Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

29-05-2023 | Topical Collection: 19th Conference on Defects (DRIP XIX)

Experimental Study on the Photoelastic Coefficient and Its Wavelength Dispersion for Quantitative Imaging of Residual Strain in Commercial SiC Substrates

Authors: Masayuki Fukuzawa, Nobuya Kudo

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The absolute difference between two photoelastic coefficients \(\left| {p_{11} - p_{12} } \right|\) and its wavelength dispersion have been experimentally studied in commercially available (0001) 4H silicon carbide substrates by using originally developed imaging polariscopes (xIPs) with different light-source wavelengths (\(\lambda\) = 630 nm, 940 nm, and 1200 nm). The simple three-point bending test was adopted to measure the distribution of birefringence \(\left| {\Delta {\text{n}}} \right|\) in a small beam under an external load. Additionally, numerical simulation was performed to accurately estimate the distribution of \(\left| {\sigma_{1} - \sigma_{2} } \right|\) in the beam, even with its size restriction. The value of \(\left| {p_{11} - p_{12} } \right|\) was evaluated by regression analysis on the value pairs of \(\left| {\sigma_{1} - \sigma_{2} } \right|\) and \(\left| {\Delta {\text{n}}} \right|\) examined under various external loads. In order to avoid the effect of residual strain in the sample, the regression analysis was performed at many positions over the sample rather than a few representative points as is adopted conventionally. The value of \(\left| {p_{11} - p_{12} } \right|\) was obtained as 0.040, 0.090 and 0.13 at wavelengths of 630 nm, 940 nm, and 1200 nm, respectively. The wavelength dispersion revealed inverse correlation with photon energy and suggested that \(\left| {p_{11} - p_{12} } \right|\) may become close to zero at a certain wavelength shorter than 630 nm, implying a technical trade-off between the sensitivity of the photoelastic effect and the signal-to-noise ratio in polariscopic photometry, which is useful for considering the optimal wavelength in quantitative strain imaging with photoelastic technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Kimoto, J. A. Cooper, Fundamentals of Silicon Carbide Technology, (Wiley-IEEE Press, 2014). T. Kimoto, J. A. Cooper, Fundamentals of Silicon Carbide Technology, (Wiley-IEEE Press, 2014).
2.
go back to reference P. Friedrichs, T. Kimoto, L. Ley, G. Pensl, (ed.), Silicon Carbide: Volume 1 (Wiley-VCH, 2009). P. Friedrichs, T. Kimoto, L. Ley, G. Pensl, (ed.), Silicon Carbide: Volume 1 (Wiley-VCH, 2009).
3.
go back to reference P. Friedrichs, T. Kimoto, L. Ley, G. Pensl, (ed.), Silicon Carbide: Volume 2 (Wiley-VCH, 2009). P. Friedrichs, T. Kimoto, L. Ley, G. Pensl, (ed.), Silicon Carbide: Volume 2 (Wiley-VCH, 2009).
4.
go back to reference M. Fukuzawa, and K. Kanamoto, Photoelastic characterization of residual strain distribution in commercial off-axis SiC substrates. J. Electronic Mater. 49, 5161 (2020).CrossRef M. Fukuzawa, and K. Kanamoto, Photoelastic characterization of residual strain distribution in commercial off-axis SiC substrates. J. Electronic Mater. 49, 5161 (2020).CrossRef
5.
go back to reference M. Fukuzawa, and M. Yamada, Quantitative imaging of residual strain profile in large diameter GaAs substrates. Phys. Status Solidi (c) 5, 2941 (2008).CrossRef M. Fukuzawa, and M. Yamada, Quantitative imaging of residual strain profile in large diameter GaAs substrates. Phys. Status Solidi (c) 5, 2941 (2008).CrossRef
6.
go back to reference M. Fukuzawa and M. Yamada, In Proc. of IPRM2008 (2008), TuB.1–1-Inv. M. Fukuzawa and M. Yamada, In Proc. of IPRM2008 (2008), TuB.1–1-Inv.
7.
go back to reference T. Kato, H. Ohsato, A. Okamoto, N. Sugiyama, and T. Okuda, The photoelastic constant and internal stress around micropipe defects of 6H-SiC single crystal. Mater. Sci. Eng. B 57, 147 (1999).CrossRef T. Kato, H. Ohsato, A. Okamoto, N. Sugiyama, and T. Okuda, The photoelastic constant and internal stress around micropipe defects of 6H-SiC single crystal. Mater. Sci. Eng. B 57, 147 (1999).CrossRef
8.
go back to reference S.Y. Davydov, and S.K. Tikhonov, Photoelasticity and quadratic permittivity of wide-gap semiconductors. Semiconductors 31, 698 (1997).CrossRef S.Y. Davydov, and S.K. Tikhonov, Photoelasticity and quadratic permittivity of wide-gap semiconductors. Semiconductors 31, 698 (1997).CrossRef
9.
go back to reference M. Herms, G. Irmer, S. Spira, and M. Wagner, The photoelastic constant of (0001) 4H silicon carbide determined by scanning infrared polariscopy. Phys. Status Solidi A 218, 2100198 (2021).CrossRef M. Herms, G. Irmer, S. Spira, and M. Wagner, The photoelastic constant of (0001) 4H silicon carbide determined by scanning infrared polariscopy. Phys. Status Solidi A 218, 2100198 (2021).CrossRef
10.
go back to reference J.F. Nye, Physical Properties of Crystals (London: Oxford Unversity Press, 1957). J.F. Nye, Physical Properties of Crystals (London: Oxford Unversity Press, 1957).
11.
go back to reference K. Kamitani, M. Grimsditch, J.C. Nipko, C.-K. Loong, M. Okada, and I. Kimura, The elastic constants of silicon carbide: a Brillouin-scattering study of 4H and 6H SiC single crystals. J. Appl. Phys. 82, 3152 (1997).CrossRef K. Kamitani, M. Grimsditch, J.C. Nipko, C.-K. Loong, M. Okada, and I. Kimura, The elastic constants of silicon carbide: a Brillouin-scattering study of 4H and 6H SiC single crystals. J. Appl. Phys. 82, 3152 (1997).CrossRef
12.
go back to reference C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, Temperature dependence of refractive indices for 4H- and 6H-SiC. J. Appl. Phys. 115, 113501 (2014).CrossRef C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, Temperature dependence of refractive indices for 4H- and 6H-SiC. J. Appl. Phys. 115, 113501 (2014).CrossRef
13.
go back to reference S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Chichester: John Wiley & Sons, 2005), p.285.CrossRef S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Chichester: John Wiley & Sons, 2005), p.285.CrossRef
Metadata
Title
Experimental Study on the Photoelastic Coefficient and Its Wavelength Dispersion for Quantitative Imaging of Residual Strain in Commercial SiC Substrates
Authors
Masayuki Fukuzawa
Nobuya Kudo
Publication date
29-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10473-z

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue