nano-particles. IEEE Sensors J 17:7248–7256CrossRef Abdolrazzaghi M, Daneshmand M (2017) Dual active resonator for dispersion coefficient measurement of asphaltene nano-particles. IEEE Sensors J 17:7248–7256CrossRef
294.
go back to reference Abdolrazzaghi M, Daneshmand M (2018) A phase-noise reduced microwave oscillator sensor with enhanced limit of detection using active filter. IEEE Microw Wirel Compon Lett 28:837–839CrossRef Abdolrazzaghi M, Daneshmand M (2018) A phase-noise reduced microwave oscillator sensor with enhanced limit of detection using active filter. IEEE Microw Wirel Compon Lett 28:837–839CrossRef
295.
go back to reference Abdolrazzaghi M, Zarifi MH, Floquet CF, Daneshmand M (2017) Contactless asphaltene detection using an active planar microwave resonator sensor. Energy Fuels 31:8784–8791CrossRef Abdolrazzaghi M, Zarifi MH, Floquet CF, Daneshmand M (2017) Contactless asphaltene detection using an active planar microwave resonator sensor. Energy Fuels 31:8784–8791CrossRef
296.
go back to reference Kazemi N, Schofield K, Musilek P (2021) A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte. Sensors 21:3759 Kazemi N, Schofield K, Musilek P (2021) A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte. Sensors 21:3759
297.
go back to reference Herrojo C, Paredes F, Martín F (2021) Synchronism and direction detection in high-resolution/high-density electromagnetic encoders. IEEE Sensors J 21(3):2873–2882CrossRef Herrojo C, Paredes F, Martín F (2021) Synchronism and direction detection in high-resolution/high-density electromagnetic encoders. IEEE Sensors J 21(3):2873–2882CrossRef
298.
go back to reference Hosseini N, Baghelani M, Daneshmand M (2020) Selective volume fraction sensing using resonant-based microwave sensor and its harmonics. IEEE Trans Microw Theory Techn 68(9):3958–3968CrossRef Hosseini N, Baghelani M, Daneshmand M (2020) Selective volume fraction sensing using resonant-based microwave sensor and its harmonics. IEEE Trans Microw Theory Techn 68(9):3958–3968CrossRef
299.
go back to reference Mosavirik T, Soleimani M, Nayyeri V, Mirjahanmardi SH, Ramahi OM (2021) Permittivity characterization of dispersive materials using power measurements. IEEE Trans Instrum Meas 70:1–8, 6005508 Mosavirik T, Soleimani M, Nayyeri V, Mirjahanmardi SH, Ramahi OM (2021) Permittivity characterization of dispersive materials using power measurements. IEEE Trans Instrum Meas 70:1–8, 6005508
300.
go back to reference Harrison L, Ravan EAM (2020) Material identification using a microwave sensor array and machine learning. Electronics 9(2):288 Harrison L, Ravan EAM (2020) Material identification using a microwave sensor array and machine learning. Electronics 9(2):288
301.
go back to reference Abdolrazzaghi M, Kazemi N, Daneshmand M (2020) Machine learning to immune microwave sensors from temperature impact. In: 2020 IEEE international symposium on antennas and propagation and North American radio science meeting, Montreal, QC, Canada, pp 843–844 Abdolrazzaghi M, Kazemi N, Daneshmand M (2020) Machine learning to immune microwave sensors from temperature impact. In: 2020 IEEE international symposium on antennas and propagation and North American radio science meeting, Montreal, QC, Canada, pp 843–844
302.
go back to reference Kazemi N, Abdolrazzaghi M, Musilek P (2021) Comparative analysis of machine learning techniques for temperature compensation in microwave sensors. IEEE Trans Microw Theory Techn 69(9):4223–4236CrossRef Kazemi N, Abdolrazzaghi M, Musilek P (2021) Comparative analysis of machine learning techniques for temperature compensation in microwave sensors. IEEE Trans Microw Theory Techn 69(9):4223–4236CrossRef
303.
go back to reference Mosavirik T, Hashemi M, Soleimani M, Nayyeri V, Ramahi OM (2021) Accuracy-improved and low-cost material characterization using power measurement and artificial neural network. IEEE Trans Instrum Meas 70:1–9 Mosavirik T, Hashemi M, Soleimani M, Nayyeri V, Ramahi OM (2021) Accuracy-improved and low-cost material characterization using power measurement and artificial neural network. IEEE Trans Instrum Meas 70:1–9
304.
go back to reference Ricci M et al (2021) Machine-learning-based microwave sensing: a case study for the food industry. IEEE J Emerg Sel Top Circuits Syst 11(3):503–514CrossRef Ricci M et al (2021) Machine-learning-based microwave sensing: a case study for the food industry. IEEE J Emerg Sel Top Circuits Syst 11(3):503–514CrossRef
305.
go back to reference Aydinalp C, Joof S, Akinci MN, Akduman I, Yilmaz T (2022) Microwave dielectric property retrieval from open-ended coaxial probe response with deep learning. IEEE Access 10:1216–1227CrossRef Aydinalp C, Joof S, Akinci MN, Akduman I, Yilmaz T (2022) Microwave dielectric property retrieval from open-ended coaxial probe response with deep learning. IEEE Access 10:1216–1227CrossRef
306.
go back to reference Kazemi N, Gholizadeh N, Musilek P (2022) Selective microwave zeroth-order resonator sensor aided by machine learning. Sensors 22:5362 Kazemi N, Gholizadeh N, Musilek P (2022) Selective microwave zeroth-order resonator sensor aided by machine learning. Sensors 22:5362
307.
go back to reference Gocen C, Palandoken M (2022) Machine learning assisted novel microwave sensor design for dielectric parameter characterization of water-ethanol mixture. IEEE Sensors J 22(3):2119–2127CrossRef Gocen C, Palandoken M (2022) Machine learning assisted novel microwave sensor design for dielectric parameter characterization of water-ethanol mixture. IEEE Sensors J 22(3):2119–2127CrossRef
308.
go back to reference Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2002) Magneto-inductive waveguide. Elect Lett 38(8):371–373CrossRef Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2002) Magneto-inductive waveguide. Elect Lett 38(8):371–373CrossRef
Metadata
Title
Planar Microwave Sensors
Author
Ferran Martín
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53861-2_1