Skip to main content

2024 | OriginalPaper | Buchkapitel

Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting

verfasst von : Hongjie Chen, Ryan Rossi, Sungchul Kim, Kanak Mahadik, Hoda Eldardiry

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph Recurrent Neural Networks (GRNN) excel in time-series prediction by modeling complicated non-linear relationships among time-series. However, most GRNN models target small datasets that only have tens of time-series or hundreds of time-series. Therefore, they fail to handle large-scale datasets that have tens of thousands of time-series, which exist in many real-world scenarios. To address this scalability issue, we propose Evolving Super Graph Neural Networks (ESGNN), which target large-scale datasets and significantly boost model training. Our ESGNN models multivariate time-series based on super graphs, where each super node is associated with a set of time-series that are highly correlated with each other. To further precisely model dynamic relationships between time-series, ESGNN quickly updates super graphs on the fly by using the LSH algorithm to construct the super edges. The embeddings of super nodes are learned through end-to-end learning and are then used with each target time-series for forecasting. Experimental result shows that ESGNN outperforms previous state-of-the-art methods with a significant runtime speedup (\(3{\times }\)\(40{\times }\) faster) and space-saving (\(5{\times }\)\(4600{\times }\) less), while only sacrificing little or negligible prediction accuracy. An ablation study is also conducted to investigate the effectiveness of the number of super nodes and the graph update interval.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in Python. J. Mach. Learn. Res. 21(116), 1–6 (2020) Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in Python. J. Mach. Learn. Res. 21(116), 1–6 (2020)
2.
Zurück zum Zitat Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, New York (2000) Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, New York (2000)
3.
Zurück zum Zitat Chen, H., Eldardiry, H.: Graph time-series modeling in deep learning: a survey. ACM Trans. Knowl. Discov. Data 18, 1–35 (2023) Chen, H., Eldardiry, H.: Graph time-series modeling in deep learning: a survey. ACM Trans. Knowl. Discov. Data 18, 1–35 (2023)
4.
Zurück zum Zitat Chen, H., Rossi, R.A., Mahadik, K., Kim, S., Eldardiry, H.: Graph deep factors for forecasting with applications to cloud resource allocation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021) Chen, H., Rossi, R.A., Mahadik, K., Kim, S., Eldardiry, H.: Graph deep factors for forecasting with applications to cloud resource allocation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021)
5.
Zurück zum Zitat Chen, X., Wang, J., Xie, K.: TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021) Chen, X., Wang, J., Xie, K.: TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021)
6.
Zurück zum Zitat Chen, Y., Segovia, I., Gel, Y.R.: Z-GCNets: time zigzags at graph convolutional networks for time series forecasting. In: ICML (2021) Chen, Y., Segovia, I., Gel, Y.R.: Z-GCNets: time zigzags at graph convolutional networks for time series forecasting. In: ICML (2021)
7.
Zurück zum Zitat Du, B., Yuan, C., Wang, F., Tong, H.: Geometric matrix completion via Sylvester multi-graph neural network. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3860–3864 (2023) Du, B., Yuan, C., Wang, F., Tong, H.: Geometric matrix completion via Sylvester multi-graph neural network. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3860–3864 (2023)
8.
Zurück zum Zitat Du, L., et al.: GBK-GNN: gated Bi-Kernel graph neural networks for modeling both homophily and heterophily. In: Proceedings of the ACM Web Conference 2022, pp. 1550–1558 (2022) Du, L., et al.: GBK-GNN: gated Bi-Kernel graph neural networks for modeling both homophily and heterophily. In: Proceedings of the ACM Web Conference 2022, pp. 1550–1558 (2022)
9.
Zurück zum Zitat Li, J., et al.: Predicting path failure in time-evolving graphs. In: SIGKDD (2019) Li, J., et al.: Predicting path failure in time-evolving graphs. In: SIGKDD (2019)
10.
Zurück zum Zitat Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018) Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018)
11.
Zurück zum Zitat Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef
12.
Zurück zum Zitat Lu, B., Gan, X., Jin, H., Fu, L., Zhang, H.: Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In: CIKM (2020) Lu, B., Gan, X., Jin, H., Fu, L., Zhang, H.: Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In: CIKM (2020)
13.
Zurück zum Zitat Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020) Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020)
14.
Zurück zum Zitat Pelleg, D., Moore, A.W., et al.: X-Means: extending K-Means with efficient estimation of the number of clusters. In: ICML, vol. 1, pp. 727–734 (2000) Pelleg, D., Moore, A.W., et al.: X-Means: extending K-Means with efficient estimation of the number of clusters. In: ICML, vol. 1, pp. 727–734 (2000)
15.
Zurück zum Zitat Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema, pp. 1–14. Google Inc., White Paper (2011) Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema, pp. 1–14. Google Inc., White Paper (2011)
16.
Zurück zum Zitat Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2020)CrossRef Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2020)CrossRef
17.
Zurück zum Zitat Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting multiple time series. In: International Conference on Learning Representations (2020) Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting multiple time series. In: International Conference on Learning Representations (2020)
18.
Zurück zum Zitat Tran, A., Mathews, A., Ong, C.S., Xie, L.: Radflow: a recurrent, aggregated, and decomposable model for networks of time series. In: The Web Conference (2021) Tran, A., Mathews, A., Ong, C.S., Xie, L.: Radflow: a recurrent, aggregated, and decomposable model for networks of time series. In: The Web Conference (2021)
19.
Zurück zum Zitat Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., Januschowski, T.: Deep factors for forecasting. In: ICML (2019) Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., Januschowski, T.: Deep factors for forecasting. In: ICML (2019)
20.
Zurück zum Zitat Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017) Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile recurrent forecaster. arXiv preprint arXiv:​1711.​11053 (2017)
21.
Zurück zum Zitat Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: KDD (2020) Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: KDD (2020)
22.
Zurück zum Zitat Xing, Y., et al.: Learning hierarchical graph neural networks for image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (2021) Xing, Y., et al.: Learning hierarchical graph neural networks for image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (2021)
Metadaten
Titel
Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting
verfasst von
Hongjie Chen
Ryan Rossi
Sungchul Kim
Kanak Mahadik
Hoda Eldardiry
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2266-2_16

Premium Partner