Skip to main content
Top

2024 | OriginalPaper | Chapter

Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting

Authors : Hongjie Chen, Ryan Rossi, Sungchul Kim, Kanak Mahadik, Hoda Eldardiry

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph Recurrent Neural Networks (GRNN) excel in time-series prediction by modeling complicated non-linear relationships among time-series. However, most GRNN models target small datasets that only have tens of time-series or hundreds of time-series. Therefore, they fail to handle large-scale datasets that have tens of thousands of time-series, which exist in many real-world scenarios. To address this scalability issue, we propose Evolving Super Graph Neural Networks (ESGNN), which target large-scale datasets and significantly boost model training. Our ESGNN models multivariate time-series based on super graphs, where each super node is associated with a set of time-series that are highly correlated with each other. To further precisely model dynamic relationships between time-series, ESGNN quickly updates super graphs on the fly by using the LSH algorithm to construct the super edges. The embeddings of super nodes are learned through end-to-end learning and are then used with each target time-series for forecasting. Experimental result shows that ESGNN outperforms previous state-of-the-art methods with a significant runtime speedup (\(3{\times }\)\(40{\times }\) faster) and space-saving (\(5{\times }\)\(4600{\times }\) less), while only sacrificing little or negligible prediction accuracy. An ablation study is also conducted to investigate the effectiveness of the number of super nodes and the graph update interval.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in Python. J. Mach. Learn. Res. 21(116), 1–6 (2020) Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in Python. J. Mach. Learn. Res. 21(116), 1–6 (2020)
2.
go back to reference Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, New York (2000) Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, New York (2000)
3.
go back to reference Chen, H., Eldardiry, H.: Graph time-series modeling in deep learning: a survey. ACM Trans. Knowl. Discov. Data 18, 1–35 (2023) Chen, H., Eldardiry, H.: Graph time-series modeling in deep learning: a survey. ACM Trans. Knowl. Discov. Data 18, 1–35 (2023)
4.
go back to reference Chen, H., Rossi, R.A., Mahadik, K., Kim, S., Eldardiry, H.: Graph deep factors for forecasting with applications to cloud resource allocation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021) Chen, H., Rossi, R.A., Mahadik, K., Kim, S., Eldardiry, H.: Graph deep factors for forecasting with applications to cloud resource allocation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021)
5.
go back to reference Chen, X., Wang, J., Xie, K.: TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021) Chen, X., Wang, J., Xie, K.: TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021)
6.
go back to reference Chen, Y., Segovia, I., Gel, Y.R.: Z-GCNets: time zigzags at graph convolutional networks for time series forecasting. In: ICML (2021) Chen, Y., Segovia, I., Gel, Y.R.: Z-GCNets: time zigzags at graph convolutional networks for time series forecasting. In: ICML (2021)
7.
go back to reference Du, B., Yuan, C., Wang, F., Tong, H.: Geometric matrix completion via Sylvester multi-graph neural network. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3860–3864 (2023) Du, B., Yuan, C., Wang, F., Tong, H.: Geometric matrix completion via Sylvester multi-graph neural network. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3860–3864 (2023)
8.
go back to reference Du, L., et al.: GBK-GNN: gated Bi-Kernel graph neural networks for modeling both homophily and heterophily. In: Proceedings of the ACM Web Conference 2022, pp. 1550–1558 (2022) Du, L., et al.: GBK-GNN: gated Bi-Kernel graph neural networks for modeling both homophily and heterophily. In: Proceedings of the ACM Web Conference 2022, pp. 1550–1558 (2022)
9.
go back to reference Li, J., et al.: Predicting path failure in time-evolving graphs. In: SIGKDD (2019) Li, J., et al.: Predicting path failure in time-evolving graphs. In: SIGKDD (2019)
10.
go back to reference Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018) Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018)
11.
go back to reference Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef
12.
go back to reference Lu, B., Gan, X., Jin, H., Fu, L., Zhang, H.: Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In: CIKM (2020) Lu, B., Gan, X., Jin, H., Fu, L., Zhang, H.: Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In: CIKM (2020)
13.
go back to reference Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020) Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020)
14.
go back to reference Pelleg, D., Moore, A.W., et al.: X-Means: extending K-Means with efficient estimation of the number of clusters. In: ICML, vol. 1, pp. 727–734 (2000) Pelleg, D., Moore, A.W., et al.: X-Means: extending K-Means with efficient estimation of the number of clusters. In: ICML, vol. 1, pp. 727–734 (2000)
15.
go back to reference Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema, pp. 1–14. Google Inc., White Paper (2011) Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema, pp. 1–14. Google Inc., White Paper (2011)
16.
go back to reference Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2020)CrossRef Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2020)CrossRef
17.
go back to reference Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting multiple time series. In: International Conference on Learning Representations (2020) Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting multiple time series. In: International Conference on Learning Representations (2020)
18.
go back to reference Tran, A., Mathews, A., Ong, C.S., Xie, L.: Radflow: a recurrent, aggregated, and decomposable model for networks of time series. In: The Web Conference (2021) Tran, A., Mathews, A., Ong, C.S., Xie, L.: Radflow: a recurrent, aggregated, and decomposable model for networks of time series. In: The Web Conference (2021)
19.
go back to reference Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., Januschowski, T.: Deep factors for forecasting. In: ICML (2019) Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., Januschowski, T.: Deep factors for forecasting. In: ICML (2019)
20.
go back to reference Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017) Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile recurrent forecaster. arXiv preprint arXiv:​1711.​11053 (2017)
21.
go back to reference Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: KDD (2020) Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: KDD (2020)
22.
go back to reference Xing, Y., et al.: Learning hierarchical graph neural networks for image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (2021) Xing, Y., et al.: Learning hierarchical graph neural networks for image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (2021)
Metadata
Title
Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting
Authors
Hongjie Chen
Ryan Rossi
Sungchul Kim
Kanak Mahadik
Hoda Eldardiry
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2266-2_16

Premium Partner