Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

16-05-2023 | Original Research Article

Frequency Response Characterization of Thin-Film Shape Memory Alloy Actuator for Reconfigurable Antenna

Authors: M. Geetha, K. Dhanalakshmi, V. Vetriselvi, S. Jayachandran, I. A. Palani

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The frequency response characteristics of a thin-film shape memory alloy (SMA) actuator have been studied to check its applicability as a switching element in a reconfigurable antenna. The thin-film SMA actuator is a composite structure comprising of thin-film CuAlNiMn SMA material coated on a flexible straight polyimide substrate. The actuation is achieved by the martensite to austenite phase change of the SMA through Joule heating in the heating cycle and the flexible polyimide acting as the bias element in the cooling cycle. The performance of the actuator is studied by applying voltage signals of different amplitudes and varying frequencies to it. It was observed that the actuator has the maximum displacement with minimum offset in the frequencies between 0 Hz and 1 Hz of a 3-V sinusoidal signal. The response of the actuator to a sinusoidal signal of different frequencies has also been analyzed using finite element analysis in COMSOL Multiphysics®. The experimental results match well with the simulation results which help in deciding the operating bandwidth of the proposed thin-film SMA actuator. The application of the actuator as a switching element in connecting two rectangular microstrip patch antennae to achieve frequency reconfiguration is discussed conceptually. Furthermore, the length of the actuator was reduced and the corresponding displacements were measured to determine its effective functioning in reconfigurable microstrip patch antennae, where a microscale geometry is essential.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Dimitris, Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (NewYork: Springer, 2008). C. Dimitris, Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (NewYork: Springer, 2008).
2.
go back to reference J. Van Humbeeck, Non-medical applications of shape memory alloys. Mater. Sci. Eng. A 273–275, 134 (1999).CrossRef J. Van Humbeeck, Non-medical applications of shape memory alloys. Mater. Sci. Eng. A 273–275, 134 (1999).CrossRef
3.
go back to reference T. Duerig, A. Pelton, and D. Stockel, An overview of nitinol medical applications. Mater. Sci. Eng. A 273–275, 149 (1999).CrossRef T. Duerig, A. Pelton, and D. Stockel, An overview of nitinol medical applications. Mater. Sci. Eng. A 273–275, 149 (1999).CrossRef
4.
go back to reference Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.M. Huang, S. Zhang, H.J. Du, and W.I. Milne, Thin film shape memory alloys and microactuators. Int. J. Comput. Mater. Sci. Surf. Eng. 2, 208 (2009). Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.M. Huang, S. Zhang, H.J. Du, and W.I. Milne, Thin film shape memory alloys and microactuators. Int. J. Comput. Mater. Sci. Surf. Eng. 2, 208 (2009).
5.
go back to reference A. Ishida and M. Sato, Development of polyimide/SMA thin-film actuator. Mater. Sci. Forum 654–656, 2075 (2010).CrossRef A. Ishida and M. Sato, Development of polyimide/SMA thin-film actuator. Mater. Sci. Forum 654–656, 2075 (2010).CrossRef
6.
go back to reference A. Behera, D.K. Rajak, R. Kolahchi, M.-L. Scutaru, and C.I. Pruncu, Current global scenario of sputter deposited NiTi smart systems. J. Mater. Res. Technol. 9, 14582 (2020).CrossRef A. Behera, D.K. Rajak, R. Kolahchi, M.-L. Scutaru, and C.I. Pruncu, Current global scenario of sputter deposited NiTi smart systems. J. Mater. Res. Technol. 9, 14582 (2020).CrossRef
7.
go back to reference A. Ishida and V. Martynov, Sputter-Deposited shape-memory alloy thin films: properties and applications. Mater. Res. Bull. 27, 111 (2002).CrossRef A. Ishida and V. Martynov, Sputter-Deposited shape-memory alloy thin films: properties and applications. Mater. Res. Bull. 27, 111 (2002).CrossRef
8.
go back to reference S. Jayachandran, S.S. Mani Prabu, M. Manikandan, M. Muralidharan, M. Harivishanth, K. Akash, and I.A. Palani, Exploring the functional capabilities of NiTi shape memory alloy thin films deposited using electron beam evaporation technique. Vacuum 168, 108826 (2019).CrossRef S. Jayachandran, S.S. Mani Prabu, M. Manikandan, M. Muralidharan, M. Harivishanth, K. Akash, and I.A. Palani, Exploring the functional capabilities of NiTi shape memory alloy thin films deposited using electron beam evaporation technique. Vacuum 168, 108826 (2019).CrossRef
9.
go back to reference A. Ishida and M. Sato, Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate. Thin Solid Films 516, 7836 (2008).CrossRef A. Ishida and M. Sato, Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate. Thin Solid Films 516, 7836 (2008).CrossRef
10.
go back to reference V.G. Kotnur, F.D. Tichelaar, and G.C.A.M. Janssen, Sputter deposited Ni-Ti thin films on polyimide substrate. Surf. Coat. Technol. 222, 44 (2013).CrossRef V.G. Kotnur, F.D. Tichelaar, and G.C.A.M. Janssen, Sputter deposited Ni-Ti thin films on polyimide substrate. Surf. Coat. Technol. 222, 44 (2013).CrossRef
11.
go back to reference M. Sato, A. Ishida, and S. Miyazaki, Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni. Thin Solid Films 315, 305 (1998).CrossRef M. Sato, A. Ishida, and S. Miyazaki, Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni. Thin Solid Films 315, 305 (1998).CrossRef
12.
go back to reference A. Isalgue, V. Torra, J.L. Seguin, M. Bendahan, J.M. Amigo, and V. Esteve Cano, Shape memory NiTi thin films deposited at low temperature. Mater. Sci. Eng. A 273–275, 717 (1999).CrossRef A. Isalgue, V. Torra, J.L. Seguin, M. Bendahan, J.M. Amigo, and V. Esteve Cano, Shape memory NiTi thin films deposited at low temperature. Mater. Sci. Eng. A 273–275, 717 (1999).CrossRef
13.
go back to reference K. Akash, A.K. Jain, G. Karmarkar, A. Jadhav, D.C. Narayane, N. Patra, and I.A. Palani, Investigations on actuation characteristics and life cycle behaviour of CuAlNiMn shape memory alloy bimorph towards flappers for aerial robots. Mater. Des. 144, 64 (2018).CrossRef K. Akash, A.K. Jain, G. Karmarkar, A. Jadhav, D.C. Narayane, N. Patra, and I.A. Palani, Investigations on actuation characteristics and life cycle behaviour of CuAlNiMn shape memory alloy bimorph towards flappers for aerial robots. Mater. Des. 144, 64 (2018).CrossRef
14.
go back to reference S. Jayachandran, K. Akash, S.S. Mani Prabu, M. Manikandan, M. Muralidharan, A. Brolin, and I.A. Palani, Investigations on performance viability of NiTi, NiTiCu, CuAlNi and CuAlNiMn shape memory alloy/kapton composite thin film for actuator application. Compos. B Eng. 176, 107182 (2019).CrossRef S. Jayachandran, K. Akash, S.S. Mani Prabu, M. Manikandan, M. Muralidharan, A. Brolin, and I.A. Palani, Investigations on performance viability of NiTi, NiTiCu, CuAlNi and CuAlNiMn shape memory alloy/kapton composite thin film for actuator application. Compos. B Eng. 176, 107182 (2019).CrossRef
15.
go back to reference S. Kennedy, M. Price, M. Zabala, and E. Perkins, Vibratory response characteristics of high frequency shape memory alloy actuators. J. Vib. Acoust. 142, 1 (2020).CrossRef S. Kennedy, M. Price, M. Zabala, and E. Perkins, Vibratory response characteristics of high frequency shape memory alloy actuators. J. Vib. Acoust. 142, 1 (2020).CrossRef
16.
go back to reference C.R. Knick, D.J. Sharar, A.A. Wilson, G.L. Smith, C.J. Morris, H.A. Bruck, H. Frequency, and L. Power, Electrically actuated shape memory alloy (SMA) MEMS bimorph thermal actuators. J. Micromech. Microeng. 29, 1 (2019).CrossRef C.R. Knick, D.J. Sharar, A.A. Wilson, G.L. Smith, C.J. Morris, H.A. Bruck, H. Frequency, and L. Power, Electrically actuated shape memory alloy (SMA) MEMS bimorph thermal actuators. J. Micromech. Microeng. 29, 1 (2019).CrossRef
17.
go back to reference T. Kniknie, Y. Bellouard, E. Homburg, H. Nijmeijer, X. Wang, and J.J. Vlassak, On the use of shape memory alloy thin films to tune the dynamic response of micro-cantilevers. J. Micromech. Microeng. 20, 1 (2010).CrossRef T. Kniknie, Y. Bellouard, E. Homburg, H. Nijmeijer, X. Wang, and J.J. Vlassak, On the use of shape memory alloy thin films to tune the dynamic response of micro-cantilevers. J. Micromech. Microeng. 20, 1 (2010).CrossRef
18.
go back to reference C.C. Ma, R. Wang, Q.P. Sun, Y. Zohar, and M. Wong, in MEMS Conference Proceedings (2000), p. 370 C.C. Ma, R. Wang, Q.P. Sun, Y. Zohar, and M. Wong, in MEMS Conference Proceedings (2000), p. 370
19.
go back to reference A.A. Zaiter and M.S. Mohamed Ali, in IEEE Conference Proceedings (2014), p. 390 A.A. Zaiter and M.S. Mohamed Ali, in IEEE Conference Proceedings (2014), p. 390
20.
go back to reference H. Sun, J. Luo, M.L.D. Nykypanchuk, and Y. Shi, in ASME IDETC/CIE Conference Proceedings (2018), p. 1 H. Sun, J. Luo, M.L.D. Nykypanchuk, and Y. Shi, in ASME IDETC/CIE Conference Proceedings (2018), p. 1
21.
go back to reference M. Geetha, K. Dhanalakshmi, S. Jayachandran, I.A. Palani, and V. Sathish Kumar, Analysis of actuation characteristics of CuAlNiMn/polyimide thin film shape memory alloy. Mater. Today 46, 9580 (2021). M. Geetha, K. Dhanalakshmi, S. Jayachandran, I.A. Palani, and V. Sathish Kumar, Analysis of actuation characteristics of CuAlNiMn/polyimide thin film shape memory alloy. Mater. Today 46, 9580 (2021).
22.
go back to reference R. Shettar and B.G. Sheeparamatti, in COMSOLConference Proceedings (2013), p.1 R. Shettar and B.G. Sheeparamatti, in COMSOLConference Proceedings (2013), p.1
23.
go back to reference S. Shrivastava, in COMSOL Conference Proceedings (2006), p.1 S. Shrivastava, in COMSOL Conference Proceedings (2006), p.1
24.
go back to reference S. Pal and H. Xie, in Nanotech Conference Proceedings (2010), p. 685 S. Pal and H. Xie, in Nanotech Conference Proceedings (2010), p. 685
25.
go back to reference K. Akash, S.S. Mani Prabu, A.K. Shukla, T. Nath, S. Karthick, and I.A. Palani, Investigations on the life cycle behaviour of Cu-Al-Ni/polyimide shape memory alloy Bi-morph at varying substrate thickness and actuation conditions. Sens. Actuator A Phys. 254, 28 (2017).CrossRef K. Akash, S.S. Mani Prabu, A.K. Shukla, T. Nath, S. Karthick, and I.A. Palani, Investigations on the life cycle behaviour of Cu-Al-Ni/polyimide shape memory alloy Bi-morph at varying substrate thickness and actuation conditions. Sens. Actuator A Phys. 254, 28 (2017).CrossRef
26.
go back to reference W. Huang, On the selection of shape memory alloys for actuators. Mater. Des. 23, 11 (2001).CrossRef W. Huang, On the selection of shape memory alloys for actuators. Mater. Des. 23, 11 (2001).CrossRef
28.
go back to reference S. Quanmin, K. Tasung, and W. Manfred, in MRS Proceedings (2011) p. 318. S. Quanmin, K. Tasung, and W. Manfred, in MRS Proceedings (2011) p. 318.
29.
go back to reference M. Geetha, K. Dhanalakshmi, and V. Vetriselvi, A shape memory alloy bimorph-actuated switch for antenna reconfiguration. J. Mater. Sci. Mater. Electron. 33, 4426 (2022).CrossRef M. Geetha, K. Dhanalakshmi, and V. Vetriselvi, A shape memory alloy bimorph-actuated switch for antenna reconfiguration. J. Mater. Sci. Mater. Electron. 33, 4426 (2022).CrossRef
30.
go back to reference N. Haider, D. Caratelli, and A.G. Yarovoy, Recent developments in reconfigurable and multiband antenna technology. Int. J. Antennas Propag. 2013, 1 (2013).CrossRef N. Haider, D. Caratelli, and A.G. Yarovoy, Recent developments in reconfigurable and multiband antenna technology. Int. J. Antennas Propag. 2013, 1 (2013).CrossRef
31.
go back to reference E.W. Hurd, J.A. Flint, and I.H. Daniel, in LAPC Conference Proceedings (2014) p. 363 E.W. Hurd, J.A. Flint, and I.H. Daniel, in LAPC Conference Proceedings (2014) p. 363
32.
go back to reference L. Sumana and S. Esther Florence, Pattern reconfigurable microstrip patch antenna based on shape memory alloys for automobile applications. J. Electron. Mater. 49, 6598 (2020).CrossRef L. Sumana and S. Esther Florence, Pattern reconfigurable microstrip patch antenna based on shape memory alloys for automobile applications. J. Electron. Mater. 49, 6598 (2020).CrossRef
33.
go back to reference P.J. Wolcott, Z. Wang, L. Zhang, and M.J. Dapino, Radio frequency patch antenna reconfiguration with Ni-Ti shape memory alloy switches. J. Intell. Mater. Syst. Struct. 24(8), 973 (2012).CrossRef P.J. Wolcott, Z. Wang, L. Zhang, and M.J. Dapino, Radio frequency patch antenna reconfiguration with Ni-Ti shape memory alloy switches. J. Intell. Mater. Syst. Struct. 24(8), 973 (2012).CrossRef
Metadata
Title
Frequency Response Characterization of Thin-Film Shape Memory Alloy Actuator for Reconfigurable Antenna
Authors
M. Geetha
K. Dhanalakshmi
V. Vetriselvi
S. Jayachandran
I. A. Palani
Publication date
16-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10485-9

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue